
ON CERTIFICATES THAT A MATRIX DOES NOT HAVE

THE CONSECUTIVE ONES PROPERTY

by

Mehrnoush Malekesmaeili

BSc of Applied Mathematics, Tarbiat Moallem University of Iran, 2007

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

IN THE

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

© Mehrnoush Malekesmaeili 2011

SIMON FRASER UNIVERSITY

Fall 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Mehrnoush Malekesmaeili

Degree: Master of Science

Title of Thesis: On certificates that a matrix does not have the consecutive

ones property

Examining Committee: Dr. Abraham Punnen

Chair

Dr. Tamon Stephen, Assistant Professor

Senior Supervisor

Dr. Cedric Chauve, Associate Professor

Supervisor

Dr. Ladislav Stacho, Associate Professor

SFU Examiner

Date: November 24, 2011

ii

Abstract

A binary matrix has the consecutive ones property (C1P) if there exists a permutation of

its columns which makes the 1s consecutive in every row. The C1P has many applications

which range from computational biology to optimization. We give an overview of the C1P

and its connections to other related problems.

The main contribution of this thesis is about certificates of non-C1Pness. The notion of

incompatibility graph of a binary matrix was introduced in [McConnell, SODA 2004] where

it is shown that odd cycles of this graph provide a certificate for a non-C1P matrix. A

bound of k+ 2 was claimed for the smallest odd cycle of a non-C1P matrix with k columns.

We show that this result can be obtained directly via Tucker patterns, and that the correct

bound is k + 2 when k is even, but k + 3 when k is odd.

Furthermore we empirically study the minimal conflicting set certificate on synthetic

data.

iii

To my parents!

iv

“Every new body of discovery is mathematical in form,

because there is no other guidance we can have!”

— Mathematical Maxims and Minims, Rome Press Inc., 1988

v

Acknowledgments

First and foremost, I want to express my sincere gratitude to my advisor Dr. Tamon Stephen,

my senior supervisor for his incredible support and constructive advice from the very early

stage of this research, for his patience, motivation, and immense knowledge. During the

difficult times when writing this thesis, he gave me the moral support. I am glad that I am

his graduate student and indebted to him more than he knows.

Besides my advisor, I would like to thank Dr. Cedric Chauve, my committee member

whose encouragement, guidance and hard questions enabled me to develop an understanding

of the subject.

I was delighted to interact with Dr. Ross McConnell for his helpful discussion, inspiration

and willingness to share his bright ideas with me.

I owe my most sincere gratitude to Dr. Luis Goddyn, and Dr. Matt DeVos, who gave

me the opportunity to work with them in the Department of Mathematics, and gave me

untiring help.

My sincere thanks also goes to Dr. Randall Pyke, the TA coordinator of Surrey campus,

a great advisor and a good friend.

I would also like to acknowledge the help of Mrs. Diane Pogue, the graduate secretary

of Mathematics department for her assistance during my graduate studies in Simon Fraser

University.

Last but not the least, million thanks to my parents, Azam and Mohammadhossein,

without whom I would never have been able to achieve so much. Thank you for your

endless support and love, no matter how technical this is for you. I have no suitable word

vi

that can fully describe your love for me.

Many thanks to my brother, Mani Malekesmaeili, for always believing in me. I know I

have some one to turn to and I am not all alone. Without whom I could not have made it

here.

Finally I would like to thank Alborz for being the best of friends. For his personal

support, great patience, and companionship at all times. I could not finish my thesis so

soon without his encouragements. Thank you so much.

vii

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Table of Contents viii

List of Tables xi

List of Figures xii

List of Programs xiv

1 Introduction 1

1.1 Consecutive Ones Property . 1

1.2 Biological motivation . 3

1.3 Some other applications . 4

1.4 Some related problems . 5

1.5 Basic definitions . 5

viii

1.6 Matrices that do not have the consecutive ones property 9

2 Background on the consecutive ones property 11

2.1 Tucker patterns . 12

2.1.1 Asteroidal triples and Tucker patterns 13

2.2 PQ-tree . 14

2.3 gPQ-tree . 16

2.4 PQR-tree . 17

2.5 Constructing the generalized PQ tree . 18

2.5.1 Partitive families . 19

2.5.2 Substitution decomposition . 21

2.5.3 Modular decomposition for a set family 22

2.5.4 Constructing the generalized PQ-tree 23

2.5.4.1 Finding nodes of the generalized PQ-tree 23

2.5.4.2 Finding the spanning tree of an overlap component 24

2.5.4.3 Finding the ordering of children of Q nodes using partition

refinement . 25

2.5.5 Generalized PQ-tree of Tucker patterns 27

3 Incompatibility graph certificates 30

3.1 Incompatibility graph . 31

3.2 Finding odd cycles using Tucker configurations 33

3.2.1 First Tucker pattern . 34

3.2.2 Second Tucker pattern . 34

3.2.3 Third Tucker pattern . 35

3.2.4 Fourth Tucker pattern . 38

3.2.5 Fifth Tucker pattern . 39

3.3 Discussion of McConnell’s proof . 39

ix

4 Minimal conflicting sets 42

4.1 Introduction . 42

4.2 Basic definitions . 43

4.3 Examples of binary matrices with many MCS’s 44

4.3.1 Example 1: Effect of repeated rows . 45

4.3.2 Example 2: Exponential behaviour of MCS’s 46

4.4 Enumerating the Maximal C1P . 49

4.4.1 Decompositions of the row-column graph 49

4.4.2 Finding MC1P’s of the simulated data 50

5 Conclusion 52

5.1 Conclusion and results . 52

5.2 Future works . 53

Appendix A Configurations 54

Appendix B MATLAB codes 56

B.1 Incompatibility graph . 56

Bibliography 75

Index 76

x

List of Tables

4.1 False positives of the simulated data . 51

4.2 Simulated data results . 51

A.1 Number of claw-free and acyclic subgraphs of configurations 55

xi

List of Figures

1.1 Mammalian chromosome evolution . 3

1.2 The bipartite graph bM . 7

1.3 The overlap graph OM . 8

2.1 Bipartite graphs corresponding to Tucker patterns 12

2.2 The five Tucker patterns . 13

2.3 Two equivalent PQ-trees . 15

2.4 A PQR-tree . 18

2.5 The generalized PQ-tree . 23

2.6 O(F) . 24

2.7 The overlap graphs of Tucker patterns . 28

2.8 The decomposition tree of Tucker patterns . 29

3.1 FTIII6
. 37

3.2 Counter example to McConnell’s Theorem 6.1 38

3.3 F 1
M . 41

4.1 CTI4
. 44

4.2 CMIk
. 45

4.3 CMII4
. 47

4.4 CMIIk
. 48

4.5 CM . Dotted circles shows subgraphs that contains claws or cycles 50

xii

A.1 Configurations found in simulated data . 54

xiii

List of Programs

B.1 Incompatibility Graph . 56

B.2 Store Edge list . 59

B.3 Find loops . 59

xiv

Chapter 1

Introduction

1.1 Consecutive Ones Property

A binary matrix (0-1 matrix) has the consecutive ones property(C1P) if its columns can be

ordered in such a way that all the 1 entries become consecutive in all rows of the matrix.

This property has many applications in computational biology such as ancestral genome

reconstruction [12] and physical mapping [2]. It also plays an important role in graph

theory [22, 6, 27] and Interval Routing in topology [20]. See Section 1.3 for additional

applications and Section 1.4 for some related problems.

Checking whether a matrix has the C1P can be done quickly via polynomial time al-

gorithms that give an ordering of columns of the matrix that places 1s consecutive in each

row. We discuss later that it is not as obvious how to find a certificate that a matrix does

not have the C1P. In this thesis we consider problems related to such certificates.

Providing a certificate when the given binary matrix does not have the C1P is an impor-

tant problem. Tucker in [48] proposed such a certificate as a class of forbidden submatrices

known as Tucker patterns, however, he did not propose an algorithm to find these submatri-

ces. The notion of Incompatibility graph was introduced by McConnell in [38]. He showed

that this graph is bipartite if its corresponding binary matrix has the C1P and that the

existence of an odd cycle in the graph is a certificate that the matrix does not have the C1P.

1

CHAPTER 1. INTRODUCTION 2

McConnell claimed an upper bound of k + 2 for the size of the smallest odd cycle in the

incompatibility graph of a non-C1P matrix with k columns. However we prove in Chapter 3

that the correct bound is k + 2 when k is odd and k + 3 when k is even, by using Tucker’s

characterization1.

A C1P matrix can be represented by a data structure called a PQ-tree [6] which was

then extended in [43, 38] to a general binary matrix. We discuss the PQ-tree and its

generalizations in Chapter 2. We also describe the modular decomposition and related

algebraic notions associated to the set representation of a binary matrix. We then discuss

Tucker patterns [48] as a certificate of non-C1Pness. In Chapter 3 we discuss certificates

for a matrix that does not have the C1P, incompatibility graphs [38]. We will use both

certificates in order to obtain a tight bound on the size of the smallest odd cycle in the

incompatibility graph.

In Chapter 4 we discuss another concept, the minimal conflicting set that is a subset

of rows of a matrix that does not have the C1P. These are row-minimal obstructions that

contain certificates of non-C1Pness, i.e Tucker patterns. These matrices can be represented

by an undirected graph known as the row-column graph whose vertices (edges) correspond

to columns (rows) of the matrix. We study the class of matrices with exactly two 1s per row

and enumerate the total number of minimal conflicting sets. We then consider two examples

of matrices that do not have the C1P. Our goal is to find extreme cases, where the number

of minimal conflicting sets can be exponential.

Another concept that we discuss in Chapter 4 is the maximal C1P, which is dual to the

minimal conflicting set. We consider some simulated data sets that have many maximal

C1P but few minimal conflicting sets. We study the row-column graph of each data set and

find the common subgraphs that appear in most of these data sets, combine them and use

them to compute the total number of MC1P for these data.

1some of these results are contained in a paper submitted to Information Processing Letters, September
2011. See [36] for details

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Mammalian chromosome evolution

1.2 Biological motivation

It is certainly of interest to find the origin of the human genome. Ancestral genome recon-

struction tries to discover the genome rearrangements that happened during the evolution.

The first reconstruction of genomes was provided in [50] by a method in which DNA probes

are labeled with different colored fluorescent tags to visualize one or more specific regions

of the genome.

We focus on genome reconstruction using markers on chromosomes (See Figure 1.1),

which was first introduced by Adam in [1]. Markers are long and distinctive sequences of

DNA which are presumed to exist in ancestral species and appear exactly once in each of

the current species that are being studied. There might be mutations over time that result

in a slight difference between sequences of a marker appearing in some species, but they are

not taken into account. Therefore these sequences are considered identical and thus labeled

with a same marker.

The ancestral genome G can be represented by a binary matrix MG [12]. The columns of

MG represent markers assumed to have been present in G. Each row is a subset of columns

that represents ancestral synteny, a set of markers that are believed to be consecutive in G

[10]. Therefore MG(i, j) = 1 if the ancestral synteny ri contains the marker cj . In fact we

focus on the ordering of markers that are present in the ancestral genome.

CHAPTER 1. INTRODUCTION 4

We know which markers are consecutive in the present-day genomes. Also each current

species provides evidence that markers may have been in a certain order, but we do not know

which order is correct. Therefore our goal in ancestral genome reconstruction is to find an

order of present markers in G that is consistent with most of the syntenies. For instance in a

consistent order, if two markers ci and cj where i < j are present on an ancestral synteny r,

but another marker ck does not appear on r, then ck should appear before marker ci or

after marker cj . This order makes the 1s consecutive in the row corresponding to that

ancestral synteny which results in a correct order of markers in G. Therefore in order to

find a consistent order of markers in G, MG needs to have the consecutive ones property.

In practice it is often impossible to find the correct order of markers and consequently

order the columns in the matrix so that it has the consecutive ones property. In this case

the goal is to detect syntenies whose removal results in a correct order of markers in the

remaining syntenies. Hence removing the rows of MG corresponding to these syntenies leads

to a C1P matrix. These removed syntenies are known as false positives or (errors) and we

discuss them later in Chapter 4 in more detail.

1.3 Some other applications

The consecutive ones property has application in graph theory where the goal is to detect

whether a graph is an interval graph [6, 27], i.e. interval graph recognition. This property

was first used by Hoffman in [25] and Fulkerson et al. in [22]. It was then developed by

Booth and Lueker in [6] based on building a data structure called the PQ-tree. Novick in

[46], Meidanis et al. in [43] and McConnell in [38] gave a generalization of PQ-trees to an

arbitrary binary matrix.

Another application of C1P is in physical mapping [2] of a chromosome or a genome

which shows the physical locations of genes and other DNA sequences needed to be studied.

In linear programming (LP) in optimization, ({min cx | Ax = b, x ≥ 0} or {min cx |

Ax ≥ b}), if the elements of the right-hand side vectors are integers, and the coefficient

matrix A has the C1P, then the LP has an integral optima. Another application of C1P

CHAPTER 1. INTRODUCTION 5

is in approximation of a combinatorial problem, a restricted Set Cover problem known as

rectangle stabbing problem [17].

1.4 Some related problems

The Consecutive ones Submatrix (COS) problem is a generalization of the C1P when the

given binary matrix does not have the C1P. The COS problem is to find a maximum

submatrix with the consecutive ones property in the given binary matrix. This problem

is NP-complete [24]. It has been shown that the Hamiltonian path problem can be reduced

to COS problem (see [28] for details).

The Gapped C1P is another extension of C1P that detects if there exists a permutation

of columns of the matrix such that each row contains at most k sequences of 1’s and any

two consecutive sequences of 1’s are not separated by a gap of more than δ 0s. In [11] it

has been shown that when k = 2 and δ ≥ 2, this problem is already NP-complete.

Another problem related to C1P is to partition the set of rows of the given binary matrix

into two sets that have the C1P. This problem is also proved to be NP-complete. See [33]

for detail. In fact most of the generalizations of the C1P are NP-complete.

1.5 Basic definitions

Let M be a binary matrix with m rows and n columns. We consider CM = {c1, c2, . . . , cn}

as a set of columns of M , and RM = {r1, r2, . . . , rm} as the set of its rows. We can treat

RM as a subset of columns, i.e. ri = {cj |Mij = 1} for i = 1, . . . ,m. Let s =
∑m

i=1 |ri| be

the total number of 1s in M .

Definition 1.5.1. A binary matrix has the consecutive ones property if its columns can be

ordered in such a way that all 1s on each row are consecutive.

Definition 1.5.2. The degree of a matrix M is the maximum number of entries 1 found

in a single row of M .

CHAPTER 1. INTRODUCTION 6

Example 1.5.3. Let M be the binary matrix below that has degree 4. It is easy to check that

M is a C1P matrix, since interchanging its third and fourth columns results in consecutive

1s in each row.

M =

c1 c2 c3 c4 c5 c6

r1 1 1 0 1 0 0

r2 0 0 1 1 1 1

r3 1 0 0 0 0 0

r4 0 1 0 1 0 0

r5 0 0 1 0 1 0

Remark 1.5.4. A binary matrix with |CM | ≤ 2 is always a C1P matrix. We can ignore

those rows of M that have degree one, since their 1s are consecutive regardless of their

position. We can also ignore rows (columns) of 0s and rows (columns) of 1s.

The set-definition of the C1P is as follows:

Definition 1.5.5. Given a domain set V and a family F of subsets of the domain set, F

has the consecutive ones property, if there exists an ordering of elements of V that all the

elements of F appear in a consecutive order.

It can be observed that binary matrices are in one-to-one correspondence with families

of subsets of a set. Given M , let C1, . . . , Cn be the domain set, then each row represents

the subset of columns corresponding to its non-zero entries. Therefore a set family has the

C1P if and only if its representing matrix does.

Definition 1.5.6. A permutation of columns of a matrix M is called a valid permutation,

if it rearranges the elements of CM such that it places 1 entries consecutive in each row.

Such a permutation is said to give the consecutive ones ordering of a binary matrix M , that

is an ordering R of elements of CM that makes M a C1P matrix.

The consecutive ones ordering can be seen as a valid permutation of columns of the

binary matrix.

CHAPTER 1. INTRODUCTION 7

Figure 1.2: The bipartite graph bM

Example 1.5.7. For the binary matrix in example 1.5.3, R = {c1, c2, c4, c3, c5, c6} is a

consecutive ones ordering.

Definition 1.5.8. The bipartite graph associated to a binary matrix M denoted by bM =

(CM ∪ RM , E) is a symmetric bipartite graph whose vertex set is the union of the set of

columns and rows of M , and edge set is the set {(cj , ri)|Mij = 1, i = 1, . . .m, j = 1, . . . n}.

Vertices corresponding to columns and rows are illustrated with white and black circles re-

spectively.

Example 1.5.9. A bipartite graph of matrix M in example 1.5.3 is shown in Figure 1.2.

Let F be a set family on domain set V.

Definition 1.5.10. Two sets X and Y , X,Y ∈ F overlap or have nontrivial intersection

if they intersect but neither is a subset of the other, that is, they overlap if X − Y , X ∩ Y ,

and Y −X are all nonempty.

So two sets have trivial intersection if one is the subset of the other.

Definition 1.5.11. An overlap graph OM = (V,E) of a binary matrix M is an undirected

graph whose vertices are members of RM and two vertices are adjacent if they overlap.

CHAPTER 1. INTRODUCTION 8

Figure 1.3: The overlap graph OM

Example 1.5.12. Let M be the binary matrix below. The overlap graph of M is shown in

Figure 1.3

M =

c1 c2 c3 c4 c5 c6

r1 1 1 1 0 0 0

r2 0 0 1 1 1 0

r3 1 1 0 0 0 1

r4 0 1 1 0 0 0

r5 0 0 0 1 1 1

r6 0 0 0 1 1 0

Definition 1.5.13. A connected component of an undirected graph is a subgraph in which

any two vertices are connected to each other by paths.

Example 1.5.14. The overlap graph in Figure 1.3 has two connected components C1 =

{r1, r2, r3, r4, r5} and C2 = {r6}.

The overlap graph is a tool to represent those sets that have non-trivial intersection. We

use this graph along with its connected component mainly in Section 2.5.4.1. Finding the

connected component can be done in linear time using a breadth-first search. See [30] for

details.

CHAPTER 1. INTRODUCTION 9

1.6 Matrices that do not have the consecutive ones property

Let M be a binary matrix that does not have the C1P, thus there is no valid permutation of

columns that makes M a C1P matrix. Tucker in [48] found five forbidden patterns known as

Tucker patterns that obstruct the matrix from having C1P. Hence showing a binary matrix

M has at least one of the Tucker forbidden patterns as minor can be used as a certificate of

non-C1Pness, but it is not clear how to find one. These are discussed in details in Chapter 2.

In here we briefly discuss two concepts, Minimal Conflicting Sets and Maximal C1P of a

non-C1P matrix.

Definition 1.6.1. A Minimal Conflicting Set (MCS) of a binary matrix M is a set R of

rows that does not have the C1P but such that any proper subset of R has the C1P.

So MCS is a minimal set of rows contained in a non-C1P matrix

Definition 1.6.2. A Maximal C1P Set (MC1P) of a binary matrix M is the set of rows

that has the C1P, but adding any row of the matrix to it results in a set of rows that does

not have the C1P.

It can be seen that MC1P is a dual concept of MCS.

Example 1.6.3. The matrix below does not have the C1P, since its columns cannot be

ordered in a way that makes M a C1P matrix.

M =

c1 c2 c3 c4 c5

r1 1 1 1 0 1

r2 0 0 1 1 0

r3 1 1 0 0 0

r4 0 1 1 0 0

r5 0 1 1 1 1

It can be seen that deleting any row of this matrix results in a C1P matrix. Therefore

{r1, r2, r3, r4, r5} is MCS, and any combination of four rows of M is MC1P.

The minimal conflicting set was first introduced by Bergeron et al. in [4] and expanded

by Chauve et al. in [10]. They also showed that when all rows of the matrix have degree 2,

CHAPTER 1. INTRODUCTION 10

it is possible to find the MCS and MC1P using a graph corresponding to the matrix known

as the row-column graph. We discuss this in Chapter 4.

Chapter 2

Background on the consecutive

ones property

In this chapter we discuss known data structures and algorithms related to the C1P. We

first discuss the five classes of matrices introduced by Tucker in [48] that can be used as a

certificate when a matrix does not have the C1P. We then discuss a tree-based data structure

for a C1P matrix known as the PQ-tree and its generalizations. The PQ-tree represents all

the valid permutations of the columns of a C1P matrix. It was first introduced to recognize

interval graphs, which are linked to the consecutive ones property. It is shown in [34] that

it can be used for detecting gene clusters in multiple genomes. In [8] it has been shown that

it can be used for implementing a well-known generalization of the dynamic programming

algorithm for the TSP. We do not discuss the original algorithm to construct the PQ-tree,

since it is rather complicated.

We discuss gPQ-trees and PQR-trees which are generalizations of PQ-trees, that can be

constructed for any binary matrix and are simple to implement. These trees convey more

information when the given matrix does not have the C1P, since they indicate the elements

that obstruct the matrix from having the C1P. The generalized PQ-tree as another extension

of PQ-trees were introduced by McConnell in [38]. It uses the modular decompositions and

a partitioning algorithm. This data structure, like other PQ-tree generalizations, can be

11

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 12

Figure 2.1: Bipartite graphs corresponding to Tucker patterns

applied to an arbitrary binary matrix. It has been shown that all these generalizations are

equivalent to the PQ-tree when the matrix has the C1P. We include in particular a detailed

presentation of McConnell’s partitioning algorithm which uses these generalized PQ-tree,

and on which his proof of an upper bound for the size of the certificate is based. In Section

3.2 we show that this bound is indeed incorrect.

2.1 Tucker patterns

The first structural result on non-C1P matrices is due to Tucker, who proved in [48] that a

binary matrix does not have the C1P if and only if it contains a submatrix from one of five

families of binary matrices that define certificates for non-C1P matrices.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 13

Figure 2.2: The five Tucker patterns

2.1.1 Asteroidal triples and Tucker patterns

In Chapter 1 we defined a bipartite graph bM associated to a binary matrix M .

Definition 2.1.1. Let G = (V,E) be a simple undirected graph and vi, vj , vk be three

distinct vertices. Then vi, vj , vk form an asteroidal triple (AT), if there exists a path P

between two of these vertices and no vertex in P is adjacent to the third vertex.

Tucker proved that the binary matrix M has the consecutive ones property if bM does

not contain an asteroidal triple between any three vertices of CM (or RM).

Theorem 2.1.2. [48] In the bipartite graph bM = (CM ∪RM , E) the vertex set CM contains

no asteroidal triple if and only if bM contains none of the graphs bTI
, bTII

, bTIII
, bTIV

, bTV

shown in Figure 2.1.

Lemma 2.1.3. [48] A binary matrix has the consecutive ones property if and only if it

contains none of the five Tucker patterns as a submatrix.

Tucker characterized C1P matrices via excluded minors known as “Tucker patterns”

illustrated in Figure 2.2 and showed that these patterns are due to an AT contained in

bM . These patterns are the minimal structures that obstruct the matrix M from having

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 14

the C1P, i.e. removing a row (or a column) from each of these structures results in a C1P-

matrix. These patterns can be detected in polynomial time [16], however the algorithm is

complicated to implement since it uses many reduction rules and search trees.

In our analysis in Chapter 3, for all of the five Tucker matrices we consider the order of

columns given in Figure 2.2.

2.2 PQ-tree

Booth and Lueker in [6] introduced the PQ-tree of a binary matrix M . It is a rooted, labeled

tree in which each element of CM is represented by one of the leaf nodes, i.e. nodes that do

not have children. The non-leaf nodes of this tree are of two types,

� P nodes that have at least two children,

� Q nodes that have at least three children.

Therefore each internal nodes of the tree is either a P -node or a Q-node. P nodes are

conventionally drawn as circles and Q nodes as rectangles. PQ-trees have applications

where the goal is to find a consecutive ordering of the given objects. Thus they can be used

for detecting interval graphs or planar graphs [32].

Definition 2.2.1. The universal PQ-tree of a matrix M is a tree that has a single root

node labeled as a P -node whose children are the elements of CM . The null tree is used to

represent an empty set.

The strategy for building a PQ-tree is to first build the universal PQ-tree and then

restrict the tree by the members of RM in each step such that the ordering of children is

consistent with all members of RM that are processed. Booth and Lueker proposed the

PQ-tree algorithm for a C1P matrix and then showed that the algorithm can be done in

linear time in m,n and s, where s is the total number of 1s in M .

Suppose that M has the C1P, its PQ-tree encodes all the valid permutations of the

columns of the binary matrix by considering two types of operations:

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 15

(a) T (b) T
′

Figure 2.3: Two equivalent PQ-trees

� For each P -node, any permutation of its children is accepted, so they can be rearranged

in any order.

� For each Q-node, the order of the children can be reversed, but its children may not

otherwise be reordered.

Example 2.2.2. Let M be the binary matrix below.

M =

c1 c2 c3 c4 c5 c6 c7

r1 1 1 1 1 0 0 0

r2 1 0 0 1 1 1 1

r3 0 0 0 0 1 1 0

r4 0 0 0 0 0 1 1

.

The tree T in Figure 2.3(a) is a PQ-tree representing M . So R = {c2, c3, c1, c4, c5, c6, c7} is a

consecutive ones ordering. R′ = {c7, c6, c5, c1, c4, c3, c2} is also a consecutive ones ordering.

T
′

in Figure 2.3(b) is another PQ-tree that represents R′ and is equivalent to T since it can

be obtained by reversing the order of the children of Q nodes {c1, c2, . . . , c7}, {c5, c6, c7}, and

then reversing the order of children of the P node {c2, c3}.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 16

It is trivial that the reverse of any consecutive ones ordering is always another consecutive

ordering and this is reflected in the PQ-tree representation. In Sections 2.3-2.5 we discuss

generalizations of PQ-trees. These trees are same but developed independently.

2.3 gPQ-tree

Since implementing the original PQ-tree algorithm is complicated, different algorithms have

been proposed as well as generalizations of PQ-trees that can be built for any binary matrix.

The gPQ-tree is a generalization of the PQ-tree that was introduced by Novick in [46] to

solve the trivial intersection problem. This concept can be also used for recognizing interval

and parity graphs.

Let M be a binary matrix. Each gPQ-tree is constructed such that it represents those

subsets of CM that have trivial intersection with every member of RM . We denote the set

of these subsets by NM (R) and we will discuss it in Section 2.5.

Definition 2.3.1. For a gPQ-tree T, T
′

is its reduction with respect to X, if it represents

those subsets of CM that have trivial intersection with X.

For solving the trivial intersection problem, the algorithm is based on first building

the universal gPQ-tree which is same as the universal PQ-tree and then reducing the tree

by members of RM in each step. So the result would be a gPQ-tree which represents all

members of NM (R), i.e. all subsets of CM that have trivial intersection with members of

RM . Novick showed that these reductions can be done in O(nm) and guarantees that the

following have trivial intersection with members of RM :

� The set of leaves that are descendant of some Q-node,

� For any subset of the children of a P -node, the set of leaves that are descendants of

this subset,

� {ci} for i = 1, . . . , n, and CM itself,

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 17

Theorem 2.3.2. [46] If T , the result of the PQ-tree after reducing the universal PQ-tree

by members of RM , is a non-null tree, then ignoring the left-to-right order of children in T

results in a gPQ-tree that is equivalent with the result of reducing the universal gPQ-tree by

members of RM .

It is trivial to see that a family F of subsets of V can be represented by a gPQ-tree on a

domain set V .

2.4 PQR-tree

The PQR-tree was introduced by Meidanis and Munuera in [43] for an arbitrary binary

matrix. This tree also generalizes the gPQ-tree introduced by Novick. It is a rooted tree

over CM with four types of nodes: P , Q, R and leaves. The leaves are in one to one

correspondence with the elements of CM , and every The R node has at least three children

and its children can be ordered arbitrarily. As we discussed before this tree is an extension

of the PQ-tree which gives more information when the given binary matrix does not have

the C1P.

R nodes represent subsets of columns that obstruct the matrix from having the C1P,

thus removing one column from each R node results in a C1P matrix. The PQR-tree of a

C1P matrix does not have any R nodes and therefore it is equivalent to its PQ-tree. Similar

to the PQ-tree notations, two PQR-trees are equivalent when one can be obtained from the

other by reversing the order of the children of Q nodes and arbitrary permutation of the

children of P , or R nodes. Meidanis et al. [47] proposed a recursive algorithm, that build

the PQR-tree in quadratic time on m,n and s and is simpler than the PQ-tree algorithm of

Booth and Lueker.

Example 2.4.1. Let CM = {c1, c2, c3, c4, c5, c6, c7} and the set family RM = {{c1, c2, c3},

{c3, c4, c5, c6, c7}, {c4, c5}, {c5, c6}, {c5, c7}}. The PQR-tree on domain set CM is shown in

Figure 2.4. The node with two circles is a R-node which shows that {c4, c5, c6, c7} obstructs

the matrix M from having C1P.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 18

Figure 2.4: A PQR-tree

The generalized PQ-tree is another generalization of PQ-tree that was introduced by

McConnell in [38]. We describe the algorithm of finding the generalized PQ-tree in the

next section. All generalizations of PQ-tree use similar concepts. They all are based on

finding the overlapping members of RM , however the details are different. For example the

orthogonal sets defined in [43] are the same as sets with non-trivial intersection in [46] and

the non-overlapping sets in [38]. Essentially a gPQ-tree is a PQR-tree whose R nodes are

transformed into Q nodes, and the order of children is ignored [43].

As we discussed in Chapter 1, a binary matrix M can be represented by domain set V

whose members are columns of the matrix, and a set family F whose members represents

rows of the matrix. In Section 2.5 we represent the binary matrix by a domain set V and

its set family F . We do this to follow McConnell’s notation.

2.5 Constructing the generalized PQ tree

The generalized PQ-tree is very similar to a PQR-tree, but was developed independently by

McConnell in [38]. Like the PQR-tree, the generalized PQ-tree have three types of internal

nodes. Prime nodes correspond to the P nodes, linear nodes to Q nodes and degenerate

nodes to R node [39].The difference between these algorithms is in the running time of

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 19

finding the union of connected components of the overlap graph.

In this section we follow McConnell’s notation and describe the generalized PQ-tree with

respect to partitive families and modular decomposition. McConnell in [38, 39] proposed a

linear time algorithm that finds the generalized PQ-tree for any binary matrix M . He then

showed that the generalized PQ-tree of a C1P matrix is equivalent to its PQ-tree.

2.5.1 Partitive families

In Section 1.5 we observed that a binary matrix M can be represented by a family F of

subsets of a domain set V , where V indexes CM and the rows of M are indicator functions

of sets in F . In McConnell’s terminology V = {v1, . . . , vn} is called the domain set and

F = {f1, . . . , fm}, the set family of V .

Definition 2.5.1. A set family F of a domain set V is a tree-like family, if the followings

hold:

� ∅ /∈ F ,V ∈ F , ∀ v ∈ V, {v} ∈ F ,

� ∀ i, j = 1, . . . ,m, fi and fj do not overlap.

In Section 1.5 we discussed that two overlapping sets have non-trivial intersection. We

denote N(F) as the family of non empty subsets of V that do not overlap with any member

of F .

Each tree-like family corresponds to an inclusion tree whose nodes are members of the

family and there is an edge between two nodes if one is the subset of the other.

Example 2.5.2. Let V = {a, b, c, d, e, f}. By the definition above F = {{a, b, c}, {c, d, e, f},

{a}, {b}, {d, e}, {e, f}} is not a tree-like family, since {a, b, c} and {c, d, e, f} overlap.

Also N(F) = {{a, b, c, d, e, f}, {a}, {b}, {c}, {d}, {e}, {f}, {a, b}}.

Definition 2.5.3. F is a weakly partitive family if

� ∅ /∈ F ,V ∈ F , ∀ v ∈ V, {v} ∈ F ,

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 20

� ∀ i, j = 1, . . . ,m, if fi and fj overlap, then fi ∪ fj , fi ∩ fj , fi − fj , fj − fi are in F .

A member of a weakly partitive family is strong if it does not overlap any other member

of F . It can be seen that the set of strong members of a weakly partitive family is a tree-like

family. The inclusion tree of the set of strong members of F is denoted by T (F).

Definition 2.5.4. A set family F is strongly partitive family or decomposable set family if,

� ∅ /∈ F ,V ∈ F , ∀ v ∈ V, {v} ∈ F ,

� fi ∪ fj , fi ∩ fj , fi∆fj ∈ F , if fi and fj overlap.

It can be seen that a strongly partitive family is a weakly partitive family.

Example 2.5.5. let F = {{a, b, c}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. It can be observed

that F is a weakly partitive family and since for any X, Y ∈ F, X∆Y ∈ F so it is also a

strongly partitive family.

Theorem 2.5.6. [13, 45] Each internal node X of T(F) is one of the following types:

� Degenerate, if the union of two or more of its children is in F .

� Prime, if other than X itself, the union of two or more of its children is not in F .

� Linear, if the union of two or more of its children is a member of F if and only if they

are consecutive in the ordering.

Definition 2.5.7. The decomposition tree of a set family F is an inclusion tree T (F),

whose internal nodes are labeled as in Theorem 2.5.6.

Theorem 2.5.8. [32] If F has the C1P, its PQ-tree is the decomposition tree of N(F)

whose prime nodes are Q nodes and degenerate nodes are P nodes.

When F has the C1P, as we discussed in Section 2.2 the reverse ordering of children

of Q nodes and any ordering of P nodes in the PQ-tree of F gives the consecutive ones

ordering of members of V that is consistent with F . Therefore the decomposition tree of

N(F) does not give the ordering of children of Q nodes and there is a need for a better

characterization.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 21

Definition 2.5.9. Let W (F) denote the smallest weakly partitive family of a set family F ,

and S(F) the smallest strongly partitive family of F .

The generalized PQ-tree is the decomposition tree of W (F) and it has no degenerate

nodes when F has the C1P.

Observation 2.5.10. If F is a strongly partitive family, then S(F) = F , since S(F) is the

smallest strongly partitive family that contains F as a subfamily. Also the non-overlapping

family of N(F) is same as F , i.e. N(N(F)) = F .

Theorem 2.5.11. [38] The decomposition tree of S(F) can be obtained from the decompo-

sition tree of N(F) by changing prime nodes to degenerate nodes and vice versa, or it can

be obtained from W (F) by relabeling all linear nodes as degenerate nodes.

When F has the C1P, as a result of Theorem 2.5.11, its PQ-tree is the decomposition

tree of S(F) where prime nodes are P nodes and degenerate nodes are Q nodes. Also

the decomposition tree of W (F) can be obtained from the decomposition tree of S(F), by

relabeling degenerate nodes (Q nodes) as linear nodes. Hence the generalized PQ-tree of F

is equivalent to its PQ-tree.

2.5.2 Substitution decomposition

Definition 2.5.12. A module of a graph G = (V,E) is a set X of nodes such that for any

x in V (G) −X, either x is adjacent to every element of X or x is adjacent to no element

of X. A domain set V , and its singleton elements {v} are called trivial modules.

A module is a generalization of a connected component of a graph. The modular decom-

position represents all the modules of G. It was first described by Gallai as a tree in [23]

whose internal nodes are labeled as prime or degenerate. McConnell et al. in [42] proposed

a linear time algorithm for finding the modular decomposition tree of a graph. They also

proved that modular decompositions form a strongly partitive family and therefore have

decomposition tree which we discuss further.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 22

Let P be a partition of a domain set V then every partition class is a module, since

the partition classes are disjoint, their adjacencies constitute a new graph called a quotient

graph.

Definition 2.5.13. The quotient G/P is a graph whose nodes are the members of P, and

there is an edge between two nodes of G/P if their corresponding modules are adjacent.

For trivial partitions (empty set, or the domain set V), it is not hard to see that when

P = V , its quotient G/P is the one-node graph, and when P = {v| v ∈ V } then G/P = G

[23].

2.5.3 Modular decomposition for a set family

What is important for us is the relation between the substitution decomposition and the

generalized PQ tree of a set family F . Since modules are strongly partitive family, Mc-

Connell in [38] discussed that the only module-like structures of a set family F are members

of N(F).

Let P be a partition class where every class is a module, therefore every member of

P is a member of N(F), and the quotient F/P is Q = {X|X is a nonempty subfamily of

P and ∪X ∈ F}. Therefore each internal node of the decomposition tree of F is a quotient.

Example 2.5.14. Let F = {{c1, c2, c3, c4}, {c4, c5, c6, c7, c8}, {c1, c2}, {c2, c3}, {c5, c6, c7},

{c6, c7, c8}}. It is not hard to see that P = {{c1, c2, c3, c4, c5, c6, c7, c8}, {c1}, {c2}, {c3}, {c4},

{c4}, {c5}, {c6}, {c7}, {c8}, {c1, c2, c3}, {c5, c6, c7, c8}{c6, c7}} and Q = {{c1, c2, c3, c4, c5, c6,

c7, c8}, {c1, c2, c3}, {c5, c6, c7, c8}, {c6, c7}}. The generalized PQ-tree of F is shown in Figure

2.5. it is equivalent to its PQ-tree, since F has the C1P. The internal nodes are members of

the quotient. Also using the Theorem 2.5.6 the internal node {c6, c7} is a prime node which

can be labeled as a P node, and {c1, c2, c3}, {c5, c6, c7, c8} are linear nodes that are labeled

as Q nodes in Figure 2.5.

For an example of what happens when M does not have the C1P see Section 2.5.5.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 23

Figure 2.5: The generalized PQ-tree

2.5.4 Constructing the generalized PQ-tree

Now let us discuss the linear time algorithm for finding the generalized PQ-tree proposed

by McConnell in [38]. We first find the nodes of the decomposition tree of N(F). Then the

decomposition tree of S(F) can be obtained. The only thing that remains is to find those

degenerate nodes in decomposition tree of S(F) that are linear in the decomposition tree of

W (F) which is equivalent to the generalized PQ-tree of F .

2.5.4.1 Finding nodes of the generalized PQ-tree

Consider a connected component C of the overlap graph of F , OF . McConnell defined a

notion of blocks which correspond to internal nodes of the generalized PQ-tree.

Definition 2.5.15. The equivalence relation BC on ∪C between any two c, c
′ ∈ ∪C is that,

cBCc
′

if and only if the family of members of C that contain c is the same as the family of

members of C that contains c
′
.

Definition 2.5.16. Blocks of the connected component C are the equivalence classes of the

equivalence relation Bc on ∪C.

Example 2.5.17. Let F be the same as the one in example 2.5.14. The overlap graph is

shown in Figure 2.6. Using definition 2.5.16, the blocks are: {c1},{c2},{c3},{c4},{c5},

{c6, c7}, {c8}.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 24

Figure 2.6: O(F)

Theorem 2.5.18. [38] X ⊆ V is a node of the decomposition tree of N(F) if and only if

it is one of the following :

1. V or a one-element subset of V ,

2. ∪C for some connected component C of F ’s overlap graph,

3. A block of a connected component of F ’s overlap graph.

The next step is to find the spanning tree of the connected components. Dahlhaus

showed in [15] that the overlap components can be found in linear time without computing

the overlap graph.

2.5.4.2 Finding the spanning tree of an overlap component

Definition 2.5.19. Let L, be the sorted list of members of F in ascending order of cardi-

nality. Max(X) denotes the rightmost member Y ∈ L that overlaps X.

In order to find the spanning tree of each component, for each node X we compute

Max(X). It is trivial to see that X and Max(X) are adjacent in the overlap graph.

Lemma 2.5.20. [38] If X,Y ∈ L,X ∩ Y 6= 0; and Y lies between X and Max(X) in L,

then Y overlaps either X or Max(X) and hence they belong to same connected component.

Dahlhaus then introduced a graph Gc(F) whose connected components are the same as

the connected components of the overlap graph of F and edges are based on Lemma 2.5.20,

i.e. if X, Y ∈ F where Y is before X in L and x ∈ X,Y , then there is an edge between

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 25

these two members of F if there exists Z ∈ F such that x ∈ Z, Max(Z) = Y or Max(Z)

appears after Y in L. To find the spanning tree of a component C it suffices to traverse the

component of Gc(F) using a graph traversal algorithm. McConnell modified the Dahlhaus’

algorithm and proved that finding the spanning tree of an overlap graph of F can be done

in linear time.

2.5.4.3 Finding the ordering of children of Q nodes using partition refinement

By having the decomposition tree of N(F) we can obtain the decomposition tree of S(F),

then we can obtain the generalized PQ-tree by checking which degenerate nodes should be

linear in the decomposition tree of W (F).

Definition 2.5.21. A set family F is simple if its generalized PQ-tree has one internal

node, and depending on type of the node it is either degenerate, prime or linear.

Suppose that a set family is simple and prime, consider the internal node X of its

decomposition tree along with its children X1, X2, . . . , Xk. Since the node is prime, using

Theorem 2.5.6, the union of two children of X or more is not a member of F , therefore

members of F are either the domain set V or its singleton elements. Conversely it can

be proved that when any member of F is either V or {v} for v ∈ V , then F is simple

and prime. This can be recognized in a linear time. McConnell proposed a partitioning

algorithm similar to the one in [27]. This algorithm clarifies whether a simple set family is

linear or degenerate in linear time.

McConnell showed that the partitioning algorithm maintains the following four criteria:

1. The processed members of the connected component induce a subtree of the spanning

tree T of the overlap component.

2. The members of P are the blocks of the processed members of F .

3. The ordering of members of P is consistent with a consecutive-ones ordering on the

processed members of connected component i.e. if x is a member of an earlier partition

class of P than y, then x is earlier than y in the consecutive ones ordering.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 26

4. The ordering of members of P and its reverse are the only possible orderings of P

that are consistent with a consecutive ones ordering on the processed members of the

connected component.

Suppose that X is a degenerate node in the decomposition tree of S(F). In Section

2.5.3 we discussed that every member of P is a member of N(F). Also the quotient of

X in the decomposition tree of S(F) is simple and it is either degenerate or linear. The

algorithm takes a simple family as input. Every node of the generalized PQ-tree has a

quotient and every quotient is a simple family. Since the quotients comprise F , to detect

whether F has the C1P, the algorithm must be successively run on every quotient. The

quotient of a prime node is trivial, so it suffices to consider the quotients of non-prime

nodes. Every non-prime quotient is either degenerate or linear. Since quotients represent

disjoint subfamilies, it suffices to give an algorithm that determines whether a simple family

is degenerate or linear. The partitioning algorithm chooses an unprocessed set R ∈ Q and

refines the partition P in each iteration.

The first iteration is an arbitrary Y ∈ Q, and partition P = (Y), with S = V − Y . Let

P = (X1, . . . , Xk) be our current partition and let SX = V − X −
⋃
P , we check for the

following:

� SR is empty and Xi+1, . . . , Xj−1 are contained in R, or

� SR is nonempty, i = 1, and X1, . . . , Xj−1 are contained in R, or

� SR is nonempty, j = k, and Xi+1, . . . Xj are contained in R.

If none holds, then the quotient Q must be degenerate. Otherwise, P is refined by R.

Now suppose that Q is a linear family, if the first case happened, then P after refining by

R would be P = (X1, X2, . . . , Xi−1, Xi−R,Xi∩R,Xi+1, . . . , Xj−1, Xj ∩R,Xj−R, . . . ,Xk).

If the second case happened, then P is modified to P = (SR, X1, X2, ..., Xj−1, Xj ∩R,

Xj −R, . . . ,Xk). Finally if the third case happened P is modified to P = (X1, X2, ..., Xi−1,

Xi −R,Xi ∩R,Xi+1 . . . , Xk, SR). By criteria 4, the linear ordering on members of P gives

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 27

the linear ordering of children of Q nodes. McConnell in [38] proved that this algorithm can

be done in linear time for all quotients.

2.5.5 Generalized PQ-tree of Tucker patterns

In Section 2.5 we discussed how to find the generalized PQ-tree of a binary matrix. In here

we find the generalized PQ-tree of Tucker patterns discussed in Section 2.1. The columns of

each pattern are members of the domain set V and the rows are members of the set family

F . It can be seen that the non-overlapping family of F, N(F) is the set of all singleton

elements of V , and V itself, i.e. N(F) = {{c1}, . . . , {ck−1}, {ck}, {c1, . . . , ck−1, ck}}. Also

the overlap graph associated to each patterns has only one component, hence the blocks

are same as members of N(F). The overlap graph of each pattern is shown in Figure 2.7.

Using Theorem 2.5.18 we can find the decomposition tree of N(F) of each pattern and then

the decomposition tree of S(F) which is shown in Figure 2.8. This tree is same for all the

five patterns and only k changes. The members of the partition class P are the singleton

elements of V , c1, . . . , ck. Using the partitioning algorithm, the type of the Q node of the

decomposition tree of each pattern is degenerate, since the conditions do not hold. For each

pattern there exist Xi, Xj , Xk that Xi, Xk belong to the same member of F that does not

contain Xj . For example for the first pattern X1 = c1 and Xk = ck are present in rk ∈ F ,

but Xj = cl (l = 2, . . . , k − 1) /∈ F .

If a binary matrix M contains at least one of these patterns, then its generalized PQ-tree

has degenerate nodes and probably no linear nodes, and therefore does not have the C1P. In

Chapter 3 we discuss certificates for a matrix that does not have the C1P which are based

on Tucker patterns.

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 28

Figure 2.7: The overlap graphs of Tucker patterns

CHAPTER 2. BACKGROUND ON THE CONSECUTIVE ONES PROPERTY 29

Figure 2.8: The decomposition tree of Tucker patterns

Chapter 3

Incompatibility graph certificates

We discussed in Chapter 1 that the problem of deciding whether a given binary matrix has

the C1P can be solved efficiently. Checking the claim that a matrix has the C1P is easy

with providing a valid permutation of the columns. However it is not as obvious how to

verify that a matrix is not C1P. A certifying algorithm is an algorithm which produces a

proof with an output that can be verified by a polynomial-time algorithm. For example

a certifying algorithm for checking whether a graph G is bipartite outputs an odd cycle

as a certificate when G is a non-bipartite graph. In this chapter we describe McConnell’s

certifying algorithm in [McConnell, SODA 2004 768-777] for a matrix that does not have

the consecutive ones property. This uses the incompatibility graph of a binary matrix. He

showed that odd cycles of this graph proves the non-C1Pness of the given binary matrix.

McConnell claimed a bound of k + 2 for the smallest odd cycle contained in the incompat-

ibility graph of a non-C1P matrix, where k is the number of columns. We show that the

small certificate always exists using Tucker patterns and correct the bound to k+ 3 when k

is odd.

30

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 31

3.1 Incompatibility graph

McConnell, in [38] defined an elegant certificate for non-C1P matrices. He introduced the

notion of the incompatibility graph of a binary matrix, and proved that a matrix is C1P if

and only if this graph is bipartite. Hence, an odd cycle in this graph is a non-C1P certificate.

Definition 3.1.1. Let M be an m× n binary matrix with rows RM = {r1, r2, . . . , rm} and

columns CM = {c1, c2, . . . , cn}. The incompatibility graph of M is an undirected graph

GM = (V,E), whose vertices are pairs (ci, cj) (for i, j = 1, . . . , n, i 6= j). Two vertices

(ci, cj) and (cj , ck) are adjacent, if one of the following holds:

1. ci = ck.

2. There exists a row rl in M such that Mli,Mlk = 1 but Mlj = 0.

It can be seen that there are two vertices for each unordered pair {ci, cj}. Edges of the

incompatibility graph represent incompatible pairs of orderings, i.e. each edge corresponds

to two relative orderings of the columns that cannot appear simultaneously in a consecutive

ones ordering of the matrix. So for instance when (ci, cj), (cj , ck) are adjacent, there is no

consecutive ordering that places cj between ci, ck. McConnell noted that the incompatibility

graph is bipartite if and only if the matrix is C1P. Thus odd cycles in the incompatibility

graph certify that a matrix is not C1P.

The forcing graph FM = (V,E
′
) is an undirected graph whose vertex set is same as that

of GM and whose edge set is a set of all pairs ((ci, cj), (ck, cj)) where ((ci, cj), (cj , ck)) is an

edge of GM . It is not hard to see that the incompatibility graph and the forcing graph both

have n(n − 1) vertices and are symmetric. As with the incompatibility graph, the forcing

graph can be used to certify that a matrix is not C1P: a path in this graph from (ci, cj) to

(cj , ci), represents a chain of implications (“forcings”) leading to a contradiction.

In fact, McConnell observed that these certificates are almost the same: such a path in

the forcing graph can be transformed to a cycle in the incompatibility graph and vice versa

[38]. The following statement is from McConnell, we provide an alternate proof.

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 32

Lemma 3.1.2. If there exists a path with m vertices in FM between (ci, cj) and (cj , ci) there

is an odd cycle of length m−1 (if m is even) or m (if m is odd) in GM containing the vertex

(ci, cj). Conversely, if there is an odd cycle of length m in GM containing (ci, cj) there is a

path with at most m+ 1 vertices in FM from (ci, cj) to (cj , ci).

Proof. Without loss of generality the path in FM is:

P : (v1 = (ci, cj), v2, v3, v4, . . . , vm = (cj , ci)).

Let v
′
k = (c′, c) when vk = (c, c′). Then in GM we can build the walk:

P ′ : (v1, v
′
2, v3, v

′
4, . . . , v

(′)
m)

When m is even, the final vertex in this walk is v′m = v1, and we have a cycle with m − 1

vertices. When m is odd, the final term is vm, and we can complete the cycle using the type

1 edge (vm, v
′
m = v1). In this case the odd cycle has length m.

Similarly, an odd cycle of length m in GM can be transformed into a walk of length

m + 1 in FM by performing the reverse operation on the walk with even length m + 1 by

taking the cycle vertices starting an ending in v1. Note that if this path contains some type

1 edge (vk, v
′
k) in GM , this becomes a trivial edge (vk, vk) or (v′k, v

′
k) in FM and should be

contracted, reducing the length of the found path.

Given GM (FM), we define G1
M (F 1

M) and G2
M (F 2

M) to be the subgraphs induced by the

vertex sets V1 = {(ci, cj) | i < j} and V2 = {(ci, cj) | i > j} respectively. We observe that

the two pairs of subgraphs are isomorphic.

Suppose now that we build GM and FM graph for a given Tucker pattern M from

Figure 2.2 by first generating the type 1 edges of GM and then adding the edges generated by

each row in turn, beginning at the top. Edges e = ((ci, cj), (cl, cj)) and e
′

= ((cj , ci), (cj , cl))

in FM are generated by triples (i, j, l) from a given row r exactly when Mri,Mrl = 1 but

Mrj = 0. The edges corresponding to the rows from the top of the matrix then come in

pairs e, e
′
, where one is contained in F 1

M and the other in F 2
M . As we descend the rows,

the ones in the rows are consecutive until we reach the final row, rt, that has gaps between

its ones entries.

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 33

The edges of FM generated by the gaps in rt, i.e. triples (i, j, l) of columns where i < j < l

are the only edges which go between V1 and V2. We call these edges critical.

3.2 Finding odd cycles using Tucker configurations

We now give a tight bound on the smallest odd cycle in the incompatibility graph of a

non-C1P matrix using Tucker matrices.

Theorem 3.2.1. The length of the smallest odd cycle in the incompatibility graph of a

binary matrix with k ≥ 4 columns is at most k+ 2 if k is odd or k+ 3 if k is even, and this

bound is tight.

We begin by remarking that since any non-C1P matrix M contains a Tucker pattern

as a submatrix, we can restrict our attention to Tucker patterns when looking for short

odd-cycles in the incompatibility graph. This is because if we look at the subgraph of the

incompatibility graph induced by considering only the columns (vertices) and rows (edges)

of M (GM) containing the Tucker pattern, we get exactly the incompatibility graph of the

submatrix, which has at most as many columns as M . So the upper bound for Tucker

patterns holds for all M , and the worst case for a given number of columns will occur at a

Tucker pattern.

We remark that for k ≤ 2 all binary matrices have the C1P, and for k = 3 if a matrix

is not C1P it must contain the Tucker pattern TI3 as a submatrix, and thus have an odd

cycle of length 3 in its incompatibility graph, see Section 3.2.1. For k ≥ 4, the tight bound

of k+ 2 or k+ 3 is attained by TIIIk , see Section 3.2.3. We proceed to analyze each Tucker

pattern separately.

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 34

3.2.1 First Tucker pattern

TIk is shown in Figure 2.2 (a); it is a square matrix of size k where k ≥ 3.

M = TIk =

c1 c2 c3 . . . ck−1 ck

r1 1 1 0 . . . 0 0

r2 0 1 1 . . . 0 0

.

.

.

rk−1 0 0 0 . . . 1 1

rk 1 0 0 . . . 0 1

.

Lemma 3.2.2. For k ≥ 3, the length of the smallest odd cycle in the incompatibility graph

of TIk is k when k is odd and k + 1 when k is even.

Proof. We find a path in FM in TIk between (c1, ck−1) and (ck−1, c1). Since M11,M12 = 1

but M1 k−1 = 0, we have that ((c1, ck−1), (c2, ck−1)) is an edge of FM .

Similarly ((ci, ck−1), (ci+1, ck−1)) is an edge of FM for i = 2, . . . , k − 3 using row i of M .

Using row k−1, we get that (ck−2, ck−1) forces (ck−2, ck) and using row k−2 that (ck−2, ck)

forces (ck−1, ck). Observe that e = ((c1, ck−1), (ck, ck−1)) is a critical edge of FM . Therefore

(c1, ck−1), (c2, ck−1), (c3, ck−1), . . . , (ck−2, ck−1), (ck−2, ck), (ck−1, ck), (ck−1, c1) is a path with

k + 1 vertices in FM . By Lemma 3.1.2, this gives the required cycle.

Finally, we note that if there is any odd cycle in the incompatibility graph of length less

than k, we would derive a contradiction to the C1P using fewer than k columns, contradicting

the minimality of the Tucker pattern. Thus the length of this odd cycle is in fact minimal.

3.2.2 Second Tucker pattern

For k ≥ 4, TIIk shown in Figure 2.2 (b) is a square matrix of size k. We use a strategy to

find a cycle in the incompatibility graph of TIIk that is similar to that of TIk .

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 35

M = TIIk =

c1 c2 c3 . . . ck−2 ck−1 ck

r1 1 1 0 . . . 0 0 0

r2 0 1 1 . . . 0 0 0

.

.

.

rk−2 0 0 0 . . . 1 1 0

rk−1 1 1 1 . . . 1 0 1

rk 0 1 1 . . . 1 1 1

.

Lemma 3.2.3. The smallest odd cycle in the incompatibility graph of TIIk has length k

when k is odd and k + 1 when k is even.

Proof. From row i of the matrix for i = 1, . . . , k − 2, we get that (ci, ck) forces (ci+1, ck).

From row k, (c1, ck) forces (c1, ck−1). Finally, ((c1, ck−1), (ck, ck−1)) is a critical edge. Then

(c1, ck), (c2, ck), . . . , (ck−1, ck), (ck−1, c1), (ck, c1) is a path of k + 1 vertices in the forcing

graph of TIIk . Using Lemma 3.1.2 we can find an odd cycle of length either k or k + 1

containing all rows of the pattern. Again the minimality of the Tucker pattern ensures that

we cannot have an odd cycle of length less than k.

3.2.3 Third Tucker pattern

Now we consider the third Tucker pattern in Figure 2.2 (c) that has (k − 1) rows and k

columns where k ≥ 4.

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 36

M = TIIIk =

c1 c2 c3 . . . ck−2 ck−1 ck

r1 1 1 0 . . . 0 0 0

r2 0 1 1 . . . 0 0 0

.

.

.

rk−2 0 0 0 . . . 1 1 0

rk−1 0 1 1 . . . 1 0 1

.

Lemma 3.2.4. The smallest odd cycle in the incompatibility graph of the third Tucker

pattern has length k + 2 if k is odd and k + 3 if k is even.

Proof. In this case, because we need to prove a non-trivial lower bound, we will describe

the full structure of FM . The graph FM for k = 6 is illustrated in Figure 3.1 and captures

the features we are interested in. Consider first the portion of the graph generated by

excluding the last row and column on TIIIk . In this case each row has a unique pair of 1

entries; these can be combined with any zero entry to get a forcing triple. The result is a

triangular grid on V1 (and symmetrically, V2), where vertex (ci, cj) is connected to all of

(ci±1, cj) and (ci, cj±1) that are also vertices of V1 with coordinates between 1 and k−1 and

in increasing order. Now, returning our attention the last column, we see it generates a path

(c1, ck), (c2, ck), . . . (ck−1, ck) by considering the pair of ones in each row in turn. These two

components, and their symmetric copies in V2 are the entirety of the graph if we exclude

the final row.

The first zero from the final row combines with the many pairs of ones to connect the two

components of V1 by fusing (c1, c2), (c1, c3), . . . (c1, ck−2) and (c1, ck) (but not (c1, ck−1)) into

a clique. Finally the second zero (in row k−1) produces the critical edges (ci, ck−1), (ck, ck−1)

for i = 2, . . . , k − 2 and fuses all these vertices into a clique.

We can then see that a path with (k+ 3) vertices in FM from (c1, ck) to (ck, c1) is given

by: (c1, ck), (c2, ck), . . . , (ck−1, ck), (ck−1, c2), (ck−1, c1), (ck−2, c1), (ck, c1). By Lemma 3.1.2,

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 37

Figure 3.1: FTIII6

this gives the required cycle in the incompatibility graph of length (k + 3) if k is even, and

(k + 2) if k is odd.

To prove that this is shortest, it suffices to show that this is the shortest path between

(ci, cj) and (cj , ci) for some i, j in FM , since if there is a shorter odd cycle in the incompat-

ibility graph of length (k + 1) with k even, or k with k odd, by Lemma 3.1.2 there would

be a path of length at most k + 2 between some (ci, cj) and (cj , ci).

We can see that there is no shorter path by contracting the groups of vertices illustrated

in Figure 3.1, i.e. (c1, cj) for j = 2, 3, . . . k − 2; (ci, ck−1) for i = 2, 3, . . . k − 2; and the

symmetric groups on FV2 . This will not increase the distance between any pair of vertices.

We can see that what remains is 2k − 2 cycle with vertices (ci, cj) opposite (cj , ci), an

additional part of FV1 attached to the two contracted vertices, and symmetrically in FV2 .

The shortest path between opposite vertices on the cycle has (k + 3) vertices, as does the

shortest path between any of additional vertices in FV1 and those of FV2 , though for some

choices of (i, j) the shortest path from (ci, cj) to (cj , ci) may be longer.

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 38

(a) GM (b) FM

Figure 3.2: Counter example to McConnell’s Theorem 6.1

Taking k ≥ 4 even, this gives a family of counter examples to Theorem 6.1 of McConnell

in [38]. For example, taking k = 4, we have M =
(1 1 0 0
0 1 1 0
0 1 0 1

)
. Then FM is a 12-cycle and GM

is a 12-cycle with 6 chords added between opposite vertices of the cycle. It is clear that the

smallest odd cycle is of length 7. This graph is shown in Figure 3.2 (a).

3.2.4 Fourth Tucker pattern

The fourth Tucker pattern is of size 4 by 5, (see Figure 2.2 (d))

M = TIV =

c1 c2 c3 c4 c5

r1 1 1 0 0 0

r2 1 1 1 1 0

r3 0 0 1 1 0

r4 1 0 0 1 1

.

With ((c1, c3), (c5, c3)) as a critical edge of FM . Here (c1, c3) forces (c5, c3), (c5, c3) forces

(c5, c2), (c5, c2) forces (c4, c2), (c4, c2) forces (c3, c2) and (c3, c2) forces (c3, c1), which gives

a path with 6 vertices in FM and an odd cycle of length 5 in the incompatibility graph of

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 39

TIV .

3.2.5 Fifth Tucker pattern

The last Tucker pattern has 6 columns and 4 rows (see Figure 2.2 (e)).

M = TV =

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 0 1 1 0 0

r3 0 0 0 0 1 1

r4 0 1 0 1 0 1

.

It can be observed that ((c2, c3), (c6, c3)) is a critical edge of FM . Now (c2, c3) forces (c6, c3)

which forces (c6, c4); (c6, c4) forces (c5, c4), (c5, c4) forces (c5, c2), (c5, c2) forces (c5, c1) which

forces (c6, c1). (c6, c1) forces (c4, c1) which forces (c4, c2); (c4, c2) forces (c3, c2). This gives

a path with 10 vertices in FM and an odd cycle of length 9 in TV . In this case the length

of the smallest odd cycle also attains the bound of Theorem 3.2.1.

Combining these five case allows us to conclude Theorem 3.2.1.

3.3 Discussion of McConnell’s proof

Let us consider the set representation of a binary matrix. McConnell in [38] modified the

partitioning algorithm in which it returns a certificate when the set family F does not have

the C1P. He showed that this algorithm returns an odd cycle of length at most k + 2. We

showed in Section 3.2 that this bound is k + 2 when k is odd, k + 3 when k is even and

proved that this bound is tight. McConnell did not specify which critical edges the modified

partitioning algorithm chooses when the conditions fail. Depending on the choice, i.e. if the

algorithm chooses ((ck, ck−1), (c2, ck−1)), it will return an odd cycle of length up to 2k − 1.

In the main theorem of [38], McConnell showed that when F does not have the C1P, the

required conditions of the partitioning algorithm fails as R is processed. Therefore there

exist Xi, Xj , Xk where i < j < k (or k < j < i) such that a, c ∈ R, b /∈ R a ∈ Xi, b ∈ Xj

and c ∈ Xk. Therefore ((a, b), (c, b)) is a critical edge of the forcing graph. In here we

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 40

briefly discuss how the modified partitioning algorithm finds the odd cycle as the certificate

of non-C1Pness [37].

Definition 3.3.1. Partition P of a set V is a refinement of a partition P
′

of V if each

partition class in P is a subset of a set in P
′
.

Example 3.3.2. For example P
′

= {{a, b}, {c}, {d}, {e, f}} is a refinement of P = {{a, b, c},

{d}, {e, f}}. On the other hand P
′′{{a, b, d}, {c}, {e, f}} is not, because {a, b, d} isn’t a sub-

set of any of the partition classes in P .

By producing a sequence of refinements, we can use the inclusion tree. Each set ap-

pearing anywhere in these partitions is a node. Now the partitioning algorithm finds the

lowest common ancestor of (a, b) and (c, b) in the inclusion tree which gives the shortest

path between these nodes in the forcing graph that can be transformed into the smallest

odd cycle in the incompatibility graph. This can be done in linear time [29]. McConnell

used the similar approach as we did in Lemma 3.1.2.

Remark 3.3.3. Running the partitioning algorithm of [38] on TIIIk may generate an odd

cycle of length as much as 2k − 1 for the certificate, depending on which critical edge is

processed from the last row.

As we discussed in 2.5.5, the partitioning algorithm fails for Tucker patterns, and there-

fore it gives three columns ci, cj , and ck, where i ≤ k ≤ j (or j ≤ k ≤ i) such that there there

exists a row which has entries 1 in ci, ck and 0 in ck. So ((ci, cj), (ck, cj)) would be a critical

edge in forcing graph of the pattern which yields to an odd cycle in the incompatibility

graph. But this cycle is not necessarily the smallest odd cycle.

For example, for the third Tucker pattern, considering ((ck−2, ck−1), (ck, ck−1)) as a crit-

ical edge yields to an odd cycle of length 2k− 1. The F 1
M of the third pattern is illustrated

in Figure 3.3.

In McConnell’s paper, the claim in Corollary 6.1 of a path of length k − 1 from (ci, cj)

to (ck, cl) where i < j, k < l in the forcing graph of length k − 1 is false. For example in

Figure 3.2 (b), it can be seen that there does not exist a path of length k − 1, i.e. 3 from

CHAPTER 3. INCOMPATIBILITY GRAPH CERTIFICATES 41

Figure 3.3: F 1
M

(c2, c3) to (c2, c4). One expects that this type of argument will produce some small linear,

bound on the path length, McConnell [37] believes that 3k will work and is incorporating

this into a revised version of [38].

Chapter 4

Minimal conflicting sets

4.1 Introduction

In Chapters 2 and 3 we discussed some algorithms for deciding whether a matrix has the

consecutive ones property and that when a matrix does not have the C1P, there are some

structures that obstruct the matrix from having the C1P. For purposes of ancestral genome

reconstruction, we would like to identify rows known as false positives that contribute to

such structures. A minimal conflicting set (MCS) is a subset of rows where any proper

subset of these rows has the C1P. Thus a MCS contains a certificate of non-C1Pness. The

reason is that the MCS is a minimal obstruction to the C1P, so it contains a Tucker pattern.

The maximal C1P (MC1P) is another concept that is dual to MCS, it represents a subset

of rows that have the C1P but adding any row to it results in a non-C1P matrix.

In this chapter we consider matrices with two 1s per row that do not have the C1P.

This was studied in [10] using the joint generation algorithm [26, 21] which simultaneously

generates all MCS/MC1P’s. We discuss simple ways of constructing small C1P problems

that have many MCS/MC1P’s. We first consider two examples that have many MCS’s and

we enumerate MCS’s for each case for the purpose of computing statistics.

The running time of the joint generation algorithm depends on the quantity of |MC1P |+

|MCS|, and we expect that performance for generating MCS’s will depend on the number of

42

CHAPTER 4. MINIMAL CONFLICTING SETS 43

MC1P’s. So when the number of MC1P’s is much greater than the number of MCS’s, then

the generation is slow for MCS’s. In the general joint generation problem, the representation

of the two dual functions may be quite large. We show in Section 4.4 that this is also the

case for the MCS/MC1P dual functions arising from the C1P problem.

In the case where we have many MC1P’s but few MCS’s, we would like to see if there

is a shorter representation of the MCS’s. We see in these examples that is often possible

to divide the problem of enumerating MCS’s into subproblems where each MCS can be

understood as different path through a fixed set of obstacles. This is an initial step in

understanding their structures, and by finding each structure we can enumerate MC1P’s.

We are motivated in part by the synthetic data experiments of [10] where we see many

MC1P’s per MCS and much repetitions in the list of MC1P’s.

4.2 Basic definitions

When a binary matrix M has exactly two 1s per row, then each row r can be labeled by

the pair of columns (ci, cj), where Mr,i,Mr,j = 1. This class of binary matrices can be

represented by an undirected graph.

Definition 4.2.1. The row-column graph CM corresponding to a binary matrix M is the

undirected graph whose vertices are columns of M and two vertices ci and cj are adjacent if

and only if there exists a row labeled by (ci, cj).

Example 4.2.2. Let M be a binary matrix below.

M =

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 0

r3 0 0 1 1

r4 1 0 0 1

Rows of M can be labeled by (c1, c2), (c2, c3), (c3, c4), (c1, c4). The row-column Graph of

matrix M is shown in Figure 4.1

CHAPTER 4. MINIMAL CONFLICTING SETS 44

Figure 4.1: CTI4

In chapter 3 we discussed Tucker patterns as certificates of non-C1Pness. These patterns

are illustrated in Section 2.1. It can be observed that for a matrix M with two 1s per row,

the only Tucker patterns that can be contained in M , are the first Tucker pattern TIk for all

k ≥ 3 and the third Tucker pattern TIII4 . The row-column graph of the first Tucker pattern

TIk corresponds to a cycle of size k. Figure 4.1 shows the row-column graph of TI4 . The

row-column graph CM of TIII4 corresponds to a claw , a star graph with three edges, three

leaves, and one central vertex. Hence finding all Tucker patterns of M is equivalent to finding

cycles and claws in its corresponding row-column graph. We are particularly interested in

enumerating minimal conflicting sets of a binary matrix generated by permutation of two

1s in some of its columns.

4.3 Examples of binary matrices with many MCS’s

In this section we show that it is possible to have very large number of MCS/MC1P’s on

a small matrix. We consider two examples of binary matrices that have many MCS’s and

therefore many Tucker patterns as a submatrix. These matrices are extreme cases, i.e. they

have the maximum number of MCS’s among all matrices of the same dimensions.

CHAPTER 4. MINIMAL CONFLICTING SETS 45

Figure 4.2: CMIk

4.3.1 Example 1: Effect of repeated rows

We consider a binary matrix MIk with three columns and three distinct rows, where each

row is repeated k-times. These rows are permutation of 1s in three columns.

MIk =

c1 c2 c3

r1 1 1 0

. . . .

rk+1 0 1 1

. . . .

r2k+1 1 0 1

. . . .

r3k 1 0 1

When k = 1, this matrix is equivalent to TI3 , and thus has 1 MCS= {r1, r2, r3}. When

k = 2, it contains 8 Tucker patterns of same size, TI3 , and therefore 8 MCS’s (see Example

4.3.2).

The corresponding row-column graph of MIk is a multigraph with three vertices, and k

edges between any two vertices, see Figure 4.2. This graph has many cycles of size three

that corresponds to the first Tucker pattern of size 3. It is trivial to see that CMIk
does not

have any claw, and thus MIk does not contain any TIII4 .

Theorem 4.3.1. Let MIk be a binary matrix with 3 columns and 3k rows. MIk has k3

CHAPTER 4. MINIMAL CONFLICTING SETS 46

MCS’s.

Proof. There are exactly k3 cycles formed by picking one of the k edges between each pair.

This is equal to the number of first Tucker pattern TI3 contained in MIk . Since the set of

rows of each TI3 is a MCS, thus the total number of MCS’s are equal to k3.

For matrices with 3 columns, there are only three possible rows, if we have k1, k2, k3 of

each, there are t = k1 · k2 · k3 such MCS’s. For k1 + k2 + k3 = k, t is maximized when

k1 = k2 = k3 = k. Therefore MIk has the maximum number of MCS’s between matrices of

size 3k by 3. It is obvious that MIk has only 3 MC1P’s, each of which has 2k rows.

Example 4.3.2. Let k = 2, then the matrix MI2 is:

MI2 =

c1 c2 c3

r1 1 1 0

r2 1 1 0

r3 0 1 1

r4 0 1 1

r5 1 0 1

r6 1 0 1

.

Minimal conflicting sets are: {r1, r3, r5}, {r1, r3, r6}, {r1, r4, r5}, {r1, r4, r6}, {r2, r3, r5},

{r2, r3, r6}, {r2, r4, r5}, {r2, r4, r6}. Each MCS represents edges of the cycle of size 3 which

corresponds to the first Tucker pattern of size 3.

4.3.2 Example 2: Exponential behaviour of MCS’s

Now we consider a binary matrix MIIk that has k columns and
(
k
2

)
rows.

CHAPTER 4. MINIMAL CONFLICTING SETS 47

Figure 4.3: CMII4

MIIk =

c1 c2 c3 . . . ck−2 ck−1 ck

r1 1 1 0 . . . 0 0 0

r2 1 0 1 . . . 0 0 0

r3 1 0 0 . . . 0 0 0

. 0 0 0 . . . 0 0 0

. 0 0 0 . . . 1 1 0

. 0 0 0 . . . 1 0 1

r k(k−1)
2

0 0 0 . . . 0 1 1

In order to find the total number of MCS’s we need to find the Tucker patterns, and

therefore we need to enumerate all cycles of size l for l = 3, 4 . . . , k and the claws.

Example 4.3.3. As a base case let k = 4. The row-column graph of MII4 is shown in Figure

4.3. This graph has 4 cycles of size 3, and 3 cycles of size 4. Minimal conflicting sets for cor-

responding to these cycles are {r1, r2, r4}, {r1, r3, r5}, {r2, r3, r6}, {r4, r5, r6}, {r1, r3, r4, r6},

{, r1r2, r5, r6}, {r2, r3, r4, r5}, {r2, r4, r6}. Also {r1, r2, r3}, {r1, r4, r5}, {r2, r4, r6}, {r3, r5, r6}

correspond to claws of CMII4
, where each vertex of CMII

is a central vertex of a claw.

Therefore MII4 has total of 11 MCS’s.

It can be observed that the row-column graph of MIIk , CMIIk
is a complete graph (see

CHAPTER 4. MINIMAL CONFLICTING SETS 48

Figure 4.4: CMIIk

Figure 4.4).

Theorem 4.3.4. Let MIIk be a binary matrix with k columns and k(k−1)
2 rows. MIIk has∑k

l=3
1
2 ·
(
k
l

)
· (l−1)!+k ·

(
k−1
3

)
= k

4 [2 3F1 (1, 1, 1−k; 2;−1)−k−1]+ (k−1)(k−2)(k−3)
6 MCS’s,

where pFq(a1, ..., ap; b1, ..., bq;x) is the generalized hypergeometric function.

Proof. Finding all cycles of a complete graph Kn can be found by computing
∑n

k=3
1
2 ·
(
n
k

)
·

(k − 1)! [9] and can be written as a generalized hyper geometric function [18]. Also each

vertex in Kn is connected to n − 1 vertices, hence the total number of claws centered in a

vertex vi of Kn (i = 1, 2 . . . , n) is equal to
(
n−1
3

)
, number of ways of picking 3 outcomes

from n− 1 possibilities.

For enumerating MC1P’s of MIIk it suffices to enumerate all subgraphs that do not

contain claws and cycles and have maximal number of edges. This is equivalent with enu-

merating Hamiltonian cycles with one edge removed. The total number of Hamiltonian

cycles in CMIIk
is (k−1)!

2 Thus the total number of MC1P’s is equal to k!
2 .

CHAPTER 4. MINIMAL CONFLICTING SETS 49

4.4 Enumerating the Maximal C1P

A related interesting problem for a non-C1P matrix M is enumerating MC1P’s when there

is few MCS’s. From the definition of MCS and MC1P, one can be obtained from the

other, however it is not easy. Chauve et al. described that the problem of generating

MCS/MC1P’s can be reduced to the problem of generating Minimal True Clauses (MTC)

and Maximal False Clauses (MFC) of monotone boolean functions. This can be done by

a quasi-polynomial time algorithm of Fredman and Khachian [21]. Chauve et al. in [10]

performed experiments where in real data, these turned out to be many MCS’s where on

the other hand in simulated data there were few MCS’s but many MC1P’s. In this section

we show that in simulated data it is possible to break the problem of enumerating MC1P’s

to enumerating MC1P’s in the subgraphs of the row-column graph. Thus the total number

of MC1P’s equals to the product of total number of MC1P’s found in each subgraphs.

For this problem by studying the row-column graph, CM , we can obtain the MC1P by

detecting subgraphs that do not contain cycles and claws, and adding any edge to these

subgraphs results in a cycle or a claw. This can be also done by first testing the graph

for acyclicity in linear time using a depth-first search, and then by checking whether it is a

claw-free graph in polynomial time [19].

4.4.1 Decompositions of the row-column graph

The problem of enumerating MC1P’s of a binary matrix M can sometime be divided into

separate subproblems where each subproblem is a subgraph CMj of CM . We are interested

in the case where the graph CM has cut-edges, as this is often the case for our synthetic data

experiments. For each CMj , we then find subgraphs that are acyclic and claw-free, i.e. those

subgraphs of CMj that are forest and do not contain claws. Counting these subgraphs gives

us the total number of MC1P’s contained in a submatrix Mj of M. We then put vertices

of each CMj into a group and treat them as a pseudonode v
′
j of CM . Replacing each CMj

with its claw-free acyclic subgraphs and expanding the corresponding pseudonode v
′
j , yields

a row-column graph of the C1P matrix. Therefore the total number of MC1P’s of M is

CHAPTER 4. MINIMAL CONFLICTING SETS 50

(a) CM (b) CM

Figure 4.5: CM . Dotted circles shows subgraphs that contains claws or cycles

equal to the product of the total number of MC1P’s for each Mj (See Figure 4.5) .

4.4.2 Finding MC1P’s of the simulated data

We consider 10 simulated data used in [10] with 40 markers and 44-45 ancestral syntenies.

Each data set represented by a binary matrix M with 40 columns, and 44-45 rows. Some

rows of M do not have the C1P, i.e. are false positives. Each matrix has exactly two 1s per

row and there are 39 rows in each matrix that have consecutive 1s and 5-6 false positives, i.e

rows that break the C1P. It is trivial to see that the rows of each matrix can be reordered

such that the i-th row has only 1s in i and i+1 columns, i.e. ri = {ci, ci+1} for i = 1, . . . , 39.

Each row that is a false positive can be represented by a pair (ci, cj) where 2 ≤ j − i ≤ 3.

They are generated uniformy at random. Because of this we expect (and observe) that most

of the MCS’s and MC1P’s represent local obstacles, which allows us to decompose the full

MC1P into several local configurations. Table A.1 shows these pairs for each data set.

For each data set we first considered its corresponding row-column graph CM , and found

subgraphs CM1 , . . . , CMj as configurations of the graph. We found total of 12 configurations

CHAPTER 4. MINIMAL CONFLICTING SETS 51

Table 4.1: False positives of the simulated data

Data False positives

Data 1 (c11, c13) (c13, c16) (c16, c19) (c23, c26) (c26, c29)

Data 2 (c2, c4) (c11, c13) (c33, c35) (c35, c38) (c37, c39)

Data 3 (c1, c3) (c9, c11) (c10, c12) (c25, c28) (c27, c29) (c36, c38)

Data 4 (c2, c5) (c6, c8) (c7, c10) (c22, c24) (c23, c25) (c31, c34)

Data 5 (c11, c13) (c12, c15) (c15, c17) (c16, c18) (c33, c36) (c36, c39)

Data 6 (c2, c4) (c8, c11) (c25, c28) (c26, c28) (c27, c30) (c30, c32)

Data 7 (c10, c13) (c27, c30) (c29, c31) (c31, c33) (c33, c35) (c35, c38)

Data 8 (c2, c5) (c3, c5) (c9, c12) (c30, c32) (c31, c34) (c34, c37)

Data 9 (c1, c4) (c9, c12) (c10, c12) (c13, c15) (c26, c28)

Data 10 (c4, c7) (c7, c9) (c13, c16) (c15, c17) (c22, c25) (c34, c36)

for all data sets. These configurations are listed in Appendix A and the total number of

claw-free acyclic subgraph for each configuration is shown.

Table 4.2: Simulated data results

Data false positives cycles claws MCS’s Configuration MC1P’s

Data 1 5 5 17 22 2,6 468

Data 2 5 6 12 18 3,8,8 560

Data 3 6 8 11 19 8,8*,11,12 1248

Data 4 6 8 12 20 9,11,(8,12) 2240

Data 5 6 8 16 24 2,4 962

Data 6 6 9 16 25 5,8,9 1500

Data 7 6 7 18 25 9,(7,9) 1615

Data 8 6 8 16 24 (2,8),9,10 1755

Data 9 5 6 11 17 8,9*,(8,10) 464

Data 10 6 7 14 21 1,8,9,12 3120

Table 4.2 shows the results. In this table * shows a configuration that contains either the

first or the last column of the matrix. In this case the number of claw-free and acyclic

subgraphs of the configurations is reduced by 1. In some cases, we found combination of

two configurations that are shown in pairs in table 4.2. These configurations either share a

node or are connected by an edge.

Chapter 5

Conclusion

5.1 Conclusion and results

We studied the consecutive ones property of binary matrices in detail. We discussed the

PQ-tree to be representing a C1P matrix. We then consider other data structures that are

extension of PQ-trees and are more useful since they can be applied to any binary matrix

and have extra information when the matrix does not have the C1P. We discussed that all

of these structures uses similar concepts.

We then discussed the incompatibility graph of a binary matrix, and reduced the C1P

problem to a problem of testing graph bipartiteness which can be detected by graph algo-

rithms that use two-colorability. Then we used the fact that the Tucker patterns are the

minimal obstructions contained in a non-C1P matrix to find a tight bound on the smallest

odd cycle of the incompatibility graph that can be applied to any non-C1P matrix.

We considered a class of binary matrices that have two 1s per row and study those

matrices that have many minimal conflicting sets. We discussed that these matrices can be

represented by a row-column graph whose vertices are labeled by columns of the matrix.

It is proved that the cycles and claws of this graph correspond to the first and the third

Tucker patterns respectively. We discussed strategies for enumerating the total number of

MCS and MC1P using this property.

52

CHAPTER 5. CONCLUSION 53

We also worked on some simulated data with many MC1P that can be represented by

a binary matrix with two 1s per row. We discussed that one way to attack the problem

of enumerating the total number of MC1P is to find all claw-free acyclic subgraphs of the

row-column graph. We found configurations that are common in some of them, and we used

graph theoretic methods to enumerate the total number of MC1P for each simulated data.

These configurations can be seen as a certificate of non-C1Pness.

5.2 Future works

McConnell claimed the the partitioning algorithm can be modified, such that it outputs an

odd cycle as a certificate of non-C1Pness. The advantage of this algorithm is that it can be

done in linear time, but the disadvantage is that it does not necessarily output the smallest

odd cycle. It would be challenging to develop a fast algorithm that always finds the shortest

odd cycle of the incompatibility graph. Implementing an efficient algorithm for finding all

odd cycles of the incompatibility graph leads to an algorithm of finding all Tucker patterns

in a non-C1P matrix.

Appendix A

Configurations

Figure A.1 shows the 12 configurations (local obstructions) found in the synthetic data

experiments of [10]. Since the edges and vertices of the row-column graph are labeled, all

of these configurations have labeled edges.

Figure A.1: Configurations found in simulated data

54

APPENDIX A. CONFIGURATIONS 55

Table A.1: Number of claw-free and acyclic subgraphs of configurations

Configurations Claw-free and Acyclic subgraphs

Configuration 1 12

Configuration 2 13

Configuration 3 35

Configuration 4 74

Configuration 5 75

Configuration 6 36

Configuration 7 99

Configuration 8 4

Configuration 9 5

Configuration 10 9

Configuration 11 8

Configuration 12 13

Enumerating the claw-free and acyclic subgraph of an undirected graph can be done in

output linear time using a depth-first search.

Appendix B

MATLAB codes

B.1 Incompatibility graph

This appendix contains MATLAB code for computing the incompatibility graph. It reads a

binary matrix M along with its name from a file and then plots the incompatibility graph

of M using the code and stores its adjacency matrix which is the input to another program

(B.2) which computes its cycles. Code B.3 finds all cycles of the incompatibility graph but

it only keeps its odd cycles. It creates a folder for odd cycles of same length and stores

them.

Program B.1: Incompatibility Graph

1 %The IncompatibilityGraphVersion2() reads the binary matrix M from the folder

2 %and draw its incompatibility graph

3 %INPUT: A binary matrix with two 1s per row along with its name

4 %OUTPUT: Draw the incompatibility graph with all edges labeled and Show the

5 %odd cycle if there is any.

6 %PURPOSE: Check the incompatibility of a given binary matrix for odd cycles

7 %which results in non−C1Pness of the matrix.

56

APPENDIX B. MATLAB CODES 57

8 % AUTHOR: Mehrnoush,Malekesmaeili, May 2011

9 % EMAIL: mmalekes@sfu.ca

10 function []= IncompatibilityGraphVersion2(M,Name)

11 global A;

12 global EdgeSet;

13 global B;

14 global dirname;

15 count=0;

16 ColumnSize=size(M,2);

17 VertexSize=ColumnSize*(ColumnSize−1);

18 l=1;

19 A=zeros(VertexSize);

20 % B is an 2 by ColumnSize*(ColumnSize−1) matrix that keeps the vertices (a,b)

21 %for any two columns a,b

22 B=zeros(2,VertexSize);

23 D=zeros(size(M,2)*2*ColumnSize−2,2);

24 VertexSet=zeros(1,VertexSize);

25 C=zeros(2,size(M,1));

26 % The for loop Save adjacent vertices of type ((a,b) (b,a))

27 %in adjaceny matrix A

28 for j1=1:ColumnSize

29 j2=j1+1;

30 while(j2<=ColumnSize)

31 count=count+1;

32 B(:,count)=[j1 j2];

33 B(:,count+(VertexSize/2))=[j2 j1];

34

35 A(count,count+(VertexSize/2))=1;

36 A(count+(VertexSize/2),count)=1;

37 D(l,:)=[count count+(VertexSize/2)];

38 l=l+1;

39 j2=j2+1;

40 end

41 end

42 %This loop stores name of each vertex in an array

APPENDIX B. MATLAB CODES 58

43 for j3=1:size(B,2)

44 VertexSet(j3)=str2num((strcat(num2str(B(1,j3)),num2str(B(2,j3)))));

45 end

46 for k=1:size(M,1)

47 C(:,k)=find(M(k,:));

48 %Finds the member of the set family.(index of two columns of M having

49 %entry 1 in a same row) and stores them

50 EdgeSet(:,k)=C(:,k);

51 % this loop finds all incompatible pairs of type ((a,b),(b,c))

52 %and construct the adjacency matrix of the graph

53 for i=1:ColumnSize

54 if (i˜=C(1,k) && i˜=C(2,k))

55 r1=find(all(repmat([C(1,k);i],1,size(B,2))==B));

56 r2=find(all(repmat([i;C(2,k)],1,size(B,2))==B));

57 c1=find(all(repmat([C(2,k);i],1,size(B,2))==B));

58 c2=find(all(repmat([i;C(1,k)],1,size(B,2))==B));

59 A(r1,r2)=1;

60 A(r2,r1)=1;

61 D(l,:)=[r1 r2];

62 l=l+1;

63 A(c1,c2)=1;

64 A(c2,c1)=1;

65 D(l,:)=[c1 c2];

66 l=l+1;

67 end

68 end

69 end

70 % stores the edge list in a text file

71 save A;

72 StoreEdgeList(D);

73 mkdir(strcat('Result/',dirname,num2str(date)),Name)

74 tStart=tic;

75 PlotGraph(VertexSize,VertexSet,Name);

76 RunLoopsVersion2(Name);

77 tElapsed=toc(tStart);

APPENDIX B. MATLAB CODES 59

78 save(strcat('Result/',dirname,num2str(date),'/',...

79 Name,'/tElapsed'),'tElapsed');

80 end

81 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Program B.2: Store Edge list

1 %The StoreEdgeList(E) Stores the adjacency graph in a txt format.

2 %INPUT: The adjacency matrix E

3 %OUTPUT: AdjMatrix.txt

4 function []= StoreEdgeList(E)

5 fid = fopen('AdjMatrix.txt','w');

6 fprintf(fid,' %2d %3d\n ',E');

7 end

Program B.3: Find loops

1 function RunLoopsVersion2(Name)

2 %RunLoops21 Counts the number of loops in a network

3 % This code counts the number of loops (cycles) in a network (graph) that

4 % is composed of nodes and edges. It employs an iterative algorithm that

5 % transforms the network into a tree (the ILCA − Iterative Loop Counting

6 % Algorithm). This is a "brute force" technique as there are no known (to

7 % my knowledge anyway) algorithms for providing a good estimation.

8 %It also checks the graph for odd cycles

9 %

10 % AUTHOR: Joseph Kirk,2/2007

11 % EMAIL: <jdkirk630@gmail.com>

APPENDIX B. MATLAB CODES 60

12 % USAGE: >> run loops;

13 % Revised by Mehrnoush Malekesmaeili

14 %Slight changes on functions

15 %New functions for finding odd cycles added

16 %March 2011

17 %mmalekes@sfu.ca

18 fid = fopen('AdjMatrix.txt','rt');

19 edge list = fscanf(fid,'%10i',[2,inf]);

20 fclose(fid);

21 edge list = edge list';

22 if isempty(edge list)

23 return

24 end

25 usnet = edge list2net(edge list);

26 % format the edgelist for the loop counting process

27 net = sort net(usnet);

28 num nodes = length(net);

29 num edges = calc num edges(net);

30

31

32 n = get starting node(net);

33 % give the path a nearly optimal starting node

34 path = net(n).node;

35 % initialize the path

36 current edge = net(n).edges(1);

37 % initialize the first edge

38 loop list = [];

39 % initialize the loop list

40 iterations = 0;

41 % initialize the number of algorithm steps

42 while (length(path)>1 | | ˜isempty(current edge))

43 [net,path,current edge,loop list] = ...

44 iterate tree(net,path,current edge,loop list);

45 iterations = iterations+1;

46 end

APPENDIX B. MATLAB CODES 61

47 num loops = length(loop list);

48 Oddloops(loop list,Name);

49

50 %−−

51 %−−−−−−− SUBFUNCTIONS −−−

52 %−−

53 function net = edge list2net(edge list)

54 % PURPOSE: Transform an edge list into a network structure

55 % INPUTS: edge list: each row represents an edge connection

56 % OUTPUTS: net − network structure containing two fields:

57 % 1.'node' is the ID of the current node

58 % 2.'edges' is a vector that lists all the nodes connected to 'node'

59

60 net = [];

61 if isempty(edge list)

62 return

63 end

64 edge list = abs(round(real(edge list)));

65 ne = size(edge list);

66 net(1).node = edge list(1,1); net(1).edges = edge list(1,2);

67 net(2).node = edge list(1,2); net(2).edges = edge list(1,1);

68 for idx = 2:ne(1)

69 node exists = 0;

70 % if the node is already part of the net, update the list of edges

71 for k = 1:length(net)

72 if (edge list(idx,1) == net(k).node)

73 % do not update the edge list if the edge already exists

74 if isempty(find([net(k).edges net(k).node] == edge list(idx,2),1))

75 net(k).edges = [net(k).edges edge list(idx,2)];

76 end

77 node exists = 1;

78 break

79 end

80 end

81 % if the node is new, add it to the end of the net along with the edge

APPENDIX B. MATLAB CODES 62

82 if ˜node exists

83 net(k+1).node = edge list(idx,1);

84 net(k+1).edges = edge list(idx,2);

85 end

86 node exists = 0;

87 % if the node is already part of the net, update the list of edges

88 for k = 1:length(net)

89 if (edge list(idx,2) == net(k).node)

90 % do not update the edge list if the edge already exists

91 if isempty(find([net(k).edges net(k).node] == edge list(idx,1),1))

92 net(k).edges = [net(k).edges edge list(idx,1)];

93 end

94 node exists = 1;

95 break

96 end

97 end

98 % if the node is new, add it to the end of the net along with the edge

99 if ˜node exists

100 net(k+1).node = edge list(idx,2);

101 net(k+1).edges = edge list(idx,1);

102 end

103 end

104

105 %−−

106 function net = sort net(net)

107 % PURPOSE: Puts all of the nodes in order from least to greatest

108 % INPUTS: net − network structure containing two fields:

109 %1.'node' is the ID of the current node

110 % 2.'edges' is a vector that lists all the nodes connected to 'node'

111 % OUTPUTS: net − sorted network structure containing two fields:

112 % 1.'node' is the ID of the current node

113 % 2.'edges' is a vector that lists all the nodes connected to 'node'

114

115 tmp = [];

116 nodes list = zeros(1, length(net));

APPENDIX B. MATLAB CODES 63

117 for k = 1:length(net)

118 nodes list(k) = net(k).node;

119 end

120 [sorted, order] = sort(nodes list);

121 for k = 1:length(net)

122 tmp(k).node = net(order(k)).node;

123 tmp(k).edges = sort(net(order(k)).edges);

124 end

125 net = tmp;

126

127 %−−

128 function num edges = calc num edges(net)

129 % PURPOSE: Calculates the number of edges in an undirected network

130 % INPUTS: net − network structure containing two fields: 'node' and 'edges'

131 % 1.'node' is the ID of the current node

132 % 2.'edges' is a vector that lists all the nodes connected to 'node'

133 % OUTPUTS: num edges − number of edges in the network

134

135 num edges = 0;

136 for k = 1:length(net)

137 num edges = num edges + length(net(k).edges);

138 end

139 num edges = num edges/2;

140

141 %−−

142

143 function n = get starting node(net)

144 % PURPOSE: Pick the (nearly) optimal starting node

145 % USAGE: >> n = get starting node(net);

146 % INPUTS: net − network structure containing two fields: 'node' and 'edges'

147 %1.'node' is the ID of the current node

148 % 2.'edges' is a vector that lists all the nodes connected to 'node'

149 % OUTPUTS: n − index to the optimal network starting node

150 n = 1;

151 for k = 2:length(net)

APPENDIX B. MATLAB CODES 64

152 if (length(net(k).edges) > length(net(n).edges))

153 n = k;

154 end

155 end

156

157 %−−

158 function [net,path,current edge,loop list] =...

159 iterate tree(net,path,current edge,loop list)

160 % PURPOSE: Execute the current iterative step in the loop counting algorithm

161 % INPUTS: net − network structure containing two fields: 'node' and 'edges'

162 % 1.'node' is the ID of the current node

163 % 2.'edges' is a vector that lists all the nodes connected to 'node'

164 % path − an ordered vector of node values that are connected

165 % current edge − the node ID of the current edge

166 % loop list − a structure with one field named 'loop'

167 % containing a list of all loops found

168 % OUTPUTS: net − same as net input

169 % path − same as path input,potentially modified

170 % current edge − the node ID of the next edge to be considered

171 % loop list − same as loop list input,potentially ammended

172 path size = length(path);

173 if(path size <=21)

174 % DONE − finished searching tree

175 if (path size == 1 && isempty(current edge))

176 return

177 % CURRENT EDGE LIST FINISHED − go up tree

178 elseif (isempty(current edge))

179 current edge = get next edge(net,path(path size−1),path(path size));

180 path(path size) = [];

181 % CURRENT EDGE IS THE SAME AS PREVIOUS VERTEX − move to next edge

182 elseif (length(path) > 1 && path(path size−1) == current edge)

183 current edge = get next edge(net,path(path size),current edge);

184 % LOOP FOUND!

185 elseif (check path4loop(path,current edge))

186 loop = loop2std form(path,current edge);

APPENDIX B. MATLAB CODES 65

187 if ˜compare loop(loop,loop list)

188 loop list = append loop list(loop list,loop);

189 end

190 current edge = get next edge(net,path(path size),current edge);

191 % NO LOOP FOUND − keep going down tree

192 else

193 path = [path current edge];

194 current edge = get next edge(net,path(path size+1),[]);

195 end

196 end

197

198 %−−

199 function loop list = append loop list(loop list,loop)

200 % PURPOSE: Adds a loop to the end of a loop list structure

201 % INPUTS: loop list − a structure with one field named 'loop'

202 % containing a list of all previously found loops

203 % loop − 1xM vector containing a list of nodes that make a loop

204 % OUTPUTS: loop list − the modified loop list structure

205

206 if isempty(loop list)

207 loop list.loop = loop;

208 else

209 num loops = length(loop list);

210 loop list(num loops+1).loop = loop;

211 end

212

213 %−−

214 function status = check path4loop(path,current edge)

215 % PURPOSE: Check to see if the current edge is in the path

216 % INPUTS: path − an ordered vector of node values that are connected

217 % urrent edge − a node connected to the last node in path

218 % OUTPUTS: status − 1 if a loop has been found,0 otherwise

219

220 status = 0;

221 if find(path == current edge,1)

APPENDIX B. MATLAB CODES 66

222 status = 1;

223 end

224

225 %−−

226 function status = compare loop(loop,loop list)

227 % PURPOSE: Check to see if the loop already exists in the loop list

228 % INPUTS: loop − 1xM vector containing nodes that are connected in a loop

229 % loop list − a structure with one field named 'loop'

230 %containing a list of all previously found loops

231 % OUTPUTS: status − equals 1 if 'loop' already exists,0 otherwise

232

233 status = 0;

234 if isempty(loop list)

235 return

236 end

237 for k = 1:length(loop list)

238 m = length(loop list(k).loop);

239 n = length(loop);

240 % if the two loops have the same length,check if they are identical

241 if (m == n)

242 status = 1;

243 for kk = 1:n

244 if (loop list(k).loop(kk) ˜= loop(kk))

245 status = 0; % loops are different,move on to next

246 break

247 end

248 end

249 % loops are identical

250 if status

251 return

252 end

253 end

254 end

255

256 %−−

APPENDIX B. MATLAB CODES 67

257 function next edge = get next edge(net,current node,current edge)

258 % PURPOSE: Find the next edge of the current node in the network structure

259 % INPUTS: net − network structure containing two fields: 'node' and 'edges'

260 %1.'node' is the ID of the current node

261 % 2.'edges' is a vector that lists all the nodes connected to 'node'

262 % current node − the ID of the current node in the path

263 % current edge − the node ID of the current edge

264 % OUTPUTS: next edge − the node ID of the next edge in the edges list

265 %for the current node

266 next edge = [];

267 for k = 1:length(net)

268 if (current node == net(k).node)

269 if isempty(current edge) % start with the first edge of the node

270 next edge = net(k).edges(1);

271 else % get the next edge in the list,if there is one

272 kk = find(net(k).edges == current edge);

273 if kk < length(net(k).edges)

274 next edge = net(k).edges(kk+1);

275 end

276 end

277 return

278 end

279 end

280

281 %−−

282 function loop = loop2std form(path,current edge)

283 % PURPOSE: Take a loop found in the path and return the loop vector

284 % INPUTS: path − an ordered vector of node values that are connected

285 % current edge − the node ID of the current edge

286 % OUTPUTS: loop − 1xM vector of standard form loop,

287 %where M is the length of the loop

288 % NOTES: Standard form is defined as having the smallest node ID at

289 %the front of the list,and the smaller of the two neighbors listed second

290

291 ii = find(path == current edge);

APPENDIX B. MATLAB CODES 68

292 % get the loop from the path

293 loopy = path(ii:end);

294 n = length(loopy);

295 jj = find(loopy == min(loopy));

296 % order the loop with the smallest value first

297 loop = loopy([(jj:n) (1:jj−1)]);

298 % order the rest of the loop with the smaller of the two neighbors second

299 if loop(2) > loop(n)

300 loop = [loop(1) fliplr(loop(2:n))];

301 end

302 %−−

303 %PURPOSE: Keep Each odd cycle in its corresponding list

304 function Oddloops(loop list,Name)

305 num loops = length(loop list);

306 leng=ones(1,8); % Each element is a counter for sepecific odd cycle

307 List3=zeros(1,3);List5=zeros(1,5);List7=zeros(1,7);List9=zeros(1,9);

308 List11=zeros(1,11);List13=[];List15=[];List17=[];

309 mkdir('Draft');

310 for iter=3:2:17

311

312 save(strcat('Draft/','List',num2str(iter)),strcat('List',num2str(iter)))

313 end

314 for k1=1:num loops

315 h1 = length(loop list(k1).loop);

316 if (mod(h1,2)==1)

317 switch num2str(h1)

318 case num2str(3)

319 List3(leng(1,1),:)=loop list(k1).loop;

320 save('Draft/List3','List3')

321 leng(1,1)=leng(1,1)+1;

322 case num2str(5)

323 List5(leng(1,2),:)=loop list(k1).loop;

324 save('Draft/List5','List5')

325 leng(1,2)=leng(1,2)+1;

326 case num2str(7)

APPENDIX B. MATLAB CODES 69

327 List7(leng(1,3),:)=loop list(k1).loop;

328 save('Draft/List7','List7')

329 leng(1,3)=leng(3)+1;

330

331 case num2str(9)

332 List9(leng(1,4),:)=loop list(k1).loop;

333 save('Draft/List9','List9')

334 leng(1,4)=leng(1,4)+1;

335 case num2str(11)

336 List11(leng(1,5),:)=loop list(k1).loop;

337 save('Draft/List11','List11')

338 leng(1,5)=leng(1,5)+1;

339 case num2str(13)

340 List13(leng(1,6),:)=loop list(k1).loop;

341 save('Draft/List13','List13')

342 leng(1,6)=leng(1,6)+1;

343 case num2str(15)

344 List15(leng(1,7),:)=loop list(k1).loop;

345 save('Draft/List15','List15')

346 leng(1,7)=leng(1,7)+1;

347 case num2str(17)

348 List17(leng(1,8),:)=loop list(k1).loop;

349 save('Draft/List17','List17')

350 leng(1,8)=leng(1,8)+1;

351 otherwise

352 return

353 end

354 end

355 end

356 ListOfOddCycle(Name);

357 %−−

358 %PURPOSE: Finds vertices and edges of each loop in the incimpatibility

359 % Graph and concatenate them horizentally and stores in a matrix

360 function[RESULT]= FindRows(Y)

361 global EdgeSet;

APPENDIX B. MATLAB CODES 70

362 global B;

363 n1=size(Y,1);

364 n2=size(Y,2);

365 Y(:,n2+1)=Y(:,1);

366 for m1=1:n1

367 for m2=1:n2

368 endpoint1=Y(m1,m2);

369 endpoint2=Y(m1,m2+1);

370 E(m1,m2)=str2num(strcat(num2str(B(1,endpoint1)),num2str(B(2,endpoint1))));

371 if((B(2,endpoint1)==B(1,endpoint2))&&(B(1,endpoint1)==B(2,endpoint2)))

372 F(m1,m2)=0;

373 elseif((B(2,endpoint1)==B(1,endpoint2)))

374 edgename1=find(all(repmat([B(2,endpoint2);B(1,endpoint1)],1,...

375 size(EdgeSet,2))==EdgeSet));

376 edgename2=find(all(repmat([B(1,endpoint1);B(2,endpoint2)],1,...

377 size(EdgeSet,2))==EdgeSet));

378 if(isempty(edgename1))

379 edgename1=edgename2;

380 end

381 F(m1,m2)=edgename1;

382 elseif ((B(1,endpoint1)==B(2,endpoint2)))

383 edgename1=find(all(repmat([B(2,endpoint1);B(1,endpoint2)],1,...

384 size(EdgeSet,2))==EdgeSet));

385 edgename2=find(all(repmat([B(1,endpoint2);B(2,endpoint1)],1,...

386 size(EdgeSet,2))==EdgeSet));

387 if(isempty(edgename1))

388 edgename1=edgename2;

389 end

390 F(m1,m2)=edgename1;

391 end

392

393 end

394 end

395 RESULT=horzcat(E,F);

396

APPENDIX B. MATLAB CODES 71

397

398 %−−

399 %This function saves all odd cycle of size less than or equal to 17

400 %PURPOSE shows list of odd cycles of the specif size that user

401 %determines first.

402

403 function ListOfOddCycle(Name)

404 global dirname;

405 for i=3:2:17

406 STRING=strcat('List',num2str(i)); %#ok<IJCL>

407 MAT=importdata(strcat('Draft/',STRING,'.mat'));

408 if(any(MAT))

409 n=size(MAT,2);

410 dat=FindRows(MAT);

411 Data=int8([1:n 1:n;dat]);

412 dlmwrite(strcat('Result/',dirname,num2str(date),'/',Name,'/',...

413 STRING,'.txt'), Data, 'newline', 'pc','precision', 2);

414

415 end

416

417 end

418 S=strcat('Result/',dirname,num2str(date),'/',Name);

419 copyfile('AdjMatrix.txt',S)

420 rmdir('Draft','s');

421 %−−−

422 %%END

Bibliography

[1] Zaky Adam, Monique Turmel, Claude Lemieux, and David Sankoff. Common inter-
vals and symmetric difference in a model-free phylogenomics, with an application to
streptophyte evolution. In Comparative Genomics’06, pages 63–74, 2006.

[2] Farid Alizadeh, Richard M. Karp, Deborah K. Weisser, and Geoffrey Zweig. Physical
mapping of chromosomes using unique probes. In Proceedings of the fifth annual ACM-
SIAM symposium on Discrete algorithms, SODA’94, pages 489–500, Philadelphia, PA,
USA, 1994. Society for Industrial and Applied Mathematics.

[3] Seymour Benzer. On the topology of the genetic fine structure. Proc. Nat. Acad. Sci.
- USA, 45:1607–1620, 1959.

[4] Anne Bergeron, Mathieu Blanchette, Annie Chateau, and Cedric Chauve. Reconstruct-
ing ancestral gene orders using conserved intervals. In Proc. Fourth Intl Workshop
Algorithms in Bioinformatics WABI04, pages 14–25. Springer, 2004.

[5] Guillaume Blin, Romeo Rizzi, and Stéphane Vialette. A faster algorithm for finding
minimum tucker submatrices. In Proceedings of the Programs, proofs, process and
6th international conference on Computability in Europe, CiE’10, pages 69–77, Berlin,
Heidelberg, 2010. Springer-Verlag.

[6] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property,
interval graphs, and planarity using PQ-tree algorithms. Journal of Computational
Systems Science, 13:335–379, 1976.

[7] Binh M. Bui-Xuan, Michel Habib, and Michael Rao. Tree-representation of set families
and applications to combinatorial decompositions. European Journal of Combinatorics,
2011.

[8] Rainer E. Burkard, Vladimir G. Deineko, and Gerhard J. Woeginger. The travelling
salesman and the PQ-tree. In IPCO’96, pages 490–504, 1996.

[9] J.P. Char. Master circuit matrix. Electrical Engineers, Proceedings of the Institution
of, 115(6):762 –770, 1968.

[10] Cedric Chauve, Utz-Uwe Haus, Tamon Stephen, and Vivija P. You. Minimal conflicting
sets for the consecutive ones property in ancestral genome reconstruction, 912.

72

BIBLIOGRAPHY 73

[11] Cedric Chauve, Ján Manuch, and Murray Patterson. On the gapped consecutive-ones
property. Electronic Notes in Discrete Mathematics, 34(0):121 – 125, 2009.

[12] Cedric Chauve and Eric Tannier. A methodological framework for the reconstruction
of contiguous regions of ancestral genomes and its application to mammalian genomes.
PLoS Comput Biol, 4(11):e1000234, 2008.

[13] M. Chein, M. Habib, and M. C. Maurer. Partitive hypergraphs. Discrete Mathematics,
37(1):35 – 50, 1981.

[14] Lin Chen and Yaacov Yesha. Parallel recognition of the consecutive ones property with
applications. Journal of Algorithms, 12(3):375 – 392, 1991.

[15] Elias Dahlhaus. Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition. Journal of Algorithms, 36:2000, 1998.

[16] Michael Dom, Jiong Guo, and Rolf Niedermeier. Approximation and fixed-parameter
algorithms for consecutive ones submatrix problems. J. Comput. Syst. Sci., 76:204–221,
2010.

[17] Michael Dom and Somnath Sikdar. The parameterized complexity of the rectangle
stabbing problem and its variants. In In Proc. 2nd FAW, volume 5059 of LNCS, pages
288–299. Springer, 2008.

[18] Bernard M. Dwork. Generalized hypergeometric functions. Oxford mathematical mono-
graphs. Clarendon Press, 1990.

[19] Ralph Faudree, Evelyne Flandrin, and Zdeněk Ryjáček. Claw-free graphs−a survey.
Discrete Math., 164:87–147, 1997.

[20] Michele Flammini, Giorgio Gambosi, and Sandro Salomone. Boolean routing. In Proc.
of the 7th Int. Workshop on Distributed Algorithms (WDAG’93),LNCS 725, pages 219–
233, 1993.

[21] Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of mono-
tone disjunctive normal forms. J. Algorithms, 21:618–628, 1996.

[22] Delbert R. Fulkerson and Oliver A. Gross. Incidence matrices and interval graphs. Pac.
J. Math., 15:835–855, 1965.

[23] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18:25–66,
1967.

[24] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W.
H. Freeman, 1979.

BIBLIOGRAPHY 74

[25] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canad. J. Math., 16:539–548, 1964.

[26] Vladimir Gurvich and Leonid Khachiyan. On generating the irredundant conjunctive
and disjunctive normal forms of monotone boolean functions. Discrete Appl. Math.,
96-97:363–373, 1999.

[27] Michel Habib, Ross M. McConnell, Christophe Paul, and Laurent Viennot. Lex-bfs
and partition refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theoretical Computer Science, 234:59–84,
2000.

[28] MohammadTaghi Hajiaghayi, Yashar Ganjali, and Communicated F. Dehne. A note
on the consecutive ones submatrix problem, 2002.

[29] Dov Harel and Robert E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13:338–355, 1984.

[30] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph ma-
nipulation. Commun. ACM, 16:372–378, 1973.

[31] Wen-Lian Hsu. A simple test for the consecutive ones property. In Proceedings of the
Third International Symposium on Algorithms and Computation, ISAAC ’92, pages
459–468, London, UK, 1992. Springer-Verlag.

[32] Wen-Lian Hsu and Ross M. McConnell. Pc trees and circular-ones arrangements. Theor.
Comput. Sci., 296:99–116, 2003.

[33] Witold Lipski Jr. Generalizations of the consecutive ones property and related np-
complete problems. 1978.

[34] Gad M. Landau, Laxmi Parida, and Oren Weimann. Using PQ trees for comparative
genomics. In CPM’05, pages 128–143, 2005.

[35] Jian Ma, Louxin Zhang, Bernard B. Suh, Richard C. Raney, Brian J. Burhans,
W. James Kent, Mathieu Blanchette, David Haussler, and Webb Miller. Reconstructing
contiguous regions of an ancestral genome. Genome Res, 16(12):1557–1565, 2006.

[36] Mehrnoush Malekesmaeili, Cedric Chauve, and Tamon Stephen. A tight bound on the
length of odd cycles in the incompatibility graph of a non-C1P matrix. 2011.

[37] Ross M. McConnell. Personal Communication.

[38] Ross M. McConnell. A certifying algorithm for the consecutive-ones property. SODA
’04. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2004.

[39] Ross M. McConnell and Fabien de Montgolfier. Algebraic operations on PQ trees and
modular decomposition trees. In WG’05, pages 421–432, 2005.

BIBLIOGRAPHY 75

[40] Ross M. McConnell and Fabien de Montgolfier. Linear-time modular decomposition of
directed graphs. Discrete Appl. Math., 145:198–209, 2005.

[41] Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and ef-
ficient transitive orientation of comparability graphs. In Proceedings of the fifth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’94, pages 536–545, Philadel-
phia, PA, USA, 1994. Society for Industrial and Applied Mathematics.

[42] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive
orientation. Discrete Mathematics, 201(1-3):189 – 241, 1999.

[43] João Meidanis and Erasmo G. Munuera. A theory for the consecutive ones property. In
Third South American Workshop on String Processing, volume 4, pages 194–202, 1996.

[44] João Meidanis, Oscar Porto, and Guilherme P. Telles. On the consecutive ones prop-
erty. Discrete Applied Mathematics, 88(1-3):325 – 354, 1998. Computational Molecular
Biology DAM - CMB Series.

[45] Rolf H. Möhring. Algorithmic aspects of the substitution decomposition in optimization
over relations, set systems and boolean functions. Annals of Operations Research,
4:195–225, 1985/6.

[46] Mark B. Novick. Generalized PQ-trees. Technical report, Ithaca, NY, USA, 1989.

[47] Guilherme P. Telles and João Meidanis. Building PQR trees in almost-linear time.
2003.

[48] Alan Tucker. A structure theorem for the consecutive 1’s property. Journal of Combi-
natorial Theory, Series B, 12(2):153–162, 1972.

[49] Shih Wei-Kuan and Hsu Wen-Lian. A new planarity test. Theoretical Computer Science,
223(1-2):179 – 191, 1999.

[50] Johannes Wienberg and Roscoe Stanyon. Chromosome painting in mammals as an ap-
proach to comparative genomics. Current Opinion in Genetics & Development, 5(6):792
– 797, 1995.

Index

Ancestral genome reconstruction, 1, 3, 4, 42
appendices, 54

Bipartite graph, 1, 7, 13, 30, 31, 52

Certificates, 1, 2, 9, 12, 27, 30, 31, 40, 42, 44
Certifying algorithm, 30
Consecutive ones property, 1, 4–6, 9, 11, 13,

14, 17, 19, 20, 22, 26, 27, 30, 31, 33,
34, 39, 42, 50, 52, 53

Decomposition tree, 20–27

Forcing graph, 31, 35, 39, 40

Generalized PQ-tree, 11, 18, 21, 23, 25, 27

Incompatibility graph, 1, 30, 31, 33–38, 40,
52

Linear time algorithm, 14, 19, 21, 23, 25

Maximal C1P, MC1P, 2, 9, 10, 42–44, 46, 48,
49, 52

Minimal Conflicting Set, MCS, 9, 10, 42, 44,
46–48, 51, 52

Modular decompositiond, 11, 19, 21

Overlap graph, 8, 23–25, 27

Partitive families, 19–22
Polynomial time algorithms, 1, 14, 16, 17, 30
PQ-tree, 2, 4, 14–21, 52
PQR-tree, 11, 17, 18

Reduction, 5, 14, 16, 17, 49, 52
Row-column graph, 2, 10, 43–45, 47, 49, 50,

52

Tucker patterns, 9, 13, 14, 27, 32–35, 40, 44,
45, 47, 52

Universal PQ-tree, 14, 16

Valid permutation, 6, 9, 11, 14, 30

76

