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Abstract. A sequence of reversals that takes a signed permutation to
the identity is perfect if it preserves all common intervals between the
permutation and the identity. The problem of computing a parsimonious
perfect sequence of reversals is believed to be NP-hard, as the more gen-
eral problem of sorting a signed permutation by reversals while preserv-
ing a given subset of common intervals is NP-hard. The only published
algorithms that compute a parsimonious perfect reversals sequence have
an exponential time complexity. Here we show that, despite this worst-
case analysis, with probability one, sorting can be done in polynomial
time. Further, we find asymptotic expressions for the average length and
number of reversals in commuting permutations, an interesting sub-class
of signed permutations.
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1 Introduction

The sorting of signed permutations by reversals is a simple combinatorial prob-
lem with a direct application in genome arrangement studies. Different sorting
scenarios provide estimates for evolutionary distance and can help explain the
differences in gene orders between two species (see [9] for example). Initially, the
shortest (parsimonious) sequences of reversals were sought, and polynomial time
algorithms to find such sequences were described [14, 8, 20]. Recently, biologically
motivated refinements have been considered, specifically accounting for groups
of genes that are co-localized with the different homologous genes (genes having
a single common ancestor) in the genomes of different species. It is then likely
that such groups of genes were contiguous in the common ancestral genome, and
were not disrupted during evolution, hence, we expect them to appear together
at every step of the evolution. In terms of our combinatorial model, a group of
co-localized genes is modeled by a common interval, and the prefectness condi-
tion implies that common intervals are preserved by reversals. This constraint
leads to the following algorithmic problem:
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What is the smallest number of reversals required to sort a signed per-
mutation into the identity permutation without breaking any common
interval?

These scenarios are called perfect [12]. Because of the additional constraint,
it is possible that the shortest perfect sorting scenario is longer that the shortest
scenario.

It is known that the refined problem of preserving a given subset of all com-
mon intervals is NP-hard [12]. However, several authors have described classes
of instances which can be solved in polynomial time [3, 4, 11], and fixed parame-
ter algorithms exist [4, 5]. For example, commuting permutations form a class of
instances such that the property of a reversal scenario being perfect is preserved
even when the sequence of reversals is reordered arbitrarily. A central concept in
the theory of perfect sorting by reversals is the “strong interval tree” associated
to a permutation [4].

Recently, several works have investigated expected properties of combinato-
rial objects related to genomic distance computation, such as the breakpoint
graph [24, 22, 23, 19]. We explore this route here, but focusing on the strong
interval tree, to conduct an average-case analysis of perfect sorting by rever-
sals. First, in Section 3, we prove that for large enough n, with probability 1,
computing a perfect reversal sorting scenario for signed permutations can be
done in time polynomial in n, despite the fact that this is NP-hard. Secondly,
in Section 4, we show that, in a parsimonious perfect scenario for a commuting
permutation of length n, the average number of reversals is asymptotically 1.2n,
and the average length of a reversal is 1.02

√
n. We conclude by describing future

research avenues, both theoretical and applied.

2 Preliminaries

We first summarize the combinatorial and algorithmic frameworks for perfect
sorting by reversals. For a more detailed treatment, we refer to [4].

Permutations, reversals, common intervals and perfect scenarios. A signed per-
mutation on [n] is a permutation on the set of integers [n] = {1, 2, . . . , n} in
which each element has a sign, positive or negative. Negative integers are rep-
resented by placing a bar over them. We denote by Idn (resp. Idn) the identity
(resp. reversed identity) permutation, (1 2 . . . n) (resp. (n . . . 2 1)). When the
number n of elements is clear from the context, we will simply write Id or Id.

An interval I of a signed permutation σ on [n] is a segment of adjacent
elements of σ. The content of I is the subset of [n] defined by the absolute values
of the elements of I. Given σ, an interval is defined by its content and from now,
when the context is unambiguous, we identify an interval with its content.

The reversal of an interval of a signed permutation reverses the order of the
elements of the interval, while changing their signs. If σ is a permutation, we
denote by σ the permutation obtained by reversing the complete permutation



σ. A scenario for σ is a sequence of reversals that transforms σ into Idn or Idn.
The length of such a scenario is the number of reversals it contains. The length
of a reversal is the number of elements in the interval that is reversed.

Two distinct intervals I and J commute if their contents trivially intersect,
that is either I ⊂ J , or J ⊂ I, or I∩J = ∅. If intervals I and J do not commute,
they overlap. A common interval of a permutation σ on [n] is a subset of [n] that
is an interval in both σ and the identity permutation Idn. The singletons and the
set {1, 2, . . . , n} are always common intervals called trivial common intervals.

A scenario S for σ is called a perfect scenario if every reversal of S commutes
with every common interval of σ. A perfect scenario of minimal length is called
a parsimonious perfect scenario.

A permutation σ is said to be commuting if there exists a perfect scenario
for σ such that for every pair of reversals of this scenario, the corresponding
intervals commute. In such a case, this property holds for every perfect scenario
for σ [4].

The strong interval tree. A common interval I of a permutation σ is a strong
interval of σ if it commutes with every other common interval of σ.

The inclusion order of the set of strong intervals defines an n-leaf tree, de-
noted by TS(σ), whose leaves are the singletons, and whose root is the interval
containing all elements of the permutation. The strong interval tree of σ can be
computed in linear time and space (see [7] for example). We call the tree TS(σ)
the strong interval tree of σ, and we identify a vertex of TS(σ) with the strong
interval it represents. In a more combinatorial context, this tree is also called
substitution decomposition tree [1]. If σ is a signed permutation, the sign of every
element of σ is given to the corresponding leaf in TS(σ). (See Fig. 1.)

Let I be a strong interval of σ and I = (I1, . . . , Ik) the unique partition of
the elements of I into maximal strong intervals, from left to right. The quotient
permutation of I, denoted σI , is the permutation of size k defined as follows:
σI(i) is smaller than σI(j) in σI if any element of Ii is smaller (in absolute value
if σ is a signed permutation) than any element of Ij . The vertex I, or equiva-
lently the strong interval I of σ, is either: increasing linear, if σI is the identity
permutation, or decreasing linear, if σI is the reversed identity permutation, or
prime, otherwise. For exposition purposes we consider that an increasing vertex
is positive and a decreasing vertex is negative. The strong interval tree as com-
puted in the algorithm of [7] contains the nature – increasing/decreasing linear
or prime – of each vertex. It can easily be adapted to compute also in linear time
the quotient permutation associated to each strong interval.

For a vertex I of TS(σ), we denote by L(I) the set of elements of σ that label
the leaves of the subtree of TS(σ) rooted at I.

The strong interval tree as a guide for perfect sorting by reversals. We describe
now important properties, related to the strong interval tree, of the algorithm
described in [4] for perfect sorting by reversals a signed permutation. Let σ be a
signed permutation of size n and TS(σ) its strong interval tree, having m internal
vertices, called I1, . . . , Im, including p prime vertices:



{1} {2} {3}{4} {5̄} {6̄} {7}{8̄} {9} {10} {1̄1}{12} {13}{1̄4} {15} {16}{1̄7} {18}

{2, 3, 4, 5} {6, 7}

{2, 3, 4, 5, 6, 7, 8, 9}

{13, 14} {16, 17}

{10, 11, 12, 13, 14}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

Fig. 1. The strong interval tree TS(σ) of the permutation σ =
(1 8̄ 4 2 5̄ 3 9 6̄ 7 12 10 1̄4 13 1̄1 15 1̄7 16 18). Prime and linear vertices are
distinguished by their shape. There are three non-trivial linear vertices, the rectan-
gular vertices, and three prime vertices, the round vertices. The root and the vertex
{6, 7} are increasing linear vertices, while the linear vertices {16, 17} and {13, 14} are
decreasing.

Theorem 1. [4]

1. The algorithm described in [4] can compute a parsimonious perfect scenario
for σ in worst-case time O(2pn

√

n log(n)).
2. σ is a commuting permutation if and only if p = 0.
3. If σ is a commuting permutation, then every perfect scenario has for reversals

set the set {L(Ij)|Ij has a sign different from its parent in TS(σ)}.

Remark 1 The strong interval tree of an unsigned permutation is equivalent to
the modular decomposition tree of the corresponding labeled permutation graph
(see [4] for example). Also commuting permutations have been investigated, in
connection with permutation patterns, under the name of separable permutations
[15].

3 On the number of prime vertices

Motivated by the average-time complexity of the algorithm described in [4] for
computing a parsimonious perfect scenario, we first investigate the average shape
of a strong interval tree of a permutation of size n. Such a tree is characterized
by the shape of the tree along with the quotient permutations labeling internal
vertices. For prime vertices, those quotient permutations correspond to simple
permutations as defined in [2]. We first concentrate on enumerative results on
simple permutations. Next, we derive from them enumerative consequences on
the number of permutations whose strong interval tree has a given shape. Ex-
hibiting a family of shapes with only one prime vertex, we can prove that nearly
all permutations have a strong interval tree of this special shape.



3.1 Combinatorial preliminaries: strong interval trees and simple

permutations

Let TS(σ) be the strong interval tree of a permutation σ of length n. From a
combinatorial point of view it is simply a plane tree (the children of a vertex are
totally ordered) with n leaves and its internal vertices labeled by their quotient
permutation: an internal vertex having k children can be labeled either by the
permutation (1 2 . . . k) (increasing linear vertex), the permutation (k k−1 . . . 1)
(decreasing linear vertex) or a permutation of length k whose only common
intervals are trivial (prime vertex). Due to the fact that TS(σ) represents the
common intervals between σ and the identity permutation, it has two important
properties.

Property 1 1. No edge can be incident to two increasing or two decreasing
linear vertices.

2. The labeling of the leaves by the integers {1, . . . , n} is implicitly defined by
the permutations labeling the internal vertices.

Permutations whose common intervals are trivial are called simple permuta-
tions. The shortest simple permutations are of length 4 and are (3 1 4 2) and
(2 4 1 3). The enumeration of simple permutations was investigated in [2]. The
authors prove that this enumerative sequence is not P-recursive and there is no
known closed formula for the number of simple permutations of a given size.
However, it was shown in [2] that an asymptotic equivalent for the number sn

of simple permutations of size n is

sn =
n!

e2
(1 − 4

n
+

2

n(n − 1)
+ O(

1

n3
)) when n → ∞. (1)

3.2 Average shape of strong interval trees

A twin in a strong interval tree is a vertex of degree 2 such that each of its two
children is a leaf. A twin is then a linear vertex. The following result, that applies
both to signed permutations and unsigned permutations, is the main result of
this section.

Theorem 2. Asymptotically, with probability 1, a random permutation σ of size
n has a strong interval tree such that the root is a prime vertex and every child
of the root is either a leaf or a twin. Moreover the probability that TS(σ) has

such a shape with exactly k twins is 2k

e2k! .

The proof follows from Lemma 1 and Equation (1).

Lemma 1. If p′n,k denotes the number of permutations of length n which contain
a common interval I of length k then for any fixed positive integer c:

n−c
∑

k=c+2

p′n,k

n!
= O(n−c)



Proof. The proof is very similar to Lemma 7 in [2]. We have p′n,k ≤ (n − k +
1)k!(n− k + 1)!. Indeed, the right hand side counts the number of permutations
of {1 . . . k} corresponding to I (k!), the possible values of the minimal element
of I (n − k + 1) and the structure of the rest of the permutation with one more
element which marks the insertion of I ((n−k+1)!). Only the extremal terms of
the sum can have magnitude O(n−c) and the remaining terms have magnitude
O(n−c−1). Since there are fewer than n terms the result of Lemma 1 follows.

Proof (Proof of Theorem 2). Lemma 1 with c = 1 gives that the proportion of
non-simple permutations with common intervals of size greater than or equal to
3 is O(n−1). But permutations whose common intervals are only of size 1, 2 or n
are exactly permutations whose strong interval tree has a prime root and every
child is either a leaf or a twin.

Then the number of permutations whose strong interval tree has a prime
root with k twins is sn−k

(

n−k
k

)

2k. From Equation (1) the asymptotics for this

number is n!2k

e2k! , proving Theorem 2. ⊓⊔

3.3 Average time complexity of perfect sorting by reversals

Corollary 1. The algorithm described in [4] for computing a parsimonious per-
fect scenario for a random permutation runs in polynomial time with probability
1 as n → ∞.

Proof. Direct consequence of point 1 in Theorem 1 and of Theorem 2, applied
on signed permutations. ⊓⊔

This result however does not imply that the average complexity of this algo-
rithm is polynomial, as the average time complexity is the sum of the complexity
on all instances of size n divided by the number of instances. Formally, to assess
the average time complexity, we need to prove that as n grows, the ratio

pn =

∑

p 2pTn,p

Tn

is bounded by a polynomial in n, where Tn is the number of strong interval trees
with n leaves and Tn,p the number of such trees with p prime vertices. The factor
2p comes from the complexity given in Theorem 1.

Let T (x, y) be the bivariate generating function T (x, y) =
∑

k,n Tn,px
nyp

Then pn = [xn]T (x,2)
[xn]T (x,1) . Let moreover P (x) be the generating function of simple

permutations P (x) =
∑

n≥0 snxn (whose first terms can be obtained from entry
A111111 in [18]). Using the specification for strong interval trees given in Section
3.1 and techniques described in [13] for example, it is immediate that T (x, y)
satisfies the following system of functional equations:

{

T (x, y) = x + yP (T (x, y)) + 2 B(x,y)2

1−B(x,y)

B(x, y) = x + yP (T (x, y)) + B(x,y)2

1−B(x,y)



By iterating these equations, we computed the 25 first values of pn (Fig. 2)
that suggest that pn is even bounded by a constant close to 2 and lead us to
Conjecture 1.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  5  10  15  20  25

Fig. 2. pn, up to n = 25.

Conjecture 1 The average-time complexity of the algorithm described in [4] for
computing a parsimonious perfect scenario is polynomial, bounded by O(n

√
n log n).

4 Average-case properties of commuting permutations

We now study the family of commuting (signed) permutations and more pre-
cisely the average number of reversals in a parsimonious perfect scenario for a
commuting permutation and the average length of a reversal of such a scenario.
These questions are motivated by two problems. First, from a more theoretical
point of view, understanding strong interval trees with no prime node is a first
step towards more general results on strong interval trees with few prime nodes,
that are common with real data. Second, from an applied point of view, in the
strong interval trees computed from real data, it is common to find large genome
segments corresponding to a subtree that contains only linear nodes. Hence, the
results of this section can be applied to such subtrees to detect genome segments
with non-random evolution scenarios. Also the results in this section

Let σ be a commuting permutation of size n, i.e. a signed permutation whose
strong interval tree TS(σ) has no prime vertex. It follows from the combinatorial
specification of strong interval trees given in Section 3.1 that TS(σ) is simply
a plane tree with internal vertices having at least two children and a sign on
the root (from Property 1, that defines implicitly the signs of the other internal
vertices, and the labels {1 . . . n} of the leaves). These trees are then Schröder
trees (entry A001003 in the On-Line Encyclopedia of Integer Sequences [18])
with a sign on the root.



Theorem 3. The average length of a parsimonious perfect scenario for a com-
muting permutation of length n is asymptotically

1 +
√

2

2
n ≃ 1.2n.

Proof. We now sketch the main steps of the proof. From the previous section and
points 2 and 3 in Theorem 1, the problem of computing the expected number
of reversals of a parsimonious perfect scenario reduces to computing the ex-
pected number of internal vertices of TS(σ) other than the root (because, from
Property 1.1, two adjacent linear vertices cannot have the same sign) and the
expected number of leaves whose sign in σ differs from the sign of its parent in
TS(σ).

The expected number of leaves whose sign in σ is different from its parent in
TS(σ) is obviously n/2, as the sign of the leaf and of its parent are independent.

To compute the average number of internal vertices in a Schröder tree, we use
symbolic methods as defined in [13]. Let us define the bivariate generating func-
tion S(x, y) =

∑

k,n Sn,kxnyk where Sn,k denotes the number of Schröder trees
with n leaves and k internal vertices. The average number of internal vertices in
a Schröder tree with n leaves is

∑

k kSn,k
∑

k Sn,k
=

[xn]∂S(x,y)
∂y |y=1

[xn]S(x, 1)
.

A Schröder tree can be recursively described as a single leaf, or a root hav-
ing at least two children, which are again Schröder trees. Consequently, S(x, y)
satisfies the equation

S(x, y) = x + y
S(x, y)2

1 − S(x, y)
,

and solving this equation gives

S(x, y) =
(x + 1) −

√

(x + 1)2 − 4x(y + 1)

2(y + 1)
. (2)

The number [xn]S(x, 1) of Schröder trees ([18, entry A001003]) is asymptot-
ically equivalent to

√

3
√

2 − 4

4
(3 + 2

√
2)n 1√

πn3
.

From Equation (2) we obtain an equivalent of the coefficients [xn]∂S(x,y)
∂y |y=1

when n → ∞ :

[xn]
∂S(x, y)

∂y
|y=1 ∼ 3 − 2

√
2

4
√

3
√

2 − 4
(3 + 2

√
2)n 1√

πn
.

An equivalent of the average number of internal vertices in a Schröder tree
with n leaves is now easily derived as

[xn]∂S(x,y)
∂y |y=1

[xn]S(x, 1)
∼ 3 − 2

√
2

3
√

2 − 4
n ∼ n√

2
.



Combined with the average number n/2 of leaves whose sign is different from
its parent in TS(σ), and correcting for having counted the root in the internal
vertices (by substracting 1, which does not count asymptotically), this leads to
Theorem 3. ⊓⊔

Remark 2 It is interesting to note the large representation of reversals of length
1, that composes almost half of the expected reversals. A similar property was
observed in [17] on datasets of bacterial genomes.

Theorem 4. The average length of a reversal in a parsimonious perfect scenario
for a commuting permutation of length n is asymptotically

27/4
√

3 − 2
√

2

1 +
√

2

√
πn ≃ 1.02

√
n

Proof. We want to compute the ratio between the average sum of the lengths of
the reversals of a parsimonious perfect scenario for a commuting permutation and
the average length of such a scenario. The later was obtained above (Theorem 3),
and we concentrate on the former.

A reversal defined by a vertex x of the strong interval tree TS(σ) is of length
L(x) (it reverses the segment of the signed permutation that contains the leaves
of the subtree rooted at x, see [4]). We first focus on the average value of the sum
of the sizes of all subtrees in a Schröder tree. For simplicity in the computation,
we will also count the whole tree and the leaves as subtrees (obviously of size 1),
which will give the same quantity we want to compute, up to subtracting 3/2 ·n
to the final result. We first define the bivariate generating function (that we call
again S, but which is slightly different)

S(x, y) =
∑

k,n

Sn,kxnyk

where Sn,k denotes the number of Schröder trees with n leaves and sizes of
subtrees (including leaves and the whole tree) that sum to k. The average value
of the sum of the sizes of every subtree in a Schröder tree with n leaves is

∑

k kSn,k
∑

k Sn,k
=

[xn]∂S(x,y)
∂y |y=1

[xn]S(x, 1)
.

S(x, y) satisfies the functional equation

S(x, y) = xy +
S(xy, y)2

1 − S(xy, y)
. (3)

which leads to

∂S(x, y)

∂y
|y=1 =

x

(1 − C)2
, where C =

2S(x, 1) − S(x, 1)2

(1 − S(x, 1))2



and then to

[xn]
∂S(x, y)

∂y
|y=1 ∼ 3 − 2

√
2

2
(3 + 2

√
2)n

An equivalent of the average value of the sum of the sizes of all subtrees in
a Schröder tree with n leaves is now easily derived as

[xn]∂S(x,y)
∂y |y=1

[xn]S(x, 1)
∼ 23/4

√

3 − 2
√

2
√

πn3.

The above result does take into account the whole tree and all leaves, that
should not be counted but these terms are negligible asymptotically. Hence, the
average sum of the lengths of the reversals of a parsimonious perfect scenario for
a commuting permutation of size n is asymptotically

23/4

√

3 − 2
√

2
√

πn3.

Dividing by the average number of reversals of such a scenario (Theorem 3),
we obtain Theorem 4. ⊓⊔

5 Conclusion and perspectives

We showed that perfect sorting by reversals, although an intractable problem, is
very likely to be solved in polynomial time for random signed permutations. This
result relies on a study of the shape of a random strong interval tree that shows
that asymptotically such trees are mostly composed of a large prime vertex
at the root and small subtrees. As the strong interval tree of a permutation
is equivalent to the modular decomposition tree of the corresponding labeled
permutation graph [4], this result agrees with the general belief that the modular
decomposition tree of a random graph has a large prime root. We were also able
to give precise asymptotic results for the expected lengths of a parsimonious
perfect scenario and of a reversal of such a scenario for random commuting
permutations.

Our research leaves open several problems. The most natural theoretical
problem is to prove that computing a parsimonious perfect scenario can be done
in polynomial time on the average. It would also be interesting to see if our
approach can be extended to the perfect rearrangement problem for the Double-
Cut-and-Join model that has been introduced recently [6] and has the intriguing
property that instances that were hard to solve for reversals can be solved in
polynomial time in the DCJ context and conversely. From a more applied point
of view, our results can be applied to the general problem of detecting genome
segments that evolve under non-random evolutionary pressure, or more generally
whose evolution differs from what would be expected for random permutations.
This could be done by detecting subtrees of strong interval trees obtained from
real data whose properties differ from the properties of random subtrees. It then
would be useful to extend them to more general trees, such as trees with small



number of prime nodes. Finally, we plan to apply our techniques to find precise
properties of random PQ-trees. PQ-trees lie between strong interval trees with
no prime nodes and unrestricted strong interval trees. They have been widely
used in genomics, for physical mapping [21], comparative genomics [16] and pa-
leogenomics [10], but very little is known about their random properties [21].
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