Combinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths

Jacob Post

July 22, 2009

Overview

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection
Principle
Other Results

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations
Maximal Nesting Structures
Set Partition Bicolouring Bijection
Bicolouring Bijection Principle
Other Results

Arc Diagrams

Arc Diagrams,
Nesting and
Crossing
Arc Diagrams
■ Permutations $\left(\sigma \in S_{n}\right)$
Nestings and
Crossings
Equidistribution of Nestings and
Crossings
Other Objects
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle
Other Results

Arc Diagrams

Arc Diagrams,
Nesting and
Crossing
Arc Diagrams
Nestings and
Crossings
Equidistribution of Nestings and Crossings

Other Objects
■ Permutations $\left(\sigma \in S_{n}\right)$

Shape Preserving
Transformations
Maximal Nesting Structures

Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results
\qquad

■ Set Partitions $\left(\nu \in P_{n}\right)$

Arc Diagrams

Arc Diagrams, Nesting and
Crossing
Arc Diagrams
Nestings and
Crossings
Equidistribution of Nestings and Crossings

Other Objects
Shape Preserving
Transformations
Maximal Nesting Structures

Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

- Permutations $\left(\sigma \in S_{n}\right)$

■ Set Partitions $\left(\nu \in P_{n}\right)$

- Involutions $\left(\pi \in I_{n}\right)$

Arc Diagrams

Arc Diagrams, Nesting and Crossing	■ Permutations ($\sigma \in S_{n}$)
Arc Diagrams	
Nestings and Crossings	
Equidistribution of Nestings and Crossings	
Other Objects	- Set Partitions ($\nu \in P_{n}$)
Shape Preserving Transformations	
Maximal Nesting Structures	
Set Partition Bicolouring Bijection	- Involutions ($\pi \in I_{n}$)
Bicolouring Bijection Principle	
Other Results	
	- Matchings ($\mu \in M_{n}$)

Nestings and Crossings

Arc Diagrams,
Nesting and
- Nesting
Crossing
Arc Diagrams
Nestings and
Crossings
Equidistribution of
Nestings and
Crossings
Other Objects
Shape Preserving
Transformations
Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle
Other Results

Nestings and Crossings

Arc Diagrams, Nesting and Crossing	\square	Nesting
Arc Diagrams Nestings and Crossings		
Equidistribution of Nestings and Crossings	\square	Crossing
Other Objects		
Shape Preserving Transformations	\square	k-nesting
Maximal Nesting Structures		
Set Partition Bicolouring Bijection		k-crossing
Bicolouring Bijection Principle	\square	
Other Results		

Equidistribution of Nestings and Crossings

Arc Diagrams,
Nesting and Crossing
Arc Diagrams
Nestings and
Crossings

Equidistribution of

Nestings and
Crossings
Other Objects
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Theorem (Chen et.al., 2006): Fixing objects of size n, maximal i-crossing and maximal j-nesting \leftrightarrow maximal j-crossing and maximal i-nesting.

Equidistribution of Nestings and Crossings

Arc Diagrams,
Nesting and Crossing
Arc Diagrams
Nestings and
Crossings

Equidistribution of

Nestings and
Crossings
Other Objects
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Theorem (Chen et.al., 2006): Fixing objects of size n, maximal i-crossing and maximal j-nesting \leftrightarrow maximal j-crossing and maximal i-nesting.

■ Theorem (Kasraoui and Zeng, 2006): Fixing objects of size n, i crossings and j nestings $\leftrightarrow j$ crossings and i nestings.

Weighted Dyck/Motzkin Paths

Arc Diagrams, Nesting and Crossing

Other Objects Weighted Dyck/Motzkin Paths
Strict 0-1 Ferrers Fillings
Standard Young Tableaux
Object Summary
Shape Preserving
Transformations
Maximal Nesting Structures

Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

■ Theorem: Weighted Dyck paths of length $2 n$ are in bijection with matchings on [2n].

Weighted Dyck/Motzkin Paths

Arc Diagrams, Nesting and Crossing

Other Objects Weighted
Dyck/Motzkin Paths
Strict 0-1 Ferrers
Fillings
Standard Young Tableaux
Object Summary
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

- Theorem: Weighted Dyck paths of length $2 n$ are in bijection with matchings on [2n].

■ Theorem: Weighted Motzkin paths of length n are in bijection with set partitions on n.

Strict 0-1 Ferrers Fillings

Arc Diagrams,
Nesting and
Crossing
Other Objects
Weighted
Dyck/Motzkin Paths

Strict 0-1 Ferrers

 FillingsStandard Young
Tableaux
Object Summary
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results
\qquad

- Generalization of permutation matrices: fill each row \& column of a Ferrers shape with exactly 1 ' x '.

	X				5
			X		4
				X	3
		X			2
X					1
1	2	3	4	5	

Strict 0-1 Ferrers Fillings

Arc Diagrams,
Nesting and Crossing

Other Objects
Weighted
Dyck/Motzkin Paths

Strict 0-1 Ferrers

Fillings
Standard Young
Tableaux
Object Summary
Shape Preserving Transformations

Maximal Nesting Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Generalization of permutation matrices: fill each row \& column of a Ferrers shape with exactly 1 ' x '.

| | X | | | | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | X | | 4 |
| | | | | X | 3 |
| | | X | | | 2 |
| X | | | | | 1 |
| 1 | 2 | 3 | 4 | 5 | |

	X				10
			X		
9					
				X	8
		X			7
X			4^{5}	6	
1	2	3			

■ Theorem (Krattenthaler, 2006): Strict 0-1 Ferrers filling with n ' x 's are in bijection with matchings on [2n].

Standard Young Tableaux

Arc Diagrams, Nesting and Crossing

Other Objects
Weighted
Dyck/Motzkin Paths
Strict 0-1 Ferrers
Fillings

Standard Young

Tableaux
Object Summary
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

- Filling of a Ferrers shape with $[n]$ increasing downwards and rightwards.

1	2	4
3	6	7
5	10	11
8		
9		

Standard Young Tableaux

Arc Diagrams,
Nesting and
Crossing
Other Objects
Weighted
Dyck/Motzkin Paths
Strict 0-1 Ferrers
Fillings
Standard Young
Tableaux
Object Summary
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition Bicolouring Bijection Principle

Other Results

- Filling of a Ferrers shape with $[n]$ increasing downwards and rightwards.

1	2	4
3	6	7
5	10	11
8		
9		

■ Theorem (Robinson-Schensted, 1934, 1961): Pairs of size n SYT with the same shape are in bijection with $\sigma \in S_{n}$.

$$
\mathrm{P}, \mathrm{Q}=\frac{\begin{array}{l}
\frac{1}{13} \mathbf{2} 7 \\
\frac{26}{6} 9 \\
\hline 5
\end{array}}{\frac{8}{5}}
$$

\[

\]

Standard Young Tableaux

Arc Diagrams,
Nesting and Crossing

Other Objects
Weighted
Dyck/Motzkin Paths
Strict 0-1 Ferrers
Fillings
Standard Young

Tableaux

Object Summary
Shape Preserving
Transformations
Maximal Nesting Structures
Set Partition Bicolouring Bijection Bicolouring Bijection Principle

Other Results

- Filling of a Ferrers shape with $[n]$ increasing downwards and rightwards.

■ Theorem (Robinson-Schensted, 1934, 1961): Pairs of size n SYT with the same shape are in bijection with $\sigma \in S_{n}$.

\[

\]

■ The case of involutions: $\sigma \sim P, Q \Longleftrightarrow \sigma^{-1} \sim Q, P$. Therefore, SYT of size n are in bijection with involutions on $[n]$.

1	2	3	6	7
4	5	8		

Object Summary

Arc Diagrams,
Nesting and Crossing

Other Objects
Weighted
Dyck/Motzkin Paths
Strict 0-1 Ferrers Fillings
Standard Young
Tableaux
Object Summary
Shape Preserving Transformations

Maximal Nesting Structures
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

Lattice Paths

Ferrers Fillings

Knuth Transformation Examples

Arc Diagrams, Nesting and
Crossing
Other Objects
Shape Preserving Transformations Knuth
Transformation Examples
Knuth
Transformations
The Case for
Involutions
Involutive
Transformations
Maximal Nesting Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

- Knuth transformation:

Knuth Transformation Examples

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Knuth

Transformation Examples
Knuth
Transformations
The Case for
Involutions
Involutive
Transformations
Maximal Nesting Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Knuth transformation:

- Dual Knuth transformation:

Knuth Transformations

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations
Knuth
Transformation
Examples

Knuth

Transformations
The Case for
Involutions
Involutive
Transformations
Maximal Nesting Structures

Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Knuth transformations:

$$
\begin{array}{llll}
\ldots b a c & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array} \ldots_{1} a b \ldots \ldots
$$

■ Alters contents of tableau Q, but not the shape.
■ Dual Knuth transformations:
$\ldots . \quad$... $i-1 \ldots i+1 \ldots \leftrightarrow \ldots i+1 \ldots i-1 \ldots i \ldots$
$\ldots i-1 \ldots i+1 \ldots i \ldots \leftrightarrow \ldots i \ldots i+1 \ldots i-1 \ldots$
■ Alters contents of tableau P, but not the shape.

Knuth Transformations

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Knuth
Transformation
Examples

Knuth

Transformations
The Case for
Involutions
Involutive
Transformations
Maximal Nesting Structures
Set Partition Bicolouring Bijection

■ Knuth transformations:

$$
\left.\begin{array}{llll}
\ldots b a c & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

■ Alters contents of tableau Q, but not the shape.
■ Dual Knuth transformations:
$\ldots i \ldots i-1 \ldots i+1 \ldots \leftrightarrow \ldots i+1 \ldots i-1 \ldots i \ldots$
$\ldots i-1 \ldots i+1 \ldots i \ldots \leftrightarrow \ldots i \ldots i+1 \ldots i-1 \ldots$
■ Alters contents of tableau P, but not the shape.

- Theorem (Knuth): Any pair of permutations with the same tableau shape can be transformed into one another through a sequence of transformations.

The Case for Involutions

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Knuth
Transformation
Examples
Knuth
Transformations
The Case for
Involutions
Involutive
Transformations
Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

Involutive transformations:

- Local changes between at most 3 arcs.

■ Connects involutions with same shape.

- Can be used for induction.

Involutive Transformations

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Knuth
Transformation
Examples
Knuth
Transformations
The Case for
Involutions
Involutive
Transformations
Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Involutive transformations: Applying both a Knuth transformation and dual Knuth transformation.

■ New: An enumeration of all involutive transformations in terms of arc diagrams:

Etc.

Greene's Result

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving
Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection
Principle
Other Results

Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
tructures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Maximal decreasing structure: maximal length of i disjoint decreasing subsequences (i varies).

- Example: $\sigma=5416327$
- $d_{1}=4$
5416327

Greene's Result

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving
Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection
Principle
Other Results

Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Maximal decreasing structure: maximal length of i disjoint decreasing subsequences (i varies).
$\begin{array}{lr}\text { ■ Example: } & \sigma=5416327 \\ \bullet d_{1}=4 & 5416327 \\ \bullet d_{2}=6 & 5416327\end{array}$

Greene's Result

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving
Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection
Principle
Other Results

Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection

Other Results

- Maximal decreasing structure: maximal length of i disjoint decreasing subsequences (i varies).
$\begin{array}{lr}\text { - Example: } & \sigma=5416327 \\ \bullet d_{1}=4 & 5416327 \\ d_{2}=6 & 5416327 \\ \bullet d_{3}=7 & 5416327\end{array}$

Greene's Result

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

- Maximal decreasing structure: maximal length of i disjoint decreasing subsequences (i varies).
- Example: $\quad \sigma=5416327$
- $d_{1}=4$
- $d_{2}=6$

5416327
5416327
$-d_{3}=7$
5416327

- $\operatorname{mds}(\sigma)=4,2,1$

Greene's Result

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Greene's Result

$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Maximal decreasing structure: maximal length of i disjoint decreasing subsequences (i varies).

- Example: $\sigma=5416327$
- $d_{1}=4$ 5416327
- $d_{2}=6$ 5416327
- $d_{3}=7$

5416327

- $\operatorname{mds}(\sigma)=4,2,1$

■ Theorem (Greene, 1974): Maximal decreasing structure of a permutation corresponds to its shape.
■ σ 's associated Young tableaux have column heights $4,2,1=\operatorname{mds}(\sigma)$:

1	4	7
2	5	
3		
6		

$\frac{1}{2}$-Nestings

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Two conventional interpretations:

- Strong: Singletons do not contribute to k-nestings.
- Weak: Singletons contribute fully to k-nestings.
- Similar for transitory vertices and crossings.

$\frac{1}{2}$-Nestings

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Two conventional interpretations:

- Strong: Singletons do not contribute to k-nestings.
- Weak: Singletons contribute fully to k-nestings.
- Similar for transitory vertices and crossings.

- Alternative $\frac{1}{2}$-nesting interpretation: Singletons contribute $\frac{1}{2}$ to k-nestings.

Maximal Nesting Structures

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

- Maximal nesting structure is analogous to maximal decreasing structure, using k-nestings ($\frac{1}{2}$-nesting interpretation).

Example:

Maximal Nesting Structures

- Maximal nesting structure is analogous to maximal decreasing structure, using k-nestings ($\frac{1}{2}$-nesting interpretation).

Example:

- $m_{1}=3$

Maximal Nesting Structures

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

- Maximal nesting structure is analogous to maximal decreasing structure, using k-nestings ($\frac{1}{2}$-nesting interpretation).

Example:

- $m_{2}=4.5$

- $\operatorname{mns}(\pi)=3,1.5$
- $2 \mathrm{mns}(\pi)=6,3$

Maximal Nesting Structures

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

- Maximal nesting structure is analogous to maximal decreasing structure, using k-nestings ($\frac{1}{2}$-nesting interpretation).

Example:

- $\quad m_{1}=3$
- $m_{2}=4.5$

- $\mathrm{mns}(\pi)=3,1.5$
- $2 \mathrm{mns}(\pi)=6,3$
- Theorem (New): For involutions $\pi, 2 \mathrm{mns}(\pi)=\operatorname{mds}(\pi)$. I.e. the MNS corresponds to the associated tableau's shape.
- The associated Young tableau has column heights $6,3=2 \mathrm{mns}(\pi)$.

Odd Column Property

Arc Diagrams, Nesting and Crossing

Other Objects

Shape Preserving

 TransformationsMaximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Theorem (Schensted, 1961): An involution with m singletons has a tableau shape with m odd columns.

Odd Column Property

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

■ Theorem (Schensted, 1961): An involution with m singletons has a tableau shape with m odd columns.

- Theorem (New): If the first i columns of the tableau have c odd columns, then any maximal set of $i k$-nestings will include c singletons.

Example:

1	2	3	7
4	6		
5			

Extending to Set Partitions

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

Example for set partitions, using strong and weak interpretations:

Extending to Set Partitions

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

- Example for set partitions, using strong and weak interpretations:

■ Surjection $f: M_{2 n} \Longrightarrow S_{n}$

\Longrightarrow

$=f(\lambda)$

Extending to Set Partitions

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

- Example for set partitions, using strong and weak interpretations:

■ Surjection $f: M_{2 n} \Longrightarrow S_{n}$

$=f(\lambda)$
■ Theorem (New, Chen et.al., 2006):

- $\lfloor\operatorname{mns}(\nu)\rfloor=\operatorname{mns}(\mu)=\operatorname{mds}(f(\mu)) \quad$ (Strong)
- $\lceil\operatorname{mns}(\nu)\rceil=\operatorname{mns}(\lambda)=\operatorname{mds}(f(\lambda)) \quad$ (Weak)

Nesting Summary

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Greene's Result
$\frac{1}{2}$-Nestings
Maximal Nesting
Structures
Odd Column
Property
Extending to Set
Partitions
Nesting Summary
Set Partition Bicolouring Bijection

Bicolouring Bijection Principle

Other Results

■ Direct Greene-like result on the MNS of involutions and their shape.

■ Clarifies the connection between the MNS of set partitions and permutation shapes.

- Involutive transformations give a tool for manipulating arc diagrams.
- Clarifies Reifegerste's work on Knuth transformations in terms of tableaux.

Object Summary

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving
Transformations
Maximal Nesting Structures

Set Partition Bicolouring Bijection Object Summary
Weighted
Dyck/Motzkin Path
Bijections
Weighted Dyck Path and Set Partition Statistics Identities of Stirling Numbers of the Second Kind
Bicolouring Bijection Principle

Other Results

Lattice Paths

Ferrers Fillings

Weighted Dyck/Motzkin Path Bijections

Arc Diagrams, Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting Structures

Set Partition
Bicolouring Bijection

Object Summary

Weighted

Dyck/Motzkin Path
Bijections
Weighted Dyck Path and Set Partition Statistics Identities of Stirling Numbers of the Second Kind
Bicolouring Bijection Principle

Other Results

■ Theorem: Weighted Dyck paths with bicoloured peaks \leftrightarrow set partitions.

- Preserves number of arcs and weak nesting/crossing.

Weighted Dyck/Motzkin Path Bijections

Arc Diagrams,
Nesting and Crossing

Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Object Summary

Weighted

Dyck/Motzkin Path
Bijections
Weighted Dyck Path and Set Partition Statistics Identities of Stirling Numbers of the Second Kind
Bicolouring Bijection Principle

Other Results

■ Theorem: Weighted Dyck paths with bicoloured peaks \leftrightarrow set partitions.

- Preserves number of arcs and weak nesting/crossing.

■ Theorem: Weighted Dyck paths with bicoloured valleys \leftrightarrow singleton free set partitions.

- Preserves number of arcs and strong nesting/crossing.

Weighted Dyck Path and Set Partition Statistics

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Set Partition
Bicolouring Bijection Object Summary
Weighted
Dyck/Motzkin Path
Bijections
Weighted Dyck Path and Set Partition Statistics
Identities of Stirling Numbers of the Second Kind
Bicolouring Bijection Principle

Other Results

■ $\left\{\begin{array}{l}n \\ n \\ k\end{array}\right\}$: \# of singleton free set partitions on $[n]$ with k partitions.

- $\left\{\begin{array}{l}n \\ k\end{array}\right\}:$ \# of set partitions on $[n]$ with k partitions (singletons allowed).
- $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$: Second-order Eulerian numbers.

Weighted Dyck Path and Set Partition Statistics

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Object Summary
Weighted
Dyck/Motzkin Path
Bijections
Weighted Dyck Path
and Set Partition
Statistics
Identities of Stirling
Numbers of the
Second Kind
Bicolouring Bijection Principle

■ $\left\{\begin{array}{l}n \\ n \\ k\end{array}\right\}$: \# of singleton free set partitions on $[n]$ with k partitions.

- $\left\{\begin{array}{l}n \\ k\end{array}\right\}:$ \# of set partitions on $[n]$ with k partitions (singletons allowed).
- $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$: Second-order Eulerian numbers.

■ Theorem (New?): Among all weighted Dyck paths of semilength n there are

- $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ with k strong rises
- $\left\langle\left\langle\begin{array}{c}n \\ n-k\end{array}\right\rangle\right\rangle$ with k peaks
- $\left\langle\left\langle\begin{array}{c}n \\ n-k-1\end{array}\right\rangle\right\rangle$ with k valleys

Identities of Stirling Numbers of the Second Kind

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

```
Set Partition
Bicolouring Bijection
Object Summary
Weighted
Dyck/Motzkin Path
Bijections
Weighted Dyck Path
and Set Partition
Statistics
Identities of Stirling
Numbers of the
Second Kind
Bicolouring Bijection
Principle
```

Other Results

- A closer look at the bicoloured valley bijection:

Each red valley reduces $\#$ of partitions and vertices by 1 .

Identities of Stirling Numbers of the Second Kind

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Object Summary
Weighted
Dyck/Motzkin Path
Bijections
Weighted Dyck Path and Set Partition Statistics
Identities of Stirling
Numbers of the
Second Kind
Bicolouring Bijection Principle

Other Results

- A closer look at the bicoloured valley bijection:

Each red valley reduces $\#$ of partitions and vertices by 1 .
■ Therefore, a singleton free set partition on $n+k$ with k partitions must be in bijection with a WDP of length $2 n$ and $n-k$ red valleys.

Identities of Stirling Numbers of the Second Kind

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Object Summary
Weighted
Dyck/Motzkin Path Bijections
Weighted Dyck Path and Set Partition
Statistics
Identities of Stirling Numbers of the Second Kind
Bicolouring Bijection Principle

Other Results

- A closer look at the bicoloured valley bijection:

Each red valley reduces $\#$ of partitions and vertices by 1 .

- Therefore, a singleton free set partition on $n+k$ with k partitions must be in bijection with a WDP of length $2 n$ and $n-k$ red valleys.

■ Theorem (Smiley, 2001): $\quad\left\{\left\{\begin{array}{c}n+k \\ k\end{array}\right\}\right\}=\sum_{j}\binom{j}{n-k}\left\langle\left\langle\begin{array}{c}n \\ n-j-1\end{array}\right\rangle\right\rangle$

Identities of Stirling Numbers of the Second Kind

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Object Summary
Weighted
Dyck/Motzkin Path Bijections
Weighted Dyck Path and Set Partition
Statistics
Identities of Stirling Numbers of the Second Kind
Bicolouring Bijection Principle

- A closer look at the bicoloured valley bijection:

Each red valley reduces $\#$ of partitions and vertices by 1 .

- Therefore, a singleton free set partition on $n+k$ with k partitions must be in bijection with a WDP of length $2 n$ and $n-k$ red valleys.
- Theorem (Smiley, 2001): $\quad\left\{\left\{\begin{array}{c}n+k \\ k\end{array}\right\}\right\}=\sum_{j}\binom{j}{n-k}\left\langle\left\langle\begin{array}{c}n \\ n-j-1\end{array}\right\rangle\right\rangle$
- Theorem (Carlitz, 1965):

$$
\left\{\begin{array}{c}
n \\
n-k
\end{array}\right\}=\sum_{j}\binom{n+j}{2 k}\left\langle\left\langle\begin{array}{c}
k \\
k-j-1
\end{array}\right\rangle\right\rangle
$$

Generalization to Sets of Structures

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Bicolouring Bijection
Principle
Generalization to Sets of Structures
Generalized Results Stirling Numbers of the First Kind Bicolouring Bijection Principle Summary

Other Results

■ Required "components":

- A structure: sets, sequences, cycles,...
- Can create matching like objects.
- A bicoloured feature bijection between matching like objects and singleton free sets of structures.
- Example:
- Sets (a structure)
- Weighted Dyck paths (matchings)
- Valleys (features)

Generalized Results

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations
Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Bicolouring Bijection Principle
Generalization to Sets of Structures

Generalized Results

Stirling Numbers of the First Kind Bicolouring Bijection Principle Summary

Other Results

■ Notations:

- $V^{0}(n, k)$: \# of singleton free sets of k structures on $[n]$.
- $V(n, k)$: \# of sets of k structures on $[n]$ (singletons allowed).
- $B(n, k)$: \# of matching-like objects on [2n] with k features.

■ Theorem (New):

$$
\begin{array}{r}
V^{0}(n+k, k)=\sum_{j}\binom{j}{n-k} B(n, j) \\
V(n, n-k)=\sum_{j}\binom{n+j}{2 k} B(k, j) \\
B(n, k)=\sum_{i}(-1)^{n-k+i}\binom{n-i}{k} V^{0}(n+i, i)
\end{array}
$$

Stirling Numbers of the First Kind

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting Structures

Set Partition
Bicolouring Bijection
Bicolouring Bijection
Principle
Generalization to Sets of Structures
Generalized Results Stirling Numbers of the First Kind Bicolouring Bijection Principle Summary

Other Results

- Permutations are sets of cycles:
- The structures are cycles.
- Again we use weighted Dyck paths.
- The features are strong rises.

Stirling Numbers of the First Kind

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Bicolouring Bijection Principle
Generalization to Sets of Structures Generalized Results Stirling Numbers of the First Kind Bicolouring Bijection Principle Summary

Other Results

- Permutations are sets of cycles:
- The structures are cycles.
- Again we use weighted Dyck paths.
- The features are strong rises.

■ Theorem: Weighted Dyck paths with bicoloured strong rises \leftrightarrow derangements.

$$
\begin{array}{r}
{[1,3] \times[2,7][4,10][5,9] \times[6,8]} \\
{[1,2,6][3,9][4,8] \times[5,7]} \\
{[1,2,5][3,8][4,7,6]}
\end{array}
$$

Stirling Numbers of the First Kind

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Bicolouring Bijection Principle
Generalization to Sets of Structures Generalized Results Stirling Numbers of the First Kind Bicolouring Bijection Principle Summary

- Permutations are sets of cycles:
- The structures are cycles.
- Again we use weighted Dyck paths.
- The features are strong rises.

■ Theorem: Weighted Dyck paths with bicoloured strong rises \leftrightarrow derangements.

$$
\begin{array}{r}
{[1,3] \times[2,7][4,10][5,9] \times[6,8]} \\
{[1,2,6][3,9][4,8] \times[5,7]} \\
{[1,2,5][3,8][4,7,6]}
\end{array}
$$

Theorem:

$$
\begin{aligned}
{\left.\left[\begin{array}{c}
n+k \\
k
\end{array}\right]\right] } & =\sum_{j}\binom{j}{n-k}\left\langle\left\langle\begin{array}{c}
n \\
j
\end{array}\right\rangle\right\rangle \\
{\left[\begin{array}{c}
n \\
n-k
\end{array}\right] } & =\sum_{j}\binom{n+j}{2 k}\left\langle\left\langle\begin{array}{c}
k \\
j
\end{array}\right\rangle\right\rangle
\end{aligned}
$$

Bicolouring Bijection Principle Summary

Arc Diagrams, Nesting and Crossing

Other Objects

Shape Preserving

 TransformationsMaximal Nesting Structures

Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle
Generalization to Sets of Structures Generalized Results Stirling Numbers of the First Kind Bicolouring Bijection Principle Summary

Other Results

■ Handles many statistics.

- Combinatorial interpretations of identities.
- Aids discovery of new bijections.

Other Results

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

- Theorem (New): Semilabled structured trees and semilabeled structured series-reduced forests are in bijection with sets of structures, transporting many statistics.

- Extends results of Diaconis and Holmes, Erdös and Székely.

Other Results

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

- Theorem (New): Semilabled structured trees and semilabeled structured series-reduced forests are in bijection with sets of structures, transporting many statistics.

■ Extends results of Diaconis and Holmes, Erdös and Székely.

- 4 new variations of the RSK algorithm (complementing 4 known variations).

Other Results

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures

Set Partition

Bicolouring Bijection
Bicolouring Bijection Principle

Other Results

- Theorem (New): Semilabled structured trees and semilabeled structured series-reduced forests are in bijection with sets of structures, transporting many statistics.

■ Extends results of Diaconis and Holmes, Erdös and Székely.

- 4 new variations of the RSK algorithm (complementing 4 known variations).

■ Exploration of Knuth graphs: lattices of standard Young tableaux of a fixed shape where edges are determined by possible involutive transformations.

- Builds on the work of Reifegerste.

Arc Diagrams,
Nesting and
Crossing
Other Objects
Shape Preserving Transformations

Maximal Nesting
Structures
Set Partition
Bicolouring Bijection
Bicolouring Bijection
Principle
Other Results

Thank

You!

