Two-cover descent on plane quartics with rational bitangents

Nils Bruin (Simon Fraser University) and Daniel Lewis (University of Arizona)

Fourteenth Algorithmic Number Theory Symposium, ANTS-XIV, University of Auckland, New Zealand

June 29 - July 4, 2020

Overview

Quick overview for experts;
Motivation and details in rest of presentation.
Main contribution: A practical method to decide if certain smooth plane quartics have rational points.

Restriction: Certain means all 28 bitangents rational
Examples: We use del Pezzo surfaces of degree 2 to generate plenty of examples
Success rate: Our method is successful on a sample of 150000 test cases. We expect failures do occur, although very rarely.

Bonus material

- Information on the Mordell-Weil groups of the Jacobians of these curves
- In particular, on their two-Selmer groups.
- Poonen-Rains (2012) heuristics: well-matched if shifted.
- Jacobians very often have an everywhere locally trivial torsor representing Pic ${ }^{1}$.

Rational points on curves

Projective plane curve over a field k :

$$
C: f(x, y, z)=0
$$

with $f \in k[x, y, z]$ irreducible homogeneous of degree d.
Rational point: $\left(x_{0}: y_{0}: z_{0}\right) \in C(k)$, with $f\left(x_{0}, y_{0}, z_{0}\right)=0$.
Solvability: A curve is called solvable if $C(k) \neq \emptyset$. Examples:

- $C_{-1,1}: x^{2}+y^{2}-z^{2}=0$
- $C_{-1,-1}: x^{2}+y^{2}+z^{2}=0$
- $C_{-1,3}: x^{2}+y^{2}-3 z^{2}=0$

Proving solvability over number fields: Enumerate $\left(x_{0}, y_{0}, z_{0}\right) \in k^{3}$ until $f\left(x_{0}, y_{0}, z_{0}\right)=0$.
Proving insolvability: Sometimes $C(\mathbb{R})=\emptyset$ or $C\left(\mathbb{Q}_{p}\right)=\emptyset$.
Then $C(\mathbb{Q})=\emptyset$ as well, since $\mathbb{Q} \subset \mathbb{R}$ and $\mathbb{Q} \subset \mathbb{Q}_{p}$.

Obstructions

Let C be a curve over a number field k.
Local obstruction: C has a local obstruction to having rational points if $C\left(k_{v}\right)=\emptyset$ for some completion k_{v} of k.

Insufficiency: For curves of degree $d \geq 3$, one may have $C(k)=\emptyset$ without having local obstructions:

$$
3 x^{3}+4 y^{3}+5 z^{3}=0[\text { Selmer, 1951 }]
$$

Chevalley-Weil: If $\phi: D \rightarrow C$ is an unramified cover then one can determine a finite collection of twists such that

$$
\bigcup \phi_{\xi}\left(D_{\xi}(k)\right)=C(k)
$$

Selmer set:

$$
\operatorname{Sel}^{(\phi)}(C / k)=\left\{\xi \in \operatorname{Twists}(D / C): D_{\xi}\left(k_{v}\right) \neq \emptyset \text { for all } v\right\}
$$

Observation: We can have $\operatorname{Sel}^{(\phi)}(C / k)=\emptyset$ even if $C\left(k_{v}\right) \neq \emptyset$ for all v.

Explicit Selmer set example

Example. The following (genus 1) curve has no local obstructions:

$$
C: y^{2}=22 x^{4}+65 x^{2}+48=\left(2 x^{2}+3\right)\left(11 x^{2}+16\right)
$$

Construct a cover:

$$
D_{\xi}=\left\{\begin{aligned}
2 x^{2}+3 & =\xi y_{1}^{2} \\
11 x^{2}+16 & =\xi y_{2}^{2} \\
y & =\xi y_{1} y_{2}
\end{aligned}\right.
$$

- Careful consideration: WLOG $\xi \in\{1,2\}$
- For each ξ we have $D_{\xi}\left(\mathbb{Q}_{p}\right)=\emptyset$ for some p.

Conclusion: $\operatorname{Sel}^{(\phi)}(C / \mathbb{Q})=\emptyset$, but $C\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for all v.

2-Selmer sets for hyperelliptic curves

Two-cover: Given a curve C of genus g, A two-cover is an unramified cover

$$
\phi: D \rightarrow C \text { with } \operatorname{Aut}_{\bar{k}}(D / C) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2 g} .
$$

Hyperelliptic curve: $C: y^{2}=f(x)$, with $\operatorname{deg}(f)=2 g+2$.
Local solvability: [Poonen-Stoll, 1999] Most hyperelliptic curves have points everywhere locally.
Two-cover descent: [B.-Stoll, 2009] Efficient method for computing Sel ${ }^{(2)}(C / \mathbb{Q})$.
Easy case: Rational Weierstrass points

$$
C: y^{2}=c\left(x-a_{1}\right) \cdots\left(x-a_{2 g+2}\right) \quad \text { But then }\left(a_{i}, 0\right) \in C(k)!
$$

Average results: [Bhargava-Gross-Wang, 2017] Most hyperelliptic curves have $\operatorname{Sel}^{(2)}(C / \mathbb{Q})=\emptyset$.

Question: How do these results generalize to non-hyperelliptic curves?

Plane quartic curves

Plane quartic: Non-hyperelliptic genus 3 curve:

$$
C: f(x, y, z)=0 \text { smooth with } f \text { homogeneous of degree } 4
$$

Analogue of Weierstrass point: Bitangent line $\ell(x, y, z)=0$.

- If ℓ is defined over k, contact points can still be quadratic!
- Quotient of bitangent lines $f=\ell_{1} / \ell_{2}$ yields function with $\operatorname{div}(f) \in 2 \operatorname{Div}(C)$.
- Adjoining \sqrt{f} yields an unramified cover $D \rightarrow C$.

Bitangent count: A smooth plane quartic has 28 bitangents
Relations: The 378 quotients have relations: adjoining all square roots yields an unramified cover of degree 2^{6}; a two-cover.

Description: If all 28 bitangents are defined over k, we get a good description of a two-cover $D \rightarrow C$ and its twists: gives an avenue to computing $\operatorname{Sel}^{(2)}(C / \mathbb{Q})$.

Constructing examples

Degree 2 del Pezzo surfaces: two geometric descriptions:

- Blow-up of \mathbb{P}^{2} in seven points P_{1}, \ldots, P_{7} in general position
- Double cover of \mathbb{P}^{2} branched over a smooth plane quartic C

Relation with bitangents: If $P_{1}, \ldots, P_{7} \in \mathbb{P}^{2}(k)$, then bitangents of C are defined over k. Normalize points:

$$
\left(\begin{array}{ccc}
\mid & & \mid \\
P_{1} & \cdots & P_{7} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 1 & u_{1} & u_{2} & u_{3} \\
0 & 1 & 0 & 1 & v_{1} & v_{2} & v_{3} \\
0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Amusing proposition: Over $\mathbb{F}_{3}, \mathbb{F}_{5}, \mathbb{F}_{7}$ no such configurations exist. Over \mathbb{F}_{11}, only one isomorphism class occurs:

$$
C_{11}: x^{4}+y^{4}+z^{4}+x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}=0, \text { and } C_{11}\left(\mathbb{F}_{11}\right)=\emptyset .
$$

Corollary: Every locally solvable example over \mathbb{Q} has bad reduction at 3,5,7,11.

Example

$$
\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{ccc}
17 & -7 & -9 \\
35 & 3 & 9
\end{array}\right) .
$$

We find

$$
\begin{aligned}
C: & 9 x^{4}-60 x^{3} y+357 x^{2} y^{2}+246 x y^{3}+16 y^{4}-42 x^{3} z+259 x^{2} y z-168 x y^{2} z \\
& -141 y^{3} z+31 x^{2} z^{2}-492 x y z^{2}+207 y^{2} z^{2}+42 x z^{3}-27 y z^{3}+9 z^{4}=0
\end{aligned}
$$

- Discriminant $D_{27}(C)=2^{34} \cdot 3^{20} \cdot 5^{10} \cdot 7^{8} \cdot 11^{2} \cdot 13^{6} \cdot 17^{4} \cdot 19^{4} \cdot 29^{2} \cdot 37^{2} \cdot 41^{2}$.
- $C\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for all places v
- Initial \mathbb{F}_{2}-vector space containing $\operatorname{Sel}^{(2)}(C / \mathbb{Q})$ of dimension 72 .
- Using linear algebra, reduced to dimension 9.
- Can prove $\operatorname{Sel}^{(2)}(C / \mathbb{Q})=\emptyset$ by checking $D_{\xi}\left(\mathbb{Q}_{p}\right)=\emptyset$ for some $p \in\{2,3,5\}$ for each of the 2^{9} values of ξ.

Systematic samples

A. $\left(u_{1}, \ldots, v_{3}\right) \in\{-6, \ldots, 6\}$ with $u_{1}<u_{2}<u_{3}$ and $u_{1}<v_{1}$.

81070 configurations in general position; 33471 distinct discriminants.
B. u_{1}, \ldots, v_{3} uniformly randomly chosen from $\{-40, \ldots, 40\}$

70000 curves; all with distinct discriminant values.

	$C\left(\mathbb{Q}_{v}\right)=\emptyset$	$\operatorname{Sel}^{(2)}(C / \mathbb{Q})=\emptyset$	rational bitangent contact point	other rational point	total
\mathbf{A}	3654	42477	34025	4568	81070
	4.5%	52%	42%	5.6%	100%
B	521	63926	4830	1244	70000
	0.7%	91%	6.9%	1.8%	100%

- We were able to decide $C(\mathbb{Q})=\emptyset$ or $C(\mathbb{Q}) \neq \emptyset$ in all cases.
- Only found local obstructions for $p=2,11$, and only when C has good reduction there.

BONUS: Selmer rank information

For a significant proportion of the curves in samples \mathbf{A} and \mathbf{B}, our information allows us to compute $\operatorname{Sel}^{2}\left(\operatorname{Jac}_{C} / \mathbb{Q}\right)$ as well.

Prevalence of $\operatorname{dim}_{2} \mathrm{Sel}^{(2)}\left(\mathrm{Jac}_{C} / \mathbb{Q}\right)$

	6	7	8	9	10	11	12	13	
A	0.05%	18.7%	39.4%	29.1%	10.1%	2.28%	0.29%	0.006%	$(n=31990)$
B	0	20.2%	41.8%	27.9%	8.71%	1.27%	0.10%	0.006%	$(n=51685)$

Poonen-Rains (2012):

$$
\operatorname{Prob}\left(\operatorname{dim}_{2} \operatorname{Sel}^{(2)}\left(\operatorname{Jac}_{C} / \mathbb{Q}\right)=c+d\right) \sim \prod_{j=0}^{\infty} \frac{1}{1+2^{-j}} \cdot \prod_{j=1}^{d} \frac{2}{2^{j-1}}
$$

One should definitely expect $c=\operatorname{dim}_{2} \operatorname{Jac}_{C}[2](\mathbb{Q})=6$, but we find an extra shift by 1
Observation: C has points everywhere locally, so $\operatorname{Pic}^{1}\left(C / \mathbb{Q}_{v}\right) \neq \emptyset$. The representing scheme provides an everywhere locally trivial Jac_{C}-torsor.

