
Laboratoire Bordelais de Recherche en Informatique
UMR 5800 - Université Bordeaux 1, 351, cours de la Libération,
33405 Talence cedex, France

Research Report RR-1443-08

New algorithms for aligning
nested arc-annotated sequences

by Äıda Ouangraoua, Cedric Chauve, Valentin Guignon and
Sylvie Hamel

April, 2008

New algorithms for aligning nested arc-annotated sequences

Aı̈da Ouangraoua1, Cedric Chauve2, Valentin Guignon3,4, and Sylvie Hamel4

1 LaBRI, Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France.
2 Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

CGL and LaCIM, Université du Québec à Montréal, CP 8888 Succ. Centre-ville, Montréal, QC, H3C 3P8, Canada.
3 LIRMM, Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5, France.

4 DIRO, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada.

Abstract. Background. We propose in this paper a new algorithm for the alignment of RNA secondary
structures without pseudoknots, represented by nested arc-annotated sequences. We use a general edit
distance model between arc-annotated sequences, that considers classical sequences edit operations,
but also structural edit operations, such as the creation, deletion or modification of bonds between
pairs of bases. The general edit distance problem is NP-hard in this model, and recently a hierarchy
of arc-annotated sequence alignment problems was introduced in order to define tractable less general
problems.
Results. We extend the hierarchy of alignment problems and describe a polynomial space and time
algorithm that solves a more general alignment problem. Up to date the alignment problem we solve is
the most general one that is known to be tractable in the considered edit distance model. This algorithm
is efficient, as its asymptotic time and space complexities are the same as the complexities of the best
previously published algorithm, that solved a less general problem.

1 Introduction

An RNA molecule is a polymer composed of a sequence of nucleotides which can be linked together
by phosphodiester bonds determining its structural conformation. It has been shown that the
conformation of an RNA molecule is correlated with its function. Thus, RNA structure comparison
is essential in the comparative approach that relates structural similarity to functional similarity.
With the increasing amount of known RNA molecules, especially non-coding RNAs [6, 19, 17],
the development of precise, fast, and well understood algorithms to compare RNA structures is
of primary importance. In this paper, we focus on the comparison of RNA secondary structures
without pseudoknots.

From an algorithmic point of view, RNA secondary structures comparison was first considered
in the framework of the edit distance between ordered trees [12, 20]. Recently, it has also been
described as a problem of edit distances between arc-annotated sequences, that can also be used to
represent RNA structures with pseudoknots [9, 14]. An arc-annotated sequence is a sequence, over
a given alphabet, with additional structure described by a – possibly empty – set of arcs, each arc
joining a pair of positions in the sequence. From a purely combinatorial point of view, arc-annotated
sequences are then a natural extension of simple sequences. The problem of computing an edit dis-
tance between two arc-annotated sequences seems to have been introduced, at least in relation
with the comparison of RNA structures, in [9, 21], where a simple model was introduced that used
only three edit operations (insertion, deletion and substitution) and did not consider separately the
sequence elements that belong to a same arc. This problem, in the case of nested arc-annotated
sequences (i.e. where no pairs of arcs are crossing), is equivalent to the tree edit distance computa-
tion, that can be solved in polynomial time [7, 8, 20]. In [14], new edit operations were introduced,
to account for structural evolutionary events, such as the creation, deletion or modification of bonds

between pairs of bases. Accounting for such events leads naturally to more realistic alignments be-
tween RNA secondary structures [18], but at the cost of computational tractability. Indeed, it was
recently shown in [3] that computing the edit distance between two nested arc-annotated structures
in the model introduced in [14] is NP-hard. Several groups have then defined less general alignment
problems, by considering constraints either on the set of considered edit operations [13], or on the
structure of possible alignments and edit sequences [4, 5, 11]. In particular, in [5], a hierarchy of
several problems of distance and alignment computation between nested arc-annotated sequences
was introduced, that enlightens the limit between hard and tractable problems. Up to date, the
most general tractable distance model, using the edit operations introduced in [14], was presented
in [4].

The main contribution of our paper is to extend the hierarchy of arc-annotated sequences
alignments problems defined in [4, 5] and to introduce a new and more general, but still tractable,
alignment problem, that can be applied in order to obtain more precise alignments between pairs
of RNA secondary structures without pseudoknots. We propose an efficient dynamic programming
algorithm solving this new problem. Our paper is structured as follows. In section 2, we formally
describe the hierarchy of arc-annotated sequence alignment problems introduced in [5]. In section 3,
we refine this hierarchy and describe some properties of the new classes of arc-annotated sequence
alignment problems that we introduce. In particular we show that an algorithm that was described
in [11] to compare RNA stem-loops is in fact an exact algorithm in this hierarchy of alignment
problems. We also show that the new alignment problem we introduce fixes an important weakness
of previously considered alignment problems as it allows to align two bases, belonging to arcs in
two RNA secondary structures, without being forced to align together the two other extremities of
these arcs. Finally, we show that this alignment problem is tractable, as it can be solved with the
same complexity than the less general problem considered in [4]. In section 4, we present a dynamic
programming algorithm to compute the distance in this new model. In section 5, we conclude with
some experimental results and we outline some perspectives on using our algorithm to define more
efficient methods for RNA secondary structures comparison.

2 Preliminaries: Arc-annotated sequences and their comparison

We now describe formally the different problems of comparison of nested arc-annotated sequences
we consider, and the existing results.

2.1 A hierarchy of arc-annotated sequences

An arc-annotated sequence of length n on a finite alphabet Σ is a couple A = (S,P) where S is
a sequence of length n on Σ and P is a set of pairs (i1, i2), with 1 ≤ i1 < i2 ≤ n. Arc-annotated
sequences are used, among others, for representing RNA structures: in such a case Σ is the alphabet
of nucleotide bases that compose an RNA molecule, Σ = {A,C,G,U} (see [9, 14] for example). In
this paper we consider arc-annotated sequences representing RNA structures and we will then call
an element of S a base. We denote by S[i] the ith base of S and by S[i1..i2] the sub-sequence
containing bases S[i1], S[i1 + 1], . . . , S[i2]. A pair (i1, i2) ∈ P represents an arc linking bases S[i1]
(called the origin of the arc) and S[i2] (called the end of the arc) of S – a base pair in terms of
RNA structures –; the bases S[i1] and S[i2] are said to belong to the arc (i1, i2) and are the only
bases that belong to this arc; a base that does not belong to an arc is called an unpaired base. We
denote by U(A), Po(A), and Pe(A) respectively the set of unpaired bases, origins of arcs and ends

2

of arcs of A. If A = (S,P), we also use the notation P (A) = P to denote the set of arcs of A.
In an arc-annotated sequence, two arcs (i1, i2) and (i3, i4) are said to cross, or to be crossing, if
i1 < i3 < i2 < i4 or i3 < i1 < i4 < i2.

Arc-annotated sequences can be classified according to the combinatorial structure of their
arcs. We now present the classification of arc-annotated sequences defined in [9] and used in [5].
An arc-annotated sequence A = (S,P) is said to be (Fig. 1):

– Unlimited (Unlim) if there is no restriction on P .
– Crossing (Cros) if every base belongs to at most one arc
– Nested (abbreviated Nest) if it belongs to Cros and it has no pair of crossing arcs
– Plain if P is empty

Fig. 1. Examples of arc-annotated sequences belonging to the classes of the hierarchy of arc-annotated sequences.

2.2 Edit operations, edit sequence and edit distance

We consider the set of edit operations on arc-annotated sequences that was introduced in [14]. In
the following, a, b, c, d are elements of Σ.

– Simple unpaired base operations (Fig. 2):
• Base-substitution (BS): substitution of a base a by a base b, denoted by a→b.
• Base-deletion (BD): deletion of a base a, denoted by a→λ.
• Base-insertion (BI): insertion of a base b, denoted by λ→b.

– Simple arc operations (Fig. 2):
• Arc-substitution (AS): substitution of an arc (a, b) by an arc (c, d), denoted by (a, b)→(c, d).
• Arc-deletion (AD): deletion of an arc (a, b), denoted by (a, b)→λ,λ.
• Arc-insertion (AI): insertion of an arc (c, d), denoted by λ,λ→(c, d).

– Complex arc operations (Fig. 3):
• Arc-breaking (AB): breaking an arc (a, b), denoted by (a, b)→a, b.
• Arc-creation (AC): creating an arc (c, d), denoted by c, d→(c, d).
• Arc-altering (AA): altering an arc (a, b), denoted by (a, b)→a,λ or (a, b)→λ, b.
• Arc-completing (ACo): completing an arc (c, d), denoted by c,λ→(c, d) or λ, d→(c, d).

3

Each edit operation e has a cost depending on the operation and on the bases involved in it,
denoted by w(e). The set of costs associated to all possible edit operations is called the cost scheme.
Note that a given cost scheme can implicitly prevent some edit operations to be considered in edit
distance problems, if such operations can be replaced by a sequence of one or more edit operations
for a lesser cost. If such a situation can not occur, a cost scheme is said to be complete. In this
paper, we consider arbitrary cost schemes, including complete cost schemes.
Notation. We extend the cost notation defined above by identifying bases and arcs in an arc-
annotated sequence by their position in the sequence. For example if x and y are the positions of
two bases that form an arc in an arc-annotated sequence, the cost of breaking this arc is denoted
by w((x,y)→x,y).

Fig. 2. Simple edit operations on arc-annotated sequence

Let A1 = (S1, P1) and A2 = (S2, P2) be two arc-annotated sequences of length n1 and n2

respectively. An edit sequence between A1 and A2 is a sequence E of edit operations that transforms
A1 into A2. The cost of an edit sequence E denoted by w(E) is the sum of the costs of the edit
operations that compose it. An edit sequence between two arc-annotated sequences is said to be
optimal if its cost is minimal among all edit sequences between these two arc-annotated sequences.
The edit distance between two arc-annotated sequences is the cost of an optimal edit sequences
between them.

Let C be a class of the hierarchy of arc-annotated structures. We denote by Edit(C,C) the
general problem of computing the edit distance between two arc-annotated sequences belonging to
C, for a given cost scheme.

Theorem 1. [3] Edit(Nest,Nest) is NP-hard.

The hardness of computing the edit distance between nested arc-annotated sequences naturally
leads to define restrictions on the kind of considered of edit sequences, in such a way that computing
an optimal edit sequences among this subset of edit sequences can be done efficiently. We present in

4

Fig. 3. Complex edit operations on arc-annotated sequence

Section 2.3 such an approach, introduced in [4, 5], that defines a hierarchy of comparison problems
based on the notions of super-sequence and alignment sequence.

2.3 Alignment sequence and distances; a hierarchy of comparison problems

A super-sequence of an arc-annotated sequence A = (S,P) is an arc-annotated sequence which can
be obtained by applying on A an edit sequence composed of insertion and substitution operations
only: BI, AI, AC, ACo, BS, and AS; symmetrically, an arc-annotated sequence can be obtained
from any of its super-sequences using only deletion and substitution operations.

An edit sequence E = e1, . . . , ek composed of k edit operations between two arc-annotated
sequences A1 = (S1, P1) and A2 = (S2, P2) is an alignment sequence if it can be decomposed
into two sub-sequences, say E1 = e1, . . . , e! and E2 = e!+1, . . . , ek such that the edit operations
of E1 (resp. E2) belong to the set {BI, AI, AC, ACo} (resp. {BS, BD, AS, AD, AB, AA}). The
super-sequence of A1 and A2 induced by such an alignment sequence is the arc-annotated sequence
obtained by applying on A1 the sequence E1 of edit operations (Fig. 4). E1 and E2 are called the
decomposition of E.

Remark 1. In [4, 5], the definition of alignment sequence allows substitution operations BS and AS
to occur in E1. The restriction that they occur only in E2 is intended to simplify the exposition
and does not reduce the generality of our results.

For a given class C of the hierarchy of arc-annotated sequences, an alignment sequence E
between two nested arc-annotated sequences A1 and A2 is said to be a C-alignment sequence if the
super-sequence induced by E belongs to C. E is said to be an optimal C-alignment sequence if its
cost is minimal among the set of all C-alignment sequences between A1 and A2. The cost of an
optimal C-alignment sequence between A1 and A2 is called the C-alignment distance between A1

and A2, denoted by dC(A1, A2). We denote by Align(Nest,Nest;C) the problem of computing
the cost of an optimal C-alignment sequence between two nested arc-annotated sequences.

Theorem 2. [4, 5] Edit(Nest,Nest) = Align(Nest,Nest; Unlim).

5

Fig. 4. An alignment sequence between two arc-annotated sequences – A1 belongs to Nest and A2 belongs to Cros
–, and the corresponding super-sequence A3 that belongs to Unlim. The three first edit operations, that correspond
to E1 are respectively AC, AC and BI, and the last four, that correspond to E2 are AB, AB, AS and BD.

Theorem 2 immediately suggests a natural way to restrict the set of considered edit sequences
when comparing two nested arc-annotated sequences, in terms of the class that contains the cor-
responding super-sequence. Using such an approach, some alignment problems can be solved in
polynomial time, generalizing previous results on the alignment of arc-annotated sequences with
simple operations, that were described in terms of alignment of trees [15].

Theorem 3. [4, 5] Let A1 and A2 be two nested arc-annotated sequences of respective lengths n1 and
n2. dNEST (A1, A2) can be computed in O(n4) worst-case time and O(n3) space where n = n1 + n2.

Theorem 4. [4, 5] Align(Nest,Nest; Cros) is NP-hard.

Up to date, Align(Nest,Nest; Nest) is the most general problem that is known to be
tractable with a complete cost scheme. More general problems of alignment of nested arc-annotated
sequences have been shown to be NP-hard, such as Align(Nest,Nest; Cros) (Theorem 4) and
Align(Nest,Nest; Unlim) (Theorem 2), but in both cases the hardness proofs assume non com-
plete cost schemes that implicitly forbids some complex arc operations. On the other hand, for
some non complete cost schemes, there exist exact and polynomial time algorithms for alignment
problems with super-sequence that are more general than nested, like for example in [14] (AA, ACo,
AI and AD are implicitly discarded) and in [13] (AB is the only considered complex arc operation).

2.4 Alignment of arc-annotated sequences.

We now relate the problem of computing the alignment distance to the actual alignment between
arc-annotated sequences, as defined in [14].

An alignment between two arc-annotated sequences A1 = (S1, P1) and A2 = (S2, P2) is a couple
M = (AM

1 , AM
2) where AM

1 = (SM
1 , PM

1) and AM
2 = (SM

2 , PM
2) are two arc-annotated sequences on

the alphabet Σ ∪ {−} such that (Fig. 5):

– AM
1 and AM

2 have the same length |SM
1 | = |SM

2 | = n, (n is the length of the alignment M),
– removing symbols − from AM

1 (resp. AM
2) gives A1 (resp. A2), which implies that each base of

S1 (resp. S2) corresponds to a unique base of SM
1 (resp. SM

2),
– for any 1 ≤ i ≤ n, SM

1 [i] &= − or SM
2 [i] &= −,

6

Fig. 5. An alignment between two nested arc annotated sequences A1 = (S1, P1) and A2 = (S2, P2) with S1 =
AGGCUGCCC, P1 = {(1, 5), (3, 4), (6, 8)}, S2 = CACUAGCU and P2 = {(2, 4), (5, 8), (6, 7)}.

– for any (i1, i2) ∈ PM
1 (resp.(j1, j2) ∈ PM

2), SM
1 [i1] &= − and SM

1 [i2] &= − (resp. SM
2 [j1] &= − and

SM
2 [j2] &= −).

For a base S1[i] of S1, corresponding to the base SM
1 [i′], we say that it is aligned with − if

SM
2 [i′] = − and with S2[j] if S2[j] corresponds to SM

2 [i′]. A symmetrical definition applies for S2.
An alignment M between A1 and A2 defines an arc-annotated sequence AM

3 = (SM
3 , PM

3), on the
alphabet Σ, called the super-sequence of A1 and A2 induced by M , as follows (Fig. 6):

– |SM
3 | = n,

– PM
3 = PM

1 ∪ PM
2 ,

– for any 1 ≤ i ≤ n, if SM
1 [i] &= − then SM

3 [i] = SM
1 [i] else SM

3 [i] = SM
2 [i].

For a given class C of the hierarchy of arc-annotated sequences, an alignment M between A1 and
A2 is said to be a C-alignment if the super-sequence AM

3 belongs to the class C. We denote by
MC(A1, A2) the set of all C-alignments between A1 and A2.

Fig. 6. The super-sequence induced by the alignment of Fig. 5

Following [14], we associate a cost to an alignment M between A1 and A2, denoted w(M). M
implicitly defines a set of edit operations, denoted BS(M), BD(M), BI(M), AS(M), AD(M),
AI(M), AB(M), AC(M), AAl(M), AAr(M), ACol(M) and ACor(M) (the name obviously corre-
spond to the edit operations defined in Section 2.2) as follows:

7

AS(M) = PM
1 ∩ PM

2

BS(M) = {i ∈ [1 . . . n] | SM
1 [i] &= − and SM

2 [i] &= − and
! j s.t. (i, j) ∈ AS(M) or (j, i) ∈ AS(M) }

BD(M) = {i ∈ U(AM
1) | SM

2 [i] = −}
BI(M) = {j ∈ U(AM

2) | SM
1 [j] = −}

AD(M) = {(i1, i2) ∈ PM
1 | SM

2 [i1] = − and SM
2 [i2] = −}

AI(M) = {(j1, j2) ∈ PM
2 | SM

1 [j1] = − and SM
1 [j2] = −}

AB(M) = {(i1, i2) ∈ PM
1 | SM

2 [i1] &= − and SM
2 [i2] &= − and (i1, i2) &∈ PM

2 }
AC(M) = {(j1, j2) ∈ PM

2 | SM
1 [j1] &= − and SM

1 [j2] &= − and (j1, j2) &∈ PM
1 }

AAl(M) = {(i1, i2) ∈ PM
1 | SM

2 [i1] = − and SM
2 [i2] &= −}

AAr(M) = {(i1, i2) ∈ PM
1 | SM

2 [i1] &= − and SM
2 [i2] = −}

ACol(M) = {(j1, j2) ∈ PM
2 | SM

1 [j1] = − and SM
1 [j2] &= −}

ACor(M) = {(j1, j2) ∈ PM
2 | SM

1 [j1] &= − and SM
1 [j2] = −}

(1)

The cost of M , denoted by w(M), is then defined by

w(M) =
∑

(i)∈BS(M) w(SM
1 [i]→SM

2 [i])
+

∑
i∈BD(M) w(SM

1 [i]→λ)
+

∑
j∈BI(M)(λ→SM

2 [j])
+

∑
(i1,i2)∈AS(M) w((SM

1 [i1], SM
1 [i2])→(SM

2 [i1], SM
2 [i2]))

+
∑

(i1,i2)∈AD(M) w((SM
1 [i1], SM

1 [i2])→λ,λ)
+

∑
(j1,j2)∈AI(M) w(λ,λ→(SM

2 [j1], SM
2 [j2]))

+
∑

(i1,i2)∈AB(M) w((SM
1 [i1], SM

1 [i2])→SM
1 [i1], SM

1 [i2])
+

∑
(j1,j2)∈AC(M) w(SM

2 [j1], SM
2 [j2]→(SM

2 [j1], SM
2 [j2]))

+
∑

(i1,i2)∈AAl(M) w((SM
1 [i1], SM

1 [i2])→λ, SM
1 [i2])

+
∑

(i1,i2)∈AAr(M) w((SM
1 [i1], SM

1 [i2])→SM
1 [i1],λ)

+
∑

(j1,j2)∈ACol(M) w(λ, SM
2 [j2]→(SM

2 [j1], SM
2 [j2]))

+
∑

(j1,j2)∈ACor(M) w(SM
2 [j1],λ→(SM

2 [j1], SM
2 [j2]))

(2)

A C-alignment between two arc-annotated sequences A1 and A2 is said to be optimal if it has
minimum cost among the set of alignments MC(A1, A2). Proposition 1 below describes a natural
relationship between optimal alignments and optimal alignment sequences, that was used implicitly
in [4, 5, 14].

Proposition 1. Let A1 and A2 be two nested arc-annotated sequences and C a class of the hier-
archy of arc-annotated sequences. dC(A1, A2) = minM∈MC(A1,A2) w(M).

Proof. Let M be a C-alignment between A1 and A2. By definition, AM
3 is a super-sequence of A1

that can be obtained from A1 by the edit operations implicitly defined by BI(M), AI(M), AC(M),
ACol(M) and ACor(M); these operations all belong to BI, AI, AC or ACo. Similarly, A2 can be
obtained from AM

3 by the edit operations defined by BS(M), AS(M), BD(M), AD(M), AB(M),
AAl(M) and AAr(M), that belong respectively to BS, AS, BD, AD, AB and AA. From the fact
that AM

3 belongs to the class C we have that dC(A1, A2) ≤ minM∈MC(A1,A2) w(M).

8

Let E be a C-alignment sequence between A1 and A2, and A3 the corresponding super-sequence.
It defines implicitly an alignment M between A1 and A2: bases that are never deleted or inserted
(through base operations or arc operations) define pairs of bases of A1 and A2 that can be aligned,
the induced gaps in A1 and A2 being filled with the symbol −. It is then immediate that A3 = AM

3

and w(M) = w(E), and then dC(A1, A2) ≥ minM∈MC(A1,A2) w(M).)*

3 Extension of the hierarchy of arc-annotated sequences

We introduce new classes of arc-annotated sequences, together with some of the properties of the
corresponding alignment sequences.

3.1 New classes of arc-annotated sequences.

A first extension: Stem. The first new class we describe is the class of arc-annotated sequences
that correspond to the RNA secondary structures of stem-loops. We denote this class Stem. An
arc-annotated sequence (S,P) belongs to the class Stem if

1. it belongs to Nest and
2. it has no pair of arcs (i1, i2) and (i3, i4) such that i1 < i2 < i3 < i4 or i3 < i4 < i1 < i2

Hence, we can remark that this new class induces the following inclusion relation: Plain ⊂ Stem
⊂ Nest ⊂ Cros ⊂ Unlim.

The class Stem was considered in [11], where it was shown that, due to its simple structure, it is
possible to compute the conservative edit distance between two arc-annotated sequences belonging
to Stem (defined in Section 3.3, in polynomial time. It was also proposed to use a decomposition
of RNA secondary structures in stem-loops and to use this algorithm to compare complete RNA
secondary structures.

A second extension: Mult. Our second extension is inspired by the remark that there are two
differences between Nest and Unlim: in Nest, (1) a base can not belong to more than one arc and
(2) arcs can not cross. In the class Cros the constraint (2) is relaxed, and then relaxing constraint
(1) from the class Cros gives the class Unlim. It is then natural to consider an alternative path
from Nest to Unlim, by first relaxing the constraint (2), then the constraint (1).

We define the extension MULT of a given class, other than Unlim and Plain, by allowing a
base to belong to more than one arc. For example the extension Mult of the class Nest, denoted
by NMult, contains the arc-annotated sequences such that arcs do not cross but a base can belong
to more than one arc. Similarly we denote by SMult the Mult extension of Stem. With this point
of view, Unlim can in fact be seen as CMult, that is the extension Mult of Cros (Fig. 7).

In Section 4, we describe an algorithm that solves the problem ALIGN(Nest,Nest;NMult).
As far as we know, the only other alignment algorithm that considered an NMult super-sequence
did not consider all edit operations and a complete score scheme [13].

3.2 Properties of alignment sequences between nested arc-annotated sequences.

We present now a few properties of optimal alignment sequences between nested arc-annotated
sequences. They allow to get a better understanding of the kind of alignments and alignment
sequences that can be obtained in Align(Nest,Nest;C) where C is a class of the hierarchy of
arc-annotated sequences containing Nest (i.e. Nest, NMult, Cros or Unlim).

9

Fig. 7. Extension of the hierarchy of arc-annotated sequences.

Property 1. Let C be a class of the hierarchy of arc-annotated sequences containing Nest, E an
optimal C-alignment sequence between two nested arc-annotated sequences A1 = (S1, P1) and
A2 = (S2, P2), with a complete score scheme. Let E1 and E2 be the decomposition of E and x a
base in A1 that is not deleted in E2.

1. x can be involved in at most two complex arc operations in E: one in E1, that creates an arc
containing x, and one in E2, that does not delete the arc created by E1 if any.

2. If C is either Nest or Cros (i.e. not a MULT extension), then x can be involved in at most
one complex arc operation in E.

Proof. Let A3 = (S3, P3) be the super-sequence induced by E.
Assume the base x is involved in k ≥ 1 complex arc operations in E1 (AC or ACo). Then x

belongs to at least k arcs in A3 (and at most k+1 as A1 is nested). As A2 is nested, at least k−1 of
these arcs have to be removed during E2, either by AB or AA operations, that do not delete x by
hypothesis. Let y be a base that defines an arc with x in A3, that was created in E1 and removed
in E2. If this arc was created by AC (resp. ACo) and removed by AB (resp. AA), then E is not
optimal, as the second operation cancels the first one. If this arc was created by AC (resp. ACo),
and is removed by an AA (resp. AB), then the same result would have been obtained by a single
BD in E2 (resp. BI in E1). In all cases, with a complete score scheme E is not optimal, and then,
if k > 1, there is a contradiction with the initial hypothesis that E is optimal. This proves that x
can be involved in at most one complex operation, e1, in E1, that creates an arc, and one in E2

that does not delete the arc created by e1.
Assume now that A3 belongs to Nest or Cros. If x is involved in a complex arc operation e1

in E1 (AC or ACo), then x was not belonging to an arc in A1, and a complex operation in E2 that
would involve x (AB or AA) would delete the arc created by e1. From our above argument, this
contradicts the fact that E is optimal. If x is involved in a complex arc operation e2 in E2, then x
was in an arc in A1 and was not involved in a complex operation in E1, as it belongs to a single
arc in A3.)*

Example 1. Let S1 = abc, P1 = {(1, 2)}, S2 = abc and P2 = {(1, 3)}. Depending of the cost scheme,
an optimal alignment sequence between (S1, P1) and (S2, P2) could be an AC that creates the arc
(1, 3) followed by an AB of the arc (1, 2) in (S1, P1). This alignment sequence induces a super-
sequence where the base a is incident to two arcs, and then does not belong to Nest. An alignment

10

sequence that induces a nested super-sequence would be for example an ACo: λ, c→(a, c) followed
by AA: (a, b) →λ, b, which implies that the base a in S1 was deleted and the base a in S2 was
inserted.

Property 2. Let C be a class of the hierarchy of arc-annotated sequences, E be an optimal C-
alignment sequence between two nested arc-annotated sequences A1 = (S1, P1) and A2 = (S2, P2),
with a complete score scheme. If C is Nest or NMult (i.e. no crossing) then no operation in E
that creates an arc can create a crossing between this arc and another arc.

Proof. This follows immediately from the fact that every arc created during E1 belongs to A3 the
super-sequence induced by E.)*

Example 2. Let S1 = abcde, P1 = {(2, 4)}, S2 = abcde and P2 = {(1, 3)}. Depending of the cost
scheme, an optimal alignment sequence between (S1, P1) and (S2, P2) could be an AC that creates
the arc (1, 3) followed by an AB that breaks the arc (2, 4). This alignment sequence induces a
crossing between two arcs. A sequence that does not involve a crossing would require to insert an
a between b and c, then to create an arc between this a and c, then to insert a b after this a, then
to alterate the arc (b, d) to delete the b and finally to delete the first a.

It follows from these two properties that optimal Nest-alignment sequences suffer from two
limitations: bases can not be involved in more than one complex operation and no arc can be
created that cross another arc. As shown in Property 1 considering NMult-alignment sequences
(or SMult-alignment sequences when dealing with the comparison of two sequences belonging to
the STEM class) overcomes the first limitation, while considering Cros-alignment sequences does
not help with respect to this limitation. Conversely, Cros-alignment sequences do not suffer from
the second limitation, unlike NMult-alignment sequences.

3.3 Conservative edit distance between RNA stem-loops.

The notion of conservative edit distance between two RNA stem-loops was introduced in [11]
together with a polynomial time and space algorithm to compute this distance. In this section we
show that computing this distance is in fact equivalent to the problem Align(Stem,Stem; Stem).

In [11], the conservative edit distance was defined using a representation of RNA stem-loops
as ordered labeled trees where each base pair is represented by an internal node labeled by this
base pair and each unpaired base by a leaf labeled by this base. Such trees are clearly equivalent
to Stem arc-annotated sequences.

A conservative edit sequence between two Stem arc-annotated sequences A1 and A2 is an edit
sequence between A1 and A2 satisfying the following additional constraints:

– every edit operation involves at least one base that belongs to A1 or A2,
– after the application of each edit operation, the resulting arc-annotated sequence belongs to

Stem,
– each base is involved in at most one edit operation among {AB, AA, AC, ACo} and in at most

one edit operation {BS, AS}.

The conservative edit distance between two Stem arc-annotated sequences A1 and A2 is the
minimal cost of a conservative edit sequence between A1 and A2.

11

Proposition 2. The conservative edit distance between two Stem arc-annotated sequences A1 and
A2 is equal to dSTEM(A1, A2).

Proof. As a conservative edit sequence Ec between A1 and A2 is an edit sequence, there is an
alignment sequence Ea between A1 and A2 such that w(Ea) = w(Ec). Ea is necessarily a Stem-
alignment sequence, since after the application of every edit operation of Ea the intermediate
structure is still a Stem arc-annotated sequence.

Conversely, a given Stem-alignment between A1 and A2 implies an edit sequence between A1

and A2 that clearly satisfies the constraints of a conservative edit sequence.)*

4 An algorithm for Align(Nest,Nest; NMult)

Theorems 3 and 4 indicate that Align(Nest,Nest; Nest) is the most general problem of com-
parison between nested arc-annotated sequences that can be solved in polynomial time in the
framework of the classical hierarchy of arc-annotated sequences. We introduced in Section 3 a new
class, NMult that generalizes the class Nest but is not comparable with Cros. Our main result
is that Align(Nest,Nest; NMult) can be solved in polynomial time, with the same asymp-
totic worst-case time and space complexity than Align(Nest,Nest; Nest). We describe in the
remaining of this section a dynamic programming algorithm for solving the alignment problem
Align(Nest,Nest; NMult). From now, all alignments we consider belong to the class of NMult-
alignments, and we call them only alignments in general.

4.1 Preliminaries

Indexing pairs. Similarly to other algorithms to compare arc-annotated sequences [11, 14], the
dynamic programming tables we use in our algorithm are indexed by pairs of sub-sequences of the
two considered arc-annotated sequences. These sub-sequences are defined in terms of indexing pairs,
that can be related to the hierarchy of arc-annotated sequences: given an arc-annotated sequence
A = (S,P), with S of length n, and a class C of the hierarchy of arc-annotated sequences, an
ordered pair of integers I = (x, y), with 1 ≤ x ≤ y ≤ n, is an indexing pair of type C for A if the
arc-annotated sequence A′ = (S,P ∪ {(x, y)}) belongs to C.

An indexing pair I = (x, y) of A = (S,P) defines an arc-annotated sub-sequence of A, denoted
by AI = (SI , P I), obtained from A by deleting from S all the bases that do not belong to S[x..y]
and from P all the arcs that have at least one of their bases that does not belong to S[x..y].

For technical reasons, we also introduce a special indexing pair, called the empty indexing pair,
denoted ∅; A∅ is the empty arc-annotated sequence. The set of indexing pairs of type C of an
arc-annotated sequence A, augmented with the empty indexing pair, is denoted by IC(A).

Lemma 1. Let A1 and A2 be two nested arc-annotated sequences, C a class of the hierarchy of
arc-annotated sequences and I an indexing pair that is not of type C. Any alignment sequence
between A1 and A2 that contains an operation AC creating an arc between bases x and y of A1 is
not a C-alignment sequence.

Proof. By definition of an alignment sequence, that starts with BI, AI, ACo and AC operations, as
x and y are bases of A1, we can assume without loss of generality that the AC operation creating an
arc between x and y is the first edit operation performed on A1. It then follows from the definition
of the type of an indexing pair, that the resulting arc-annotated sequence does not belong to the

12

class C. As no base or arc will be deleted to obtain A3, this implies that A3 does not belong to C
too, and then the whole alignment sequence is not a C-alignment sequence.)*

Lemma 1 implies that to compute the C-alignment distance, we need to consider only indexing
pairs of type C as more general indexing pairs would lead to wrong alignment sequences. From now
we assume that all indexing pairs are of type NMult; in particular I(A) means INMULT (A).

Dynamic programming tables. Four dynamic programming tables , denoted by D, Df , Dl and Dfl

are used to compute an alignment between two nested arc-annotated sequences A1 = (S1, P1) and
A2 = (S2, P2). The tables D, Df , Dl and Dfl are two-dimensional tables indexed by pairs (I, J)
such that I ∈ I(A1) and J ∈ I(A2). J = ∅.

– The cell D[I, J] contains the minimal cost of an alignment between the arc-annotated sub-
sequences AI

1 and AJ
2 .

– Let I = (x, y) and J = (p, q). The cell Df [I, J] (resp. Dl[I, J]; Dfl[I, J]) contains the minimal
cost of a alignment M between the arc-annotated sub-sequences AI

1 and AJ
2 such that S1[x] is

aligned with S2[p] in M (resp. S1[y] is aligned with S2[q] in M ; S1[x] is aligned with S2[p] in M
and S1[y] is aligned with S2[q] in M).

– Df [I, J], Dl[I, J] and Dfl[I, J] are not defined if exactly one of the two indexing pairs I and J
is equal to ∅.

– Dfl[I, J] is not defined if exactly one of the two indexing pairs I or J is of length 1.

We now discuss briefly why we use several dynamic programming tables. First, note that in an
optimal alignment M , it follows from the definition of NMult that, for an arc (i1, i2) of P1 and
an arc (j1, j2) of P2, it is possible that S1[i1] is aligned with S2[j1] in M while S1[i2] is not aligned
with S2[j2] in M , which can not happen in an optimal Cros-alignment. This implies that when
considering the possible configurations in an alignment for an arc (x, y), either in P1 or in P2, the
following can happen: one of the bases of (x, y), say x, is aligned with a base of the other sequence
that belongs to an arc, says the base p of the arc (p, q), and the second base of (x, y) is not aligned
with the second base of (p, q). In such a configuration, we do not know, at this point, which edit
operation will be induced for the arc (p, q) in the alignment, as long as we do not take a decision
for its second base q. Moreover, when we take a decision for q, that is either to align it with a base
or to align it with −, we need to remember the decision taken for p in order to evaluate the cost
of the edit operation on the arc (p, q). The tables Df , Dl and Dfl are used to record such partial
alignment decisions taken on arcs.

4.2 Filling up the dynamic programming tables

We first describe how to fill the first values of the tables D, Df , Dl, Dfl, using the value ∞ for the
cells that are not defined.

Lemma 2. For every non-empty indexing pair I ∈ (A1) and J ∈ I(A2)

D[I, ∅] =
∑

i∈U(AI
1) w(i→λ) +

∑
(i1,i2)∈P (AI

1) w((i1, i2)→λ,λ).
D[∅, J] =

∑
j∈U(AJ

2) w(λ→j) +
∑

(j1,j2)∈P (AJ
2) w(λ,λ→(j1, j2)).

Df [I, ∅] = Df [∅, J] = Dl[I, ∅] = Dl[∅, J] = Dfl[I, ∅] = Dfl[∅, J] = ∞.

Moreover
D[∅, ∅] = Df [∅, ∅] = Dl[∅, ∅] = Dfl[∅, ∅] = 0.

13

Proof. Direct consequence of the definitions of D, Df , Dl and Dfl.)*
Before describing the main dynamic programming equations, we need to define the notion of

partition of an indexing pair. Given an indexing pair I = (x, y) of an arc-annotated sequence
A = (S,P), we say that two indexing pairs I1 and I2 partition I, denoted by I1 + I2 = I, if either
one of them is ∅ and the other one is equal to I, or I1 = (x, z) and I2 = (z+1, y) with x ≤ z ≤ y−1.

In order to shorten the presentation of the equations, we use in Lemmas 3, 4, 5 and 6 the
following notation, that hold for I = (x, y) and J = (p, q) two non-empty indexing pairs of two
arc-annotated sequences A1 and A2: z1 (resp. r1) is such that x ≤ z1 ≤ y (resp. p ≤ r1 ≤ q) and
(x, z1) ∈ P (A1) (resp. (p, r1) ∈ P (A2)). We also assume that if an indexing pair I = (x, y) is such
that x > y, then I takes value ∅.

Lemma 3. Given I = (x, y) and J = (p, q) two indexing pairs respectively of A1 and A2.

1. If x ∈ Po(AI
1) and p ∈ Po(AJ

2),
D[I, J] = min{AS1, AB1, AB2, AC1, AC2, AA1, AA2, AA3, ACo1, ACo2, ACo3, AD1, AI1}.

2. If x ∈ Po(AI
1) and p ∈ U(AJ

2), D[I, J] = min{AB1, AB2, AA1, AA2, AA3, AD1, BI1}.
3. If x ∈ U(AI

1) and p ∈ Po(AJ
2), D[I, J] = min{AC1, AC2, ACo1, ACo2, ACo3, AI1, BD1}.

4. If x ∈ U(AI
1) and p ∈ U(AJ

2), D[I, J] = min{BS1, BD1, BI1}.

Where

BS1 = w(x→p) + D[(x+1,y),(p+1,q)]
BD1 = w(x→λ) + D[(x+1,y),(p,q)]
BI1 = w(λ→p) + D[(x,y),(p+1,q)]
AS1 = w((x,z1)→(p,r1)) + D[(x+1,z1−1),(p+1,r1−1)] + D[(z1+1,y),(r1+1,q)]}
AD1 = min(J1,J2)∈Q1(J){w((x,z1)→λ,λ) + D[(x+1, z1−1),J1] + D[(z1+1,y),J2]}
AI1 = min(I1,I2)∈Q1(I){w(λ,λ→(p,r1)) + D[I1,(p+1, r1−1)] + D[I2,(r1+1,q)]}
AB1 = min(J1,J2)∈Q1(J){w((x,z1)→x,z1) + Df [(x,z1−1),J1)] + Df [(z1,y),J2]}
AB2 = min(J1,J2)∈Q2(J){Dfl[(x,z1),J1] + D[(z1+1,y),J2]}
AC1 = min(I1,I2)∈Q1(I){w(p,r1→(p,r1)) + Df [I1,(p,r1−1)] + Df [I2,(r1,q)]}
AC2 = min(I1,I2)∈Q2(I){Dfl[I1,(p,r1)] + D[I2,(r1+1,q)]}
AA1 = min(J1,J2)∈Q1(J){w((x,z1)→x,λ) + Df [(x,z1−1),J1] + D[(z1+1,y),J2]}
AA2 = min(J1,J2)∈Q1(J){w((x,z1)→λ,z1) + D[(x+1,z1−1),J1] + Df [(z1,y),J2]}
AA3 = min(J1,J2)∈Q2(J){w((x,z1)→λ,z1) + Dl[(x+1,z1),J1] + D[(z1+1,y),J2]}
ACo1 = min(I1,I2)∈Q1(I){w(p,λ→(p,r1)) + Df [I1,(p,r1−1)] + D[I2,(r1+1,q)]}}
ACo2 = min(I1,I2)∈Q1(I){w(λ,r1→(p,r1)) + D[I1,(p+1,r1−1)] + Df [I2,(r1,q)]}
ACo3 = min(I1,I2)∈Q2(I){w(λ,r1→(p,r1)) + Dl[I1,(p+1,r1)] + D[I2,(r1+1,q)]}

and
Q1(I) = {(I1, I2) ∈ I(A)2 | I1 + I2 = I, & ∃(i1, i2) ∈ P (AI) | i1 ∈ I1, i2 ∈ I2}
Q2(I) = {(I1, I2) ∈ Q1(I) | I1 = (x, z), z ∈ Pe(AI)}.

Proof. The principle of these equations is similar to the one used to define the dynamic programming
equations of algorithms computing an alignment between non-annotated sequences. Indeed, we we
have to consider the three following configurations between x and p: x and p are aligned together, x
is deleted (aligned with −) before p, or p is inserted (aligned with −) before x. The cases where x or
p are aligned with bases but not together are considered through different indexing pairs. The main
difference with non-annotated sequences alignment relies in the fact that x and/or p can belong to

14

an arc, which is why we consider four cases: both (resp. none) belong to an arc in case 1 (resp. case
4), only x (resp. p) belongs to an arc in case 2 (resp. case 3).

Let M be an alignment between the arc-annotated sub-sequences AI
1 and AJ

2 , defined by I =
(x, y) and J = (p, q). We describe below all possible configurations that can be found in M if either
x and p are aligned together or one of them is aligned with − before the other. These configurations
are illustrated in Figure 8.

Fig. 8. Illustration of all possible configurations described in the proof of Lemma 3. A dashed line leaving a base
indicates that this base can be either unpaired or belong to an arc, with the relative position (either on the left or
on the right of the considered base) of the other extremity of this arc being indicated by the direction of the dashed
line.

1. Assume x ∈ Po(AI
1) and p ∈ Po(AJ

2).
(a) Assume x and p are aligned together in M . There are three cases depending on the status

of z1 and/or r1 in M .
i. If z1 is aligned with r1 then (x, z1) ∈ AS(M), as defined in (1) and the inside (resp.

outside) of the arc (x, z1) has to be aligned with the inside (resp. outside) of (p, r1),
which is described by AS1. In the case where z1 = y and/or r1 = q, the initialization
of table D described in Lemma 2 ensures that AS1 still holds. Moreover, as (x, z1)
and (p, r1) are arcs and I and J are indexing pairs of type NMult, the indexing pairs
considered in AS1 belong too to NMult.

ii. If z1 is aligned, either with − or with a base of A2, but after r1 in M , here again there
are three cases.
A. z1 is aligned with a base r /∈ Pe(AJ

2), which implies that (x, z1) ∈ AB(M).

15

This case is accounted by AB1, where we add to the cost of M the cost of an arc-
breaking and aligns the inside and outside of the arc (x, z1) with all possible partitions
of J into two NMult indexing pairs, as defined by Q1, recording that both x and z1

are aligned with bases of A2 by considering the table Df in both cases. Note that, by
considering Df in Df [(z1,y),J2], we record that r is aligned with a base, which will
be used if r ∈ Po(AJ

2) to account for the cost of the operation associated to the arc
that contains r.

B. z1 is aligned with a base r ∈ Pe(AJ
2), which implies here again that (x, z1) ∈ AB(M).

As M belongs to NMult, the bases of AI
1 between x and z1 (resp. after z1) can only

be aligned with the bases of AJ
2 between p and r (resp. after r), and there can be no

arc in AJ
2 between these two sets of bases. This configuration corresponds to AB2,

where adding the cost induced by the fact that (x, z1) ∈ AB(M), will be done in the
call to Dfl[(x, z1), J1], that records that both bases x and z1 are aligned with bases
of A2. By construction, all indexing pairs defined by Q2 are of type NMult.

C. z1 is aligned with − in M , still after r1 (there is a base in AJ
2 that is between p and

r1, r1 included, which is aligned in M with a base of AI
1 that is before z1), which

implies that (x, z1) ∈ AA(M). This case is handled by AA1 that records the cost of
an arc-altering for (x, z1), as this arc disappears from the two subsequent indexing
pairs of A1 defining the two considered sub-problems, and ensures that no arc of AJ

2

will cross (x, z1) in M , by definition of Q1.
iii. The case where z1 is aligned in M either with a base or with − but before r1 is handled

in a symmetrical way by AC1, AC2 and ACo1, where the cost of the operation on the
arc of A2 is accounted for, the cost of the operation on the arc (x, z1) being postponed
to a later sub-problem.

Clearly all previous cases hold when z1 = y and/or r1 = q, due to the initialization of the
tables described in Lemma 2.

(b) We now assume that x is then aligned with − in M before p. There are three cases, that we
discuss more briefly as the arguments for their correctness are very similar to the previous
ones.
i. If z1 is aligned with a base r ∈ Pe(AJ

2), then the arc-altering that breaks the arc (x, z1)
is handled by AA3.

ii. If z1 is aligned with a base r /∈ Pe(AJ
2), then the arc-altering that breaks the arc (x, z1)

is handled by AA2.
iii. If z1 is aligned with a base −, then the arc deleting that deletes the arc (x, z1) is handled

by AD.
(c) The case where p is aligned with − in M before x is handled in a symmetrical way to the

previous one by ACo2, ACo3 and AI.
2. Assume x ∈ Po(AI

1) and p ∈ U(AJ
2). This case can be deduced from the previous one by removing

all edit operations that assume that p belongs to an arc in AJ
2 , namely arc-creation (AC1 and

AC2), arc-substitution (AS1), arc-completing (ACo1, ACo2 and ACo3) and arc-inserting (AI1).
3. Assume x ∈ U(AI

1) and p ∈ Po(AJ
2). This case can be deduced from the first one by removing

all edit operations that assume that x belongs to an arc in AI
1, namely arc-breaking (AB1 and

AB2), arc-substitution (AS1), arc-altering (AA1, AA2 and AA3) and arc-deleting (AD1).
4. Finally, if x ∈ U(AI

1) and p ∈ U(AJ
2), there are three cases, as in the classical string alignment

problem: x and p are aligned together in M (BS1), x is aligned with − before p (BD), and p
is aligned with − before x (BI).

16

)*

Lemma 4. Given I = (x, y) and J = (p, q) two indexing pairs respectively of A1 and A2.

1. If x ∈ Po(AI
1) and p ∈ Po(AJ

2), Df [I, J] = min{AS1, AB1, AB2, AC1, AC2, AA1, ACo1}.
2. If x ∈ Po(AI

1) and p ∈ U(AJ
2), Df [I, J] = min{AB1, AB2, AA1}.

3. If x ∈ U(AI
1) and p ∈ Po(AJ

2), Df [I, J] = min{AC1, AC2, ACo1}.
4. If x ∈ U(AI

1) and p ∈ U(AJ
2), Df [I, J] = BS1.

Where AB1, AB2, AA1, AC1, AC2, ACo1 and BS1 are defined as in Lemma 3.

Proof. The proof follows directly from the proof of Lemma 3 by considering only the cases where x
and p are aligned together.)*

Lemma 5. Given I = (x, y) and J = (p, q) two indexing pairs respectively of A1 and A2.

1. If x ∈ Po(AI
1) and p ∈ Po(AJ

2),
Dl[I, J] = min{AS2, AB3, AB4, AC3, AC4, AA4, AA5, AA6, ACo4, ACo5, ACo6, AD2, AI2}.

2. If x ∈ Po(AI
1) and p ∈ U(AJ

2), Dl[I, J] = min{AB3, AB4, AA4, AA5, AA6, AD2, BI2}.
3. If x ∈ U(AI

1) and p ∈ Po(AJ
2), Dl[I, J] = min{AC3, AC4, ACo4, ACo5, ACo6, AI2, BD2}.

4. If x ∈ U(AI
1) and p ∈ U(AJ

2), Dl[I, J] = min{BS2, BD2, BI2}.

Where

BS2 = w(x→p) + Dl[(x+1,y),(p+1,q)]
BD2 = w(x→λ) + Dl[(x+1,y),(p,q)]
BI2 = w(λ→p) + Dl[(x,y),(p+1,q)]
AS2 = w((x,z1)→(p,r1)) + D[(x+1,z1−1),(p+1,r1−1)] + Dl[(z1+1,y),(r1+1,q)]
AD2 = min(J1,J2)∈Q3(J){w((x,z1)→λ,λ) + D[(x+1, z1−1),J1] + Dl[(z1+1,y),J2]}
AI2 = min(I1,I2)∈Q3(I){w(λ,λ→(p,r1)) + D[I1,(p+1, r1−1)] + Dl[I2,(r1+1,q)]}
AB3 = min(J1,J2)∈Q1(J){w((x,z1)→x,z1) + Df [(x,z1−1),J1)] + Dfl[(z1,y),J2]}
AB4 = min(J1,J2)∈Q2(J){Dfl[(x,z1),J1] + Dl[(z1+1,y),J2]}
AC3 = min(I1,I2)∈Q1(I){w(p,r1→(p,r1)) + Df [I1,(p,r1−1)] + Dfl[I2,(r1,q)]}
AC4 = min(I1,I2)∈Q2(I){Dfl[I1,(p,r1)] + Dl[I2,(r1+1,q)]}
AA4 = min(J1,J2)∈Q3(J){w((x,z1)→x,λ) + Df [(x,z1−1),J1] + Dl[(z1+1,y),J2]}
AA5 = min(J1,J2)∈Q1(J){w((x,z1)→λ,z1) + D[(x+1,z1−1),J1] + Dfl[(z1,y),J2]}
AA6 = min(J1,J2)∈Q2(J){w((x,z1)→λ,z1) + Dl[(x+1,z1),J1] + Dl[(z1+1,y),J2]}
ACo4 = min(I1,I2)∈Q3(I){w(p,λ→(p,r1)) + Df [I1,(p,r1−1)] + Dl[I2,(r1+1,q)]}}
ACo5 = min(I1,I2)∈Q1(I){w(λ,r1→(p,r1)) + D[I1,(p+1,r1−1)] + Dfl[I2,(r1,q)]}
ACo6 = min(I1,I2)∈Q2(I){w(λ,r1→(p,r1)) + Dl[I1,(p+1,r1)] + Dl[I2,(r1+1,q)]}

Q3(I) = {(I1, I2) ∈ Q1(I) | I2 &= ∅}

and Q1 and Q2 are defined as in Lemma 3

Proof. Similar to the proof of Lemma 3 but we impose that y and q are aligned together. This
forbids, in some cases, to have a second indexing pair, in the partition of an indexing pair, that
is empty, which is handled by the definition of Q3. In the case where z1 = y and/or r1 = q, the
initialization of tables Dl and Dfl with ∞ when exactly one of the two indexing pairs is empty
ensures that y and q are aligned together.)*

17

Lemma 6. Given I = (x, y) and J = (p, q) two indexing pairs respectively of A1 and A2.

1. If x ∈ Po(AI
1) and (x, y) &∈ P (AI

1) and p ∈ Po(AJ
2) and (p, q) &∈ P (AJ

2),
Dfl[I, J] = min{AS2, AB3, AB4, AC3, AC4, AA4, ACo4}.

2. If x ∈ Po(AI
1) and (x, y) &∈ P (AI

1) and p ∈ U(AJ
2), Dfl[I, J] = min{AB3, AB4, AA4}.

3. If x ∈ U(AI
1) and p ∈ Po(AJ

2) and (p, q) &∈ P (AJ
2), Dfl[I, J] = min{AC3, AC4, ACo4}.

4. If x ∈ U(AI
1) and p ∈ U(AJ

2), Dfl[I, J] = BS2,
5. If (x, y) ∈ P (AI

1) and (p, q) ∈ P (AJ
2), Dfl[I, J] = AS2.

6. If (x, y) ∈ P (AI
1) and p ∈ Po(AJ

2) and (p, q) &∈ P (AJ
2), Dfl[I, J] = min{ABAC1, ABAC2, ABACo}.

7. If (x, y) ∈ P (AI
1) and p ∈ U(AJ

2), Dfl[I, J] = ABBS.
8. If x ∈ Po(AI

1) and (x, y) &∈ P (AI
1) and (p, q) ∈ P (AJ

2), Dfl[I, J] = min{ACAB1, ACAB2, ACAA}.
9. If x ∈ U(AI

1) and (p, q) ∈ P (AJ
2), Dfl[I, J] = ACBS.

Where

ABAC1 = min(I1,I2)∈Q4(I){w((x,z1)→x,z1) + w(p,r1→(p,r1)) + Df [I1,(p,r1−1)] + Dfl[I2,(r1+1,q)]}
ABAC2 = min(I1,I2)∈Q5(I){w((x,z1)→x,z1) + Dfl[I1,(p,r1)] + Dl[I2,(r1+1,q)]}
ACAB1 = min(J1,J2)∈Q4(J){w(p,r1→(p,r1)) + w((x,z1)→x,z1) + Df [(x,z1−1),J1] + Dfl[(z1,y),J2]}
ACAB2 = min(J1,J2)∈Q5(J){w((p,r1)→p,r1) + Dfl[(x,z1),J1] + Dl[(z1+1,y),J2]}
ABACo = min(I1,I2)∈Q4(I){w((x,z1)→x,z1) + w(p,λ→(p,r1)) + Df [I1,(p,r1−1)] + Dl[I2,(r1+1,q)]}
ACAA = min(J1,J2)∈Q4(J){w(p,r1→(p,r1)) + w((x,z1)→x,λ) + Df [(x,z1−1),J1] + Dl[(z1+1,y),J2]}
ABBS = w((x,z1)→x,z1) + w(x→p) + Dl[(x+1,y),(p+1,q)]
ACBS = w(p,r1→(p,r1)) + w(x→p) + Dl[(x+1,y),(p+1,q)]

and

Q4(I) = {(I1, I2) ∈ I(A)2 | I1 + I2 = I, & ∃(i1, i2) ∈ P (AI)\{(x, y)} | i1 ∈ I1, i2 ∈ I2}
Q5(I) = {(I1, I2) ∈ Q4(I) | I1 = (x, z), z ∈ Pe(AI)}

Proof. Formulas 1 to 4 correspond to the cases where neither (x, y) is an arc of AI
1 nor is (p, q) an

arc of AJ
2 . They follow from Lemma 5 where we keep only the cases where x and p are aligned

together.
Formulas 5 to 9 correspond to the cases where either only (x, y) is an arc of AI

1 (formulas 6
and 7), or (p, q) is an arc of AJ

2 (formulas 8 and 9), or both (formula 5). They are illustrated (but
formula 5 that corresponds to AS2) in Figure 9.

The general principle for these formulas is that as one of the indexing pairs is an arc, and both
its bases are matched, then we need to account for at least one arc operation, and possibly one
other operation on one of the bases x and p and the arc that contains it any. Q4 and Q5 correspond
to Q1 and Q2 when we allow an arc between the two indexing pairs resulting from a partition,
composed of the two extremities of this indexing pair. From these points, the proof for formulas 5
to 9 is similar to the previous cases.)*

Before describing the complete algorithm for the computation of the distance between two arc-
annotated sequences A1 and A2, we study in the set of indexing pairs that need to be considered.
Given an arc-annotated sequence A of length n, we denote H(A) the set of indexing pairs of A (of
type NMult) which end by n, by the end of an arc or by a base just before the end of an arc:

H(A) = {(x, y) ∈ I(A) | y = n or ∃ w ≤ x such that (w, y) ∈ P (A) or (w, y + 1) ∈ P (A)}.

18

Fig. 9. Illustration of some possible configurations described in the proof of Lemma 6.

Lemma 7. Let (I, J) be a couple of NMult indexing pairs of two arc-annotated sequences A1 and
A2, that belong to H(A1)×I(A2)∪I(A1)×H(A2). Then, in Lemma 3, every couple of indexing pairs
(I ′, J ′) that is involved in the computation of D[I, J] belongs to H(A1) × I(A2) ∪ I(A1) × H(A2).

Proof. We first consider the couples of indexing pairs that are immediately required to compute
D[I, J]. It is easy to see, case by case and from the definition of Q1 and Q2, that they all belong
to H(A1)× I(A2)∪ I(A1)×H(A2). The fact that this property holds for the later needed indexing
pairs follows by induction and from the fact that Dl, Df and Dfl are computed using dynamic
programming equations that are restrictions of the ones defined in Lemma 3.)*

Theorem 5. Given two nested arc-annotated sequences A1 and A2, of respective length n1 and n2,
Algorithm 4.2 computes the cost of an optimal NMult-alignment between A1 and A2. It can be
implemented to run in O(n4) worst-case time and O(n3) space where n = n1 + n2.

Proof. The validity of this algorithm follows from three points.

– Lemmas 2, 3, 4, 5 and 6.
– The couples of indexing pairs which need to be considered in the dynamic programming algo-

rithm are those of H(A1) × I(A2) ∪ I(A1) × H(A2) (Lemma 7).
– The fact that indexing pairs are considered in increasing order of length, and that Dfl[I, J] is

computed before Df [I, J] and Dl[I, J] that are themselves computed before D[I, J].

We now address the complexity of the algorithm. We can first notice that a nested arc-annotated
sequence A of length n has O(n2) indexing pairs in I(A) and O(n) indexing pairs in H(A). Hence,
from Lemma 7, we have that the four dynamic programming tables require a space in O(n3). For
the worst-case time complexity, then only point that needs to be addressed is that some dynamic
programming equations consider a set of partitions of the current indexing pair in two indexing
pairs. However, by definition of the partition of an indexing pair I into two indexing pairs I1 and
I2, both I1 and I2, if non-empty, share an endpoint with I. The time complexity of the algorithm

19

Algorithm 1 Algorithm to compute the cost of an optimal NMult-alignment between two nested
arc-annotated sequences A1 = (S1, P1) and A2 = (S2, P2).
Algorithm : ALIGN(A1 = (S1, P1), A2 = (S2, P2))

Begin
Initialize tables D, Df , Dl and Dfl using Lemma 2
For i = 0→| S1 |−1 Do

For x = 1→| S1 | Do
y = x+i
If(x, y) ∈ I(A1) Then

For j = 0→| S2 |−1 Do
For p = 1→| S2 | Do

q = p+j
If(p, q) ∈ I(A2) Then

If(x, y) ∈ H(A2) or (p, q) ∈ H(A2) Then
I = (x, y), J = (p, q)
Compute Dfl[I, J] using Lemma 6
Compute Dl[I, J] using Lemma 5
Compute Df [I, J] using Lemma 4
Compute D[I, J] using Lemma 3

EndIf
EndIf

EndFor
EndFor

EndIf
EndFor

EndFor
End

Output: D[(1, | S1 |), (1, | S2 |)]

20

is then bounded by:

|H(A1)|
∑

J∈I(A2)

|J |

 +

|I(A2)|
∑

I∈H(A1)

|I|

 +

|I(A1)|
∑

J∈H(A2)

|J |

 +

|H(A2)|
∑

I∈I(A1)

|I|

which is in O(n1 × n3
2 + n2

1 × n2
2 + n2

1 × n2
2 + n3

1 × n2) or equivalently in O(n4).)*

5 Discussion

Summary of our results. We proposed an extension of the hierarchy of arc-annotated sequences
introducing three new classes named Stem, SMult and NMult. Based on this extension and on
the arc-annotated sequences alignment framework introduced in [4, 5], we introduced new alignment
problems and expressed the notion of conservative edit distance between RNA stem-loops intro-
duced in [11]. The polynomial time and space algorithm we propose for computing the NMult-
alignment distance between two nested arc-annotated sequences solves the most general tractable
problem in the extended hierarchy of alignment problems, when considering all the edit operations
introduced in [14] and a complete score scheme. This extends previous results about Align(Nest,Nest;
Nest) [4, 5]. As far as we know, the only other alignment algorithm that considered an NMult
super-sequence did not consider all edit operations and a complete score scheme [13]. From the
point of view of RNA secondary structures comparison, our work shows then that a more complex
but tractable edit model can be considered. Using our algorithm one can then obtain possibly better
alignments between pairs of RNA secondary structures.

Preliminary experimental results. We conducted experiments on a small set of secondary struc-
tures of antisense RNAs (CopA) taken from the RFAM database [10]. These RNAs are charac-
terized by a long hairpin structure interrupted by several unpaired nucleotides or bulged loops.
Figure 10 presents an example of comparison between two such structures (identified by X55895.1
and M16168.1 in the RFAM database) using two algorithms: ALIGN(Nest,Nest;Nest) and
ALIGN(Nest,Nest;NMult) with the following complete cost scheme: w(BS) = 0 (if the two
bases are the same) or 25 (if they differ), w(BD) = w(BD) = 100, w(AS) = 0 (if the two
arcs are identical) or 25 (if they differ by a single base) or 40 (if they differ on two bases),
w(AD) = w(AI) = 150, w(AB) = w(AC) = 100 and w(AA) = w(ACo) = 150; these weights
were used in [11].

We can see on this example that the problem ALIGN(Nest,Nest;NMult), by allowing a
base to be involved in two complex edit operations, leads to a an alignment that is worth to be
considered and could not have been obtained using the algorithm for ALIGN(Nest,Nest;Nest):
in the second part of the alignment, a base (A) which is the origin of an arc (A-U) in the first
structure is aligned with a base (U) which is the origin of an arc (U-G) in the second structure
whereas the ends of the arcs (U) and (G) are not aligned together. That could mean for example,
that the base (A) in the first structure was first unpaired from the base (U), then substituted by
a base (U) which was finally paired with a base (G) (Fig. 11). This configuration could not have
been obtained using ALIGN(Nest,Nest;Nest).

Perspectives. The time complexity of RNA secondary structure alignments in the general edit
distance model defined in [14] is relatively high, as the more general algorithms have an O(n4)

21

Fig. 10. Comparison of two secondary structures of antisense RNAs (CopA) using algorithms
ALIGN(Nest,Nest;Nest) and ALIGN(Nest,Nest;NMult). The parts of the arc-annotated sequences which are
differently aligned by the two methods are colored in red color.

time complexity in the worst-case. Such issues have already been faced in the field of sequences
alignment, where algorithms such as the Smith-Waterman algorithms have been considered too slow
to be used directly for databases search. We think that the solutions that were proposed for the
alignment of genomic sequences, or at least the general principles they are based on, can be used for
RNA secondary structures alignment and database search. One could indeed think to a Blast-like
approach [2] which could be defined as follows: the core of the methods would rely on finding highly
similar seeds, in terms of RNA structures, for the local alignment of two arc-annotated sequences
and then running a detailed comparison for the structures parts located between the identified
seeds using a more general algorithm such as ALIGN(Nest,Nest;NMult). Following another
approach, in order to improve the comparison of RNA secondary structures some groups recently
proposed to account for the multi-scale nature of RNA secondary structures for their comparison
[1, 11, 16]. Following this approach, several levels of representation of an RNA secondary structures
are considered and compared. In that framework, the problem ALIGN(Nest,Nest;NMult) could
be considered not at the level of whole structures, but to compare small substructures at the lower
representation levels of structures.

From a theoretical point of view, Theorem 4, that states that ALIGN(Nest,Nest;Cros) is NP-
hard, was proved in [3], in the case of a cost scheme that prevents to use the Arc-breaking operation.
It then remains open to extend this hardness result to the case of a complete score scheme. Another
complexity question that remains open is the complexity of ALIGN(Stem,Stem;Cros). It follows
from [11] that the comparison of Stem arc-annotated can be used as an intermediate step to design
an efficient RNA secondary structures comparison method. Hence, it would be interesting to see if
a more general edit alignment model can be considered for this class of arc-annotated sequences.

References

1. J. Allali, M.-F. Sagot. A new distance for high level RNA secondary structure comparison. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 2(1):4–14. 2005.

2. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215:403–410. 1990.

3. G. Blin, G. Fertin, I. Rusu, C. Sinoquet. Extending hardness of RNA secondary structure comparison. In B. Chen,
M. Paterson and G. Zhang (editors), Combinatorics, Algorithms, Probabilistic and Experimental Methodologies,

22

First International Symposium, ESCAPE 2007, Hangzhou, China, April 7-9, 2007, Revised Selected Papers,
volume 4614 of Lecture Notes in Computer Science, pages 140–151. Springer. 2007.

4. G.Blin, A. Denise, S. Dulucq, C. Herrbach, H. Touzet. Alignment of RNA structures. To appear in IEEE/ACM
Transactions on Computational Biology and Bioinformatics. 2008.

5. G. Blin, H. Touzet. How to compare arc-annotated sequences: the alignment hierarchy. In F. Crestani, P. Ferragina
and M. Sanderson (editors), String Processing and Information Retrieval, 13th International Conference, SPIRE
2006, Glasgow, UK, October 11-13, 2006, Proceedings, volume 4209 of Lecture Notes in Computer Science,
pages. 291–303. Springer. 2006.

6. J. Couzin. Breakthrough of the year: small RNAs make big splash. Science, 298:2296–2297. 2002.
7. E. Demaine, S. Mozes, B. Rossman, O. Weimann. An optimal decomposition algorithm for tree edit distance.

In L. Arge, C. Cachin, T. Jurdzinski and A. Tarlecki (editors), Automata, Languages and Programming, 34th
International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture
Notes in Computer Science, pages. 146–157. Springer. 2007.

8. S. Dulucq, H. Touzet. Decomposition algorithms for the tree edit distance problem. Journal of Discrete Algorithms
3(2-4):448-471. 2005.

9. P. Evans. Algorithms and complexity for annotated sequences analysis Ph.D. Thesis, University of Victoria,
Canada. 1999.

10. S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S.R. Eddy, A. Bateman. Rfam: annotating non-coding
RNAs in complete genomes. Nucleic Acids Research, 33:D121–D124. 2005.

11. V. Guignon, C. Chauve, S. Hamel. An edit distance between RNA stem-loops. In M.P. Consens and
G. Navarro (editors), String Processing and Information Retrieval, 12th International Conference, SPIRE 2005,
Buenos Aires, Argentina, November 2-4, 2005, Proceedings, volume 3772 of Lecture Notes in Computer Science,
pages. 335–347. Springer. 2005.

12. I.L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research, 31(13):3429–3431. 2003.
13. M. Höchsmann, T. Töller, R. Giegerich, S. Kurtz. Local similarity in RNA secondary structures. In 2nd IEEE

Computer Society Bioinformatics Conference (CSB 2003), 11-14 August 2003, Stanford, CA, USA, pages 159–
168. IEEE Computer Society. 2003.

14. T. Jiang, G.-H. Lin, B. Ma, K. Zhang. A general edit distance between RNA structures. Journal of Computational
Biology 9(2):371-388. 2002.

15. T. Jiang, L. Wang, K. Zhang. Alignment of trees - an alternative to tree edit. Theoretical Computer Science,
143(1):137–148. 1995.

16. A. Ouangraoua, P. Ferraro, S. Dulucq, L. Tichit. Local similarity between quotiented ordered trees. Journal of
Discrete Algorithms 5(1):23–35. 2007.

17. J.S. Pedersen, G. Berejano, A. Siepel, K. Rosenbloom, K. Lindblad-Toh, E.S. Lander, J. Kent, W. Miller, D. Haus-
sler. Identification and classification of conserved RNA secondary structures in human genome. PLoS Computa-
tional Biology, 2(4):e33. 2006.

18. S. Siebert, R. Backofen. MARNA: multiple alignment and consensus structure prediction of RNAs based on
sequence structure comparisons. Bioinformatics, 21(16):3352–3359. 2005.

19. S. Will, K. Reiche, I.L. Hofacker, P.F. Stadler, R. Backofen. Inferring non-coding RNA families and classes by
means of genome-scale structure-based clustering. PLoS Computational Biology, 3(4):e65. 2007.

20. K. Zhang, D. Shasha. Simple fast algorithms for the editing distance between trees and related problems. SIAM
Journal on Computing, 18(6):1245–1262. 1989.

21. K. Zhang, L. Wang, B. Ma. Computing similarity between RNA structures. Theoretical Computer Science,
276(1-2):111–132. 2002.

23

(a)

(b)

Fig. 11. Two examples of edit sequences which correspond to the alignments in red color in Figure 10 obtained using
(a) ALIGN(Nest,Nest;Nest) and (b) ALIGN(Nest,Nest;NMult).

24

