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■ Permutations (σ ∈ Sn) 1 2 3 4 5
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■ Permutations (σ ∈ Sn) 1 2 3 4 5

■ Set Partitions (ν ∈ Pn) 1 2 3 4 5 6 7 8
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■ Permutations (σ ∈ Sn) 1 2 3 4 5

■ Set Partitions (ν ∈ Pn) 1 2 3 4 5 6 7 8

■ Involutions (π ∈ In) 1 2 3 4 5 6 7 8 9
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■ Permutations (σ ∈ Sn) 1 2 3 4 5

■ Set Partitions (ν ∈ Pn) 1 2 3 4 5 6 7 8

■ Involutions (π ∈ In) 1 2 3 4 5 6 7 8 9

■ Matchings (µ ∈Mn) 1 2 3 4 5 6 7 8
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■ Nesting
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■ Nesting

1 2 3 4

■ Crossing

1 2 3 4

■ k-nesting

1 2 3 4 5 6 7 8

■ k-crossing
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■ Theorem (Chen et.al., 2006): Fixing objects of size n,
maximal i-crossing and maximal j-nesting ↔ maximal
j-crossing and maximal i-nesting.

1 2 3 4 5 6 7 8 ↔ 1 2 3 4 5 6 7 8
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■ Theorem (Chen et.al., 2006): Fixing objects of size n,
maximal i-crossing and maximal j-nesting ↔ maximal
j-crossing and maximal i-nesting.

1 2 3 4 5 6 7 8 ↔ 1 2 3 4 5 6 7 8

■ Theorem (Kasraoui and Zeng, 2006): Fixing objects of
size n, i crossings and j nestings ↔ j crossings and i

nestings.

1 2 3 4 5 6 7 8 ↔ 1 2 3 4 5 6 7 8
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■ Theorem: Weighted Dyck paths of length 2n are in
bijection with matchings on [2n].

2 3 2 1 0

0

1

2

1

0
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■ Theorem: Weighted Dyck paths of length 2n are in
bijection with matchings on [2n].

2 3 2 1 0

0

1

2

1

0

1 2 3 4 5 6 7 8 9 10

■ Theorem: Weighted Motzkin paths of length n are in
bijection with set partitions on n.

2 3 2 1 0

0

3

0

1

0

1 2 3 4 5 6 7 8
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■ Generalization of permutation matrices: fill each row &
column of a Ferrers shape with exactly 1 ‘x’.
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■ Generalization of permutation matrices: fill each row &
column of a Ferrers shape with exactly 1 ‘x’.

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

■ Theorem (Krattenthaler, 2006): Strict 0-1 Ferrers filling
with n ‘x’s are in bijection with matchings on [2n].

0
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1
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⇐⇒ 1 2 3 4 5 6 7 8 9 10 ⇐⇒ X
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■ Filling of a Ferrers shape with [n] increasing downwards and
rightwards. 1 2 4

3 6 7

5 10 11

8

9
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■ Filling of a Ferrers shape with [n] increasing downwards and
rightwards. 1 2 4

3 6 7

5 10 11

8

9

■ Theorem (Robinson-Schensted, 1934, 1961): Pairs of
size n SYT with the same shape are in bijection with σ ∈ Sn.

P, Q =

1 3 7

2 6 9

4 8

5

1 2 5

3 6 9

4 8

7
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■ Filling of a Ferrers shape with [n] increasing downwards and
rightwards. 1 2 4

3 6 7

5 10 11

8

9

■ Theorem (Robinson-Schensted, 1934, 1961): Pairs of
size n SYT with the same shape are in bijection with σ ∈ Sn.

P, Q =

1 3 7

2 6 9

4 8

5

1 2 5

3 6 9

4 8

7

1 2 3 4 5 6 7 8 9

■ The case of involutions: σ ∼ P,Q⇐⇒ σ−1 ∼ Q,P .
Therefore, SYT of size n are in bijection with involutions on
[n].

1 2 3 6 7

4 5 8 1 2 3 4 5 6 7 8
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■ Knuth transformation:

15276483 ∼

1 2 3 8

4 6

5

7

1 2 4 7

3 5

6

8 ↔ 15276843 ∼

1 2 3 8

4 6

5
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■ Knuth transformation:

15276483 ∼

1 2 3 8

4 6

5

7

1 2 4 7

3 5

6

8 ↔ 15276843 ∼

1 2 3 8

4 6

5

7

1 2 4 6

3 5

7

8

■ Dual Knuth transformation:

15276843 ∼

1 2 3 8

4 6

5

7

1 2 4 6

3 5

7

8 ↔ 14276853 ∼

1 2 3 8

4 5

6

7

1 2 4 6

3 5

7

8
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■ Knuth transformations:
. . . b a c . . . ↔ . . . b c a . . .

. . . a c b . . . ↔ . . . c a b . . .

■ Alters contents of tableau Q, but not the shape.

■ Dual Knuth transformations:
. . . i . . . i−1 . . . i+1 . . . ↔ . . . i+1 . . . i−1 . . . i . . .

. . . i−1 . . . i+1 . . . i . . . ↔ . . . i . . . i+1 . . . i−1 . . .

■ Alters contents of tableau P , but not the shape.
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■ Knuth transformations:
. . . b a c . . . ↔ . . . b c a . . .

. . . a c b . . . ↔ . . . c a b . . .

■ Alters contents of tableau Q, but not the shape.

■ Dual Knuth transformations:
. . . i . . . i−1 . . . i+1 . . . ↔ . . . i+1 . . . i−1 . . . i . . .

. . . i−1 . . . i+1 . . . i . . . ↔ . . . i . . . i+1 . . . i−1 . . .

■ Alters contents of tableau P , but not the shape.

■ Theorem (Knuth): Any pair of permutations with the same
tableau shape can be transformed into one another through a
sequence of transformations.
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Involutive transformations:

■ Local changes between at
most 3 arcs.

■ Connects involutions with
same shape.

■ Can be used for induction.

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

...

← Involutive transformation
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■ Involutive transformations: Applying both a Knuth
transformation and dual Knuth transformation.

■ New: An enumeration of all involutive transformations in
terms of arc diagrams:

. . . . . . . . .

↔
. . . . . . . . .

. . . . . .

↔
. . . . . .

Etc.
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■ Maximal decreasing structure: maximal length of i disjoint
decreasing subsequences (i varies).

■ Example: σ = 5416327

◆ d1 = 4 5416327
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■ Maximal decreasing structure: maximal length of i disjoint
decreasing subsequences (i varies).

■ Example: σ = 5416327

◆ d1 = 4 5416327
◆ d2 = 6 5416327
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■ Maximal decreasing structure: maximal length of i disjoint
decreasing subsequences (i varies).

■ Example: σ = 5416327

◆ d1 = 4 5416327
◆ d2 = 6 5416327
◆ d3 = 7 5416327
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■ Maximal decreasing structure: maximal length of i disjoint
decreasing subsequences (i varies).

■ Example: σ = 5416327

◆ d1 = 4 5416327
◆ d2 = 6 5416327
◆ d3 = 7 5416327
◆ mds(σ) = 4, 2, 1



1 2 3 4 5 6 7 8 9

Greene’s Result

Arc Diagrams,
Nesting and
Crossing

Other Objects

Shape Preserving
Transformations

Maximal Nesting
Structures

Greene’s Result

½-Nestings

Maximal Nesting
Structures
Odd Column
Property

Extending to Set
Partitions

Nesting Summary

Set Partition
Bicolouring Bijection

Bicolouring Bijection
Principle

Other Results

Combinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths 14 / 29

■ Maximal decreasing structure: maximal length of i disjoint
decreasing subsequences (i varies).

■ Example: σ = 5416327

◆ d1 = 4 5416327
◆ d2 = 6 5416327
◆ d3 = 7 5416327
◆ mds(σ) = 4, 2, 1

■ Theorem (Greene, 1974): Maximal decreasing structure of
a permutation corresponds to its shape.

■ σ’s associated Young tableaux have column heights
4, 2, 1 = mds(σ):

σ ∼

1 2 7
3 6
4
5

1 4 7
2 5
3
6
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■ Two conventional interpretations:

◆ Strong: Singletons do not contribute to k-nestings.
◆ Weak: Singletons contribute fully to k-nestings.
◆ Similar for transitory vertices and crossings.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

½

½
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■ Two conventional interpretations:

◆ Strong: Singletons do not contribute to k-nestings.
◆ Weak: Singletons contribute fully to k-nestings.
◆ Similar for transitory vertices and crossings.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

■ Alternative ½-nesting interpretation: Singletons contribute

½ to k-nestings.
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■ Maximal nesting structure is analogous to maximal
decreasing structure, using k-nestings (½-nesting
interpretation).

■ Example: 1 2 3 4 5 6 7 8 9

◆ m1 = 3 1 2 3 4 5 6 7 8 9
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■ Maximal nesting structure is analogous to maximal
decreasing structure, using k-nestings (½-nesting
interpretation).

■ Example: 1 2 3 4 5 6 7 8 9

◆ m1 = 3 1 2 3 4 5 6 7 8 9

◆ m2 = 4.5 1 2 3 4 5 6 7 8 9
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■ Maximal nesting structure is analogous to maximal
decreasing structure, using k-nestings (½-nesting
interpretation).

■ Example: 1 2 3 4 5 6 7 8 9

◆ m1 = 3 1 2 3 4 5 6 7 8 9

◆ m2 = 4.5 1 2 3 4 5 6 7 8 9

◆ mns(π) = 3, 1.5
◆ 2mns(π) = 6, 3
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■ Maximal nesting structure is analogous to maximal
decreasing structure, using k-nestings (½-nesting
interpretation).

■ Example: 1 2 3 4 5 6 7 8 9

◆ m1 = 3 1 2 3 4 5 6 7 8 9

◆ m2 = 4.5 1 2 3 4 5 6 7 8 9

◆ mns(π) = 3, 1.5
◆ 2mns(π) = 6, 3

■ Theorem (New): For involutions π, 2mns(π) = mds(π).
I.e. the MNS corresponds to the associated tableau’s shape.

■ The associated Young tableau has column heights
6, 3 = 2mns(π).
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■ Theorem (Schensted, 1961): An involution with m

singletons has a tableau shape with m odd columns.
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■ Theorem (Schensted, 1961): An involution with m

singletons has a tableau shape with m odd columns.

■ Theorem (New): If the first i columns of the tableau have
c odd columns, then any maximal set of i k-nestings will
include c singletons.

■ Example:

1 2 3 4 5 6 7

1 2 3 7
4 6
5
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■ Example for set partitions, using strong and weak
interpretations:

ν = 1 2 3 4 5 6 7 8 ⇒ 1 2 3 4 5 6 7 8 9 ⇒ 1 2 3 4 5 6 7 8 = µ

ν = 1 2 3 4 5 6 7 8 ⇒ 1 2 3 4 5 6 7 8 9 ⇒ 1 2 3 4 5 6 7 8 9 10 = λ
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■ Example for set partitions, using strong and weak
interpretations:

ν = 1 2 3 4 5 6 7 8 ⇒ 1 2 3 4 5 6 7 8 9 ⇒ 1 2 3 4 5 6 7 8 = µ

ν = 1 2 3 4 5 6 7 8 ⇒ 1 2 3 4 5 6 7 8 9 ⇒ 1 2 3 4 5 6 7 8 9 10 = λ

■ Surjection f : M2n =⇒ Sn

λ = 1 2 3 4 5 6 7 8 9 10 =

X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

=⇒

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

= f(λ)
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■ Example for set partitions, using strong and weak
interpretations:

ν = 1 2 3 4 5 6 7 8 ⇒ 1 2 3 4 5 6 7 8 9 ⇒ 1 2 3 4 5 6 7 8 = µ

ν = 1 2 3 4 5 6 7 8 ⇒ 1 2 3 4 5 6 7 8 9 ⇒ 1 2 3 4 5 6 7 8 9 10 = λ

■ Surjection f : M2n =⇒ Sn

λ = 1 2 3 4 5 6 7 8 9 10 =

X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

=⇒

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

= f(λ)
■ Theorem (New, Chen et.al., 2006):

◆ ⌊mns(ν)⌋ = mns(µ) = mds(f(µ)) (Strong)
◆ ⌈mns(ν)⌉ = mns(λ) = mds(f(λ)) (Weak)
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■ Direct Greene-like result on the MNS of involutions and their
shape.

■ Clarifies the connection between the MNS of set partitions
and permutation shapes.

■ Involutive transformations give a tool for manipulating arc
diagrams.

■ Clarifies Reifegerste’s work on Knuth transformations in
terms of tableaux.
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Bicoloured
Weighted
Motzkin Paths

Asymmetric
PDSAWs

Symmetric
PDSAWs

Weighted
Dyck Paths

Weighted
Motzkin
Paths

Involutions Permutations Matchings Set Partitions

Standard
Young
Tableaux

Standard
Young
Tableau
Pairs

Permutation
Matrices
(0-1 Filling)

Strict
0-1 Fillings

Triangular
0-1 Fillings

Lattice Paths

Arc Diagrams

Ferrers Fillings
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■ Theorem: Weighted Dyck paths with bicoloured peaks ↔
set partitions.

↑ ↑0 1

0

↑ ↑

0 1

0

■ Preserves number of arcs and weak nesting/crossing.
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■ Theorem: Weighted Dyck paths with bicoloured peaks ↔
set partitions.

↑ ↑0 1

0

↑ ↑

0 1

0

■ Preserves number of arcs and weak nesting/crossing.

■ Theorem: Weighted Dyck paths with bicoloured valleys ↔
singleton free set partitions.

↑

1 1

0

↑

1

1

0

■ Preserves number of arcs and strong nesting/crossing.
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■
{{

n
k

}}

: # of singleton free set partitions on [n] with k

partitions.
■

{

n
k

}

: # of set partitions on [n] with k partitions (singletons
allowed).

■
〈〈

n
k

〉〉

: Second-order Eulerian numbers.
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■
{{

n
k

}}

: # of singleton free set partitions on [n] with k

partitions.
■

{

n
k

}

: # of set partitions on [n] with k partitions (singletons
allowed).

■
〈〈

n
k

〉〉

: Second-order Eulerian numbers.

■ Theorem (New?): Among all weighted Dyck paths of
semilength n there are
◆

〈〈

n
k

〉〉

with k strong rises

◆

〈〈

n
n−k

〉〉

with k peaks

◆

〈〈

n
n−k−1

〉〉

with k valleys
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■ A closer look at the bicoloured valley bijection:

↑

1 1

0

↑

1

1

0

Each red valley reduces # of partitions and vertices by 1.
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■ A closer look at the bicoloured valley bijection:

↑

1 1

0

↑

1

1

0

Each red valley reduces # of partitions and vertices by 1.

■ Therefore, a singleton free set partition on n + k with k

partitions must be in bijection with a WDP of length 2n and
n− k red valleys.
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■ A closer look at the bicoloured valley bijection:

↑

1 1

0

↑

1

1

0

Each red valley reduces # of partitions and vertices by 1.

■ Therefore, a singleton free set partition on n + k with k

partitions must be in bijection with a WDP of length 2n and
n− k red valleys.

■ Theorem (Smiley, 2001):
{{

n+k
k

}}

=
∑

j

(

j
n−k

)

〈〈

n
n−j−1

〉〉
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■ A closer look at the bicoloured valley bijection:

↑

1 1

0

↑

1

1

0

Each red valley reduces # of partitions and vertices by 1.

■ Therefore, a singleton free set partition on n + k with k

partitions must be in bijection with a WDP of length 2n and
n− k red valleys.

■ Theorem (Smiley, 2001):
{{

n+k
k

}}

=
∑

j

(

j
n−k

)

〈〈

n
n−j−1

〉〉

■ Theorem (Carlitz, 1965):
{

n
n−k

}

=
∑

j

(

n+j
2k

)

〈〈

k
k−j−1

〉〉
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■ Required “components”:

◆ A structure: sets, sequences, cycles, . . .
◆ Can create matching like objects.
◆ A bicoloured feature bijection between matching like

objects and singleton free sets of structures.

■ Example:

◆ Sets (a structure)
◆ Weighted Dyck paths (matchings)
◆ Valleys (features)
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■ Notations:

◆ V 0(n, k): # of singleton free sets of k structures on [n].
◆ V (n, k): # of sets of k structures on [n] (singletons

allowed).
◆ B(n, k): # of matching-like objects on [2n] with k

features.

■ Theorem (New):
V 0(n + k, k) =

∑

j

(

j
n−k

)

B(n, j)

V (n, n− k) =
∑

j

(

n+j
2k

)

B(k, j)

B(n, k) =
∑

i(−1)n−k+i
(

n−i
k

)

V 0(n + i, i)
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■ Permutations are sets of cycles:

◆ The structures are cycles.
◆ Again we use weighted Dyck paths.
◆ The features are strong rises.
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■ Permutations are sets of cycles:

◆ The structures are cycles.
◆ Again we use weighted Dyck paths.
◆ The features are strong rises.

■ Theorem: Weighted Dyck paths with bicoloured strong rises
↔ derangements.

[1, 3]× [2, 7][4, 10][5, 9]× [6, 8]

[1, 2, 6][3, 9][4, 8]× [5, 7]

[1, 2, 5][3, 8][4, 7, 6]
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■ Permutations are sets of cycles:

◆ The structures are cycles.
◆ Again we use weighted Dyck paths.
◆ The features are strong rises.

■ Theorem: Weighted Dyck paths with bicoloured strong rises
↔ derangements.

[1, 3]× [2, 7][4, 10][5, 9]× [6, 8]

[1, 2, 6][3, 9][4, 8]× [5, 7]

[1, 2, 5][3, 8][4, 7, 6]

■ Theorem:
[[

n+k
k

]]

=
∑

j

(

j
n−k

)

〈〈

n
j

〉〉

[

n
n−k

]

=
∑

j

(

n+j
2k

)

〈〈

k
j

〉〉
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■ Handles many statistics.

■ Combinatorial interpretations of identities.

■ Aids discovery of new bijections.
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■ Theorem (New): Semilabled structured trees and
semilabeled structured series-reduced forests are in bijection
with sets of structures, transporting many statistics.

5

1 4 6 2 3 7

4

3 2 6

7 5 9 1 10 8 11

■ Extends results of Diaconis and Holmes, Erdös and Székely.
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■ Theorem (New): Semilabled structured trees and
semilabeled structured series-reduced forests are in bijection
with sets of structures, transporting many statistics.

5

1 4 6 2 3 7

4

3 2 6

7 5 9 1 10 8 11

■ Extends results of Diaconis and Holmes, Erdös and Székely.

■ 4 new variations of the RSK algorithm (complementing 4
known variations).



1 2 3 4 5 6 7 8 9

Other Results

Arc Diagrams,
Nesting and
Crossing

Other Objects

Shape Preserving
Transformations

Maximal Nesting
Structures

Set Partition
Bicolouring Bijection

Bicolouring Bijection
Principle

Other Results

Combinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths 28 / 29

■ Theorem (New): Semilabled structured trees and
semilabeled structured series-reduced forests are in bijection
with sets of structures, transporting many statistics.

5

1 4 6 2 3 7

4

3 2 6

7 5 9 1 10 8 11

■ Extends results of Diaconis and Holmes, Erdös and Székely.

■ 4 new variations of the RSK algorithm (complementing 4
known variations).

■ Exploration of Knuth graphs: lattices of standard Young
tableaux of a fixed shape where edges are determined by
possible involutive transformations.

■ Builds on the work of Reifegerste.



b

b

b

b

b

b

b
b bb

b

b
b

1 2 3 4 5 6 7 8 9

Arc Diagrams,
Nesting and
Crossing

Other Objects

Shape Preserving
Transformations

Maximal Nesting
Structures

Set Partition
Bicolouring Bijection

Bicolouring Bijection
Principle

Other Results

Combinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths 29 / 29

Thank You!
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