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Chabauty methods using elliptic curves

By Nils Bruin at Burnaby

Abstract. In this article, we consider algebraic curves over Q that cover an elliptic
curve over some extension of Q. We show how we can use the arithmetic on that ellip-
tic curve to obtain information on the rational points on the cover. We apply this method
to curves arising from the Diophantine equations x2 G y4 ¼ z5 and x8 þ y3 ¼ z2 and
determine all solutions with coprime, integral x; y; z. To do this, we determine the rational
points on several curves of genus 5 and 17.

1. Introduction

Since 1983 (see [13]), it is known that an algebraic curve of genus gf 2 over a num-
ber field has only finitely many rational points. The proof of this theorem does not help
in actually determining them, however. A much older, partial, proof by Chabauty (see [9])
does suggest a way of bounding the number of rational points.

The proof applies to curves C of genus g over a number field K such that the rank of
the Mordell-Weil group of the Jacobian variety rk

�
JacCðKÞ

�
is smaller than g. Let p be a

finite prime of K. The proof is based on p-adic analytic geometry. It uses that the dimen-
sion of the p-adic closure of a finitely generated group of rank r on a p-adic Abelian variety
has dimensioner. Therefore, the p-adic closure of the Mordell-Weil group is a proper sub-
manifold of JacCðKpÞ.

If we embed C in JacC over K, which is possible using the Abel-Jacobi embedding
if CðKÞ3j, then CðKÞ will land in JacCðKÞ. As a consequence, the image of CðKÞ will
be contained in the intersection of the image of CðKpÞ and the p-adic closure of JacCðKÞ.
The latter is an intersection of a p-adic curve and a manifold of codimension f1. Cha-
bauty proves that the intersection will be 0-dimensional and, since JacCðKpÞ is compact, it
is finite.

This intersection can often be determined explicitly and the number of points gives a
bound on the size of CðKÞ. Recently, Chabauty-methods have proved to be quite successful
in giving sharp bounds on CðKÞ. See for instance [15], [14], [8], [21] and [6]. These papers
concentrate on the application of this argument to the simplest non-trivial case g ¼ 2. Even
then, the computations necessary on JacC are quite involved.



The Abelian variety JacC need not be absolutely simple. A part of it might be iso-
genous to a product of elliptic curves (over an extension of the base field). In [16], it is
described how this can be used for curves of genus 2 that cover an elliptic curve over the
base field with degree 2. In this article, we describe a general way to take advantage of
elliptic factors in JacC.

Let K be a number field. Suppose we have a cover F : C! P1 over K of genus g > 1
and suppose that there is an elliptic cover j : E ! P1 over a finite extension L of K such
that F factors through j, as depicted in the following diagram:

C=K p=L

F=K

???y E=L

P1
=K

j=L

? ? ? y ???y
To determine CðKÞ, we can use the factorisation of covers F ¼ j � p in the following way.
Suppose that P A CðKÞ. Then, clearly, pðPÞ A EðLÞ and j

�
pðPÞ

�
A P1ðKÞ. Thus, F

�
CðKÞ

�
is contained in j

�
EðLÞ

�
XP1ðKÞ. We treat the case where degðjÞ ¼ 2 in detail.

As an example, we prove the following three theorems, that play a role in the ongoing
analysis of the generalised Fermat equation xr þ ys ¼ zt, x; y; z A Z, gcdðx; y; zÞ ¼ 1 (see
[6] and [4]).

Theorem 1.1. If x; y; z A Z satisfy x2 þ y4 ¼ z5 and gcdðx; y; zÞ ¼ 1 then xyz ¼ 0.

Theorem 1.2. The only integer, pairwise prime solutions to x2 � y4 ¼ z5 are

ðx; y; zÞ A fðG1; 0; 1Þ; ð0;G1;�1Þ; ðG122;G11; 3Þ; ðG7;G3;�2Þg:

Theorem 1.3. The only integer, pairwise prime solutions to x8 þ y3 ¼ z2 are

ðx; y; zÞ A fðG1; 0;G1Þ; ð0; 1;G1Þ; ðG1; 2;G3Þ; ðG43; 96222;G30042907Þg:

In order to reduce these theorems to the problem of finding rational points on alge-
braic curves, we examine primitive solutions to equations of the form Fðs; tÞ ¼ Dym. This
kind of equations was already treated in [11], but we reformulate some of their results more
explicitly. These lead to the problem of finding rational points on curves of genus 5 and 17.

2. Notation and terminology

For a number field K, we write OK for its ring of integers. If p is a finite prime of K,
we write Kp for the p-adic completion of K and Op for the ring of local integers in Kp. We
write np : Kp ! Z for the normalised valuation on Kp (normalised meaning that np is surjec-
tive). Let S be a finite set of primes of K containing all infinite primes and let L be a finite
extension on K. If p is a prime of L, then we write p jS if p lies over some prime in S.
Otherwise, we write pFS. Following [19], we write

LðS;mÞ :¼ fa A L� : npðaÞ modm ¼ 0 for all finite primes pFS of Lg=L�m:

Furthermore, we write
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OL;S ¼ OS ¼ fa A L : npðaÞf 0 for all pFSg:

A tuple ðx1; . . . ; xnÞ A ðOLÞn is called S-primitive if minfnpðxiÞ : i ¼ 1; . . . ; ng ¼ 0 for all
pFS. If a tuple is S-primitive for S ¼ j then the tuple is called primitive. In particular, a
tuple ðx1; . . . ; xnÞ A Zn is primitive exactly if gcdðx1; . . . ; xnÞ ¼ 1.

In this article, we use curve for a smooth, projective, absolutely irreducible algebraic
variety of dimension 1. In many cases we will represent them by an a‰ne, singular model.

A cover is a nonconstant map j : D! C between curves. Following algebraic geo-
metric customs and contrary to topological convention, a cover can be ramified. For brev-
ity, we will often refer to D as a cover of C, and write D=C if the map j is obvious. We say
two covers j1 : D1 ! C and j2 : D2 ! C, defined over a fieldK, are isomorphic, if there is an
isomorphism of curves c : D1 ! D2 over K such that j1 ¼ j2 � c.

We write AutKðCÞ for the group of automorphisms of C over K . If K is an alge-
braic closure of the field of definition of C, we write AutðCÞ ¼ AutKðCÞ. Similarly, we write
AutKðD=CÞ and AutðD=CÞ for the automorphisms of D as a cover of C. We say a cover is
Galois if KAutðD=CÞ ¼ degðD=CÞ. We write the action of AutðDÞ on D as a left action. If
HHAutðDÞ is a finite subgroup of automorphisms, we write Hn: : D! HnD for the
cover obtained by considering the curve that represents the orbits of D under H.

Due to the nature of the elliptic curves we encounter in this paper, we allow for an
extra coe‰cient in Weierstrass-form:

E : gY 2 ¼ X 3 þ a2X
2 þ a4X þ a6:

If E is defined over some number field K , then often we insist that g; a2; a4; a6 A OK .
Given a finite prime p of OK , we consider the naive reduction E mod p, where we sim-
ply reduce the coe‰cients modulo p. We say the model of E has good reduction at
p if this reduced model defines an elliptic curve over O=p. It is straightforward that if
g; 2; discðX 3 þ a2X

2 þ a4X þ a6Þ A O�p , then the model E has good reduction at p. In that

case, we write Eð1ÞðKpÞ for the kernel of EðKpÞ ! ðE mod pÞðO=pÞ.

It follows from [19], Chapter IV, that if npðpÞ < p� 1, where p is the characteristic
of O=p, then the formal logarithm induces a group isomorphism,

Logp : E
ð1ÞðKpÞ ! pOp:

We write Expp for its inverse. Furthermore, this map can be normalised such that the
induced homomorphism Eð1ÞðKpÞ ! O=p2 coincides with the induced map from the func-
tion Z ¼ Y=X .

Let K be a ring and let F ;G A K ½X ;Y � be homogeneous polynomials. We write
resðF ;GÞ for the resultant of F and G as forms. If FðX ; 0Þ and GðX ; 0Þ are non-zero, then
this is just equal to the resultant of FðX ; 1Þ and GðX ; 1Þ as polynomials.

3. A motivating problem

3.1. Generalised Fermat equations. In [11] and [2], the generalised Fermat equation

Axr þ Bys ¼ Czt
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is considered. All the variables A;B;C; x; y; z; r; s; t are considered unknown integers, with
A;B;C non-zero and r; s; t positive. We are mainly interested in solutions such that ðx; y; zÞ
is primitive or, more generally, for a finite set of primes S, such that ðx; y; zÞ is S-primitive.

If we fix A;B;C A Z>0 and r; s; t A Zf2, and x; y; z A Z and then [11] shows that
if 1=rþ 1=sþ 1=t < 1, we have only finitely many primitive solutions. Furthermore, the
ABC-conjecture would imply only finitely many solutions x; y; z if r; s; t are allowed to
vary while still under the condition 1=rþ 1=sþ 1=t < 1 (see [20]). In particular, taking
A ¼ B ¼ C ¼ 1, one would expect only finitely many primitive solutions x; y; z to

xr þ ys ¼ zt;
1

r
þ 1

s
þ 1

t
< 1:

Amazingly, the above equation has some quite large solutions (see [2]). However,
apart from 23 þ 1s ¼ 32, the only exponent triples r; s; t for which primitive solutions with
xyz3 0 are known, are

f2; 3; 7g; f2; 3; 8g; f2; 3; 9g; f2; 4; 5g:

In [6], all primitive solutions to x2 þ y8 ¼ z3 are determined, or rather, it is shown that
the previously known solutions are the only ones. In the present article, we do the same for
the equations x2 þ y3 ¼ z8 and x2 G y4 ¼ z5. We determine a finite set of curves such that
the rational points on those curves correspond to a set of solutions that contains all primi-
tive solutions. Then we determine the rational points on each of these curves.

3.2. Parametrisation of F (x, y)FDzm. In this section we show how the following
lemma leads to an e¤ective and practical way to find the parametrising curves for the S-
primitive solutions of a weighted homogeneous equation of the form Fðx; yÞ ¼ Dzm (where
F is a square free homogeneous polynomial of degree nf 2) over a number field K.

Lemma 3.1. Let K be a number field, let F ;G A OK ½X ;Y � be coprime homoge-

neous polynomials, m A Z>0 and D A OK . Suppose that S is a set of primes such that

res
�
FðX ;Y Þ;GðX ;YÞ

�
, D A O�S . If x; y; z A K with ðx; y; zÞ S-primitive such that

Fðx; yÞGðx; yÞ ¼ Dzm;

then there are z1; z2 A K, with ðz1; z2Þ S-primitive and d1; d2 A KðS;mÞ with d1d2=D A ðK �Þm
such that

Fðx; yÞ ¼ d1z
m
1 ;

Gðx; yÞ ¼ d2z
m
2 ;

z ¼
ffiffiffiffiffiffiffiffiffi
d1d2

D

m

r
z1z2:

Proof. Let p be a prime of K outside S. Note that since F and G have integral
coe‰cients and D A O�p , we have that mnpðzÞ ¼ np

�
Fðx; yÞGðx; yÞ=D

�
fmin

�
npðxÞ; npðyÞ

�
:

Therefore ðx; yÞ is S-primitive as well. So, ðx; yÞ mod p3 ð0; 0Þ. Since

res
�
FðX ;YÞ;GðX ;Y Þ

�
mod p3 0;
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it follows that np
�
Fðx; yÞ

�
¼ 0 or np

�
Gðx; yÞ

�
¼ 0. By homogeneity, we have

mnpðzÞ ¼ npðDzmÞ ¼ np
�
Fðx; yÞGðx; yÞ

�
¼ np

�
Fðx; yÞ

�
þ np

�
Gðx; yÞ

�
;

we see that np
�
Fðx; yÞ

�
; np

�
Gðx; yÞ

�
A mZ for all pFS. r

Let K be a number field and let FðX ;YÞ A OK ½X ;Y � and D A OK . Let S be a set
of primes such that disc

�
FðX ;YÞ

�
, D A O�S . For ease of exposition, we assume that F

is monic in X . Using an appropriate change of variables, one can always obtain this
form. Let L be a splitting field of FðX ; 1Þ over K. We have a1; . . . ; an A L such that

FðX ;Y Þ ¼
Qn
i¼1
ðX � aiY Þ. Note that s A GalðL=KÞ acts as a permutation on the ai and we

use this to fix GalðL=KÞ ,! Sn. We write sai ¼ asðiÞ. Suppose that x; y; z is an S-primitive
solution in K . Lemma 3.1 gives that we have d1; . . . ; dn A LðS;mÞ with ðd1 � � � dnÞ=D A ðK �Þm
and S-primitive ðz1; . . . ; znÞ A Ln such that

x� ai y ¼ diz
m
i ;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 � � � dn

D

m

r
z1 � � � zn:

Since x; y A K, we can assume, without loss of generality, that sdi ¼ dsðiÞ and
szi ¼ zsðiÞ for

s A GalðL=KÞ. If F is irreducible over K then GalðL=KÞ acts transitively on the ai and d1
determines all di. See Lemma 3.3 for details.

If we eliminate x and y from these equations, then we see that ðz1; . . . ; znÞ must be a
zero of the ideal

Id :¼ fðai � ajÞðdkZm
k � dlZ

m
l Þ � ðak � alÞðdiZm

i � djZ
m
j Þgi; j;k; l

such that its image under Fd : ðZ1; . . . ;ZnÞ 7! ðaj diZm
i � ai djZ

m
j Þ=ðdiZm

i � djZ
m
j Þ is K-

rational (corresponding to x=y), where the definition of Fd is independent of the actual
choice of i; j because of the relations generating Id. Also note that the zero-locus of Id does
not intersect any Zi ¼ Zj ¼ 0, since the ai are distinct.

We claim that the model Cd described by Id is a smooth projective model of a curve
over L in the Pn�1. For n ¼ 2 we have nothing to prove, since Id ¼ 0, so Cd ¼ P1, which is
smooth. Otherwise, we have that, away from Zi ¼ Zk ¼ 0,

d
Zi

Zk

� �
¼ ðak � aiÞdj
ðak � ajÞdi

mZm�1
j

mZm�1
i

d
Zj

Zk

� �
;

so Zj=Zk can be used as a uniformiser there.

Let z be a primitive m-th root of unity. The variety Cd has several automorphisms.
Consider ti : P

n�1 7! Pn�1 defined by Zi 7! zZi. Note that tn ¼ ðt1 � � � � � tn�1Þ�1. It is
straightforward to check that Fd : Cd ! P1 is finite of degree mn�1 and Galois with
AutðCd=P

1Þ ¼ ht1; . . . ; tni.
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To conclude that Cd is actually geometrically irreducible, we consider the following
argument. Since Cd is smooth, it is a disjoint union of components. Each ti has a fixed
point, so the component containing that point is mapped to itself by ti. Since Cd is a Galois
cover of the (connected) projective line, we have that the Abelian Galois group ht1; . . . ; tni
acts transitively on the set of components of Cd. Consequently, the ti act as the trivial per-
mutation on the components, so there is only one.

To see that Cd can in fact be defined over K, we twist the action of GalðL=KÞ on
L½Z1; . . . ;Zn�. For s A GalðL=KÞ, we define sZi ¼ ZsðiÞ. Under this action, L½Z1; . . . ;Zn� is
a GalðL=KÞ-module and IdHL½Z1; . . . ;Zn� and Cd are invariant. This shows that Cd=P

1 is
in fact a model of a cover over K. Furthermore, Cd has good reduction at primes outside
SW fp jmg.

We can now calculate the genus of Cd using Riemann-Hurwitz (see [19], Theorem
II.5.9). Note that KF�1d ðfagÞ ¼ mn�1 if a B fa1; . . . ; ang and KF�1d ðfaigÞ ¼ mn�2. As a
consequence,

P
P ACðKÞ

�
ePðFdÞ � 1

�
¼ nmn�2ðm� 1Þ. Since genusðP1Þ ¼ 0 we get

genusðCdÞ ¼ 1þmn�2 1

2
nðm� 1Þ �m

� �
:

Now suppose that x; y; z is an S-primitive K-rational solution to Fðx; yÞ ¼ Dzm

and that a ¼ x=y (if y ¼ 0, then a is the point y A P1ðKÞ). Suppose P A F�1d ðfagÞ.
If s A GalðK=KÞ then sFdðPÞ ¼ sa ¼ a. Since sFd ¼ Fd, it follows that there is a
ts A GalðC=P1Þ such that sP ¼ tsðPÞ. It is easy to check that xP : s 7! ts is a cocycle. By
[19], Theorem X.2.2, there is a curve CP over K and an isomorphism c : CP ! Cd (not
necessarily over K) such that xP ¼ ðs 7! scc�1Þ. Since

s
�
c�1ðPÞ

�
¼ sc�1

�
tsðPÞ

�
¼ sc�1 scc�1ðPÞ ¼ c�1ðPÞ;

we see that c�1ðPÞ ACPðKÞ. Furthermore, since Fd is t-invariant, FP :¼ Fd � c�1 :CP! P1

is a cover over K and a A FP

�
CPðKÞ

�
. We see that the CP form a parametrising set of

curves for the S-primitive solutions. (Note that the Cd themselves are twists of each other.)
To see that we only need a finite number of CP, we need that CP has again good reduction
outside S and that the number of twists with this property is finite. This follows from [19],
Lemma X.4.3. Alternatively, finiteness follows from Lemma 3.1 together with Lemma 3.3.
Summarising:

Theorem 3.2. Let K, Fðx; yÞ ¼ Dzm and S be as above. Then there is a finite number

of Galois-covers FP : CP ! P1 over K with GalðCP=P
1ÞG ðZ=mZÞn�1, where CP is of genus

1þmn�2 1

2
nðm� 1Þ �m

� �
and has good reduction outside SW fp : p jmg such that

S
CP

FP

�
CPðKÞ

�
¼ fðx : yÞ A P1ðKÞ j bz A K : Fðx; yÞ ¼ Dzm and ðx; y; zÞ S-primitiveg:

The CP are all birationally equivalent over K and the FP are ramified exactly above the points

ðx : yÞ for which Fðx; yÞ ¼ 0.

While the model Cd is well suited to analyse the underlying geometry of the prob-
lem, it is not very useful for explicitly determining a set of curves. This is partly because the
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model itself is a priori given over L and that we conclude that Cd is defined over K by
Galois invariance. Furthermore, while by the correspondence proved in [19], Theorem
X.2.2, determining the appropriate twists is e¤ective, it is not a very practical procedure.
We can do better.

First, note that if F ¼ F1F2 with F1;F2 A OK ½X ;Y � then we can apply Lemma 3.1 to
obtain a finite number of systems of equations over OK of the form

F1ðx; yÞ ¼ dzm1 ;

F2ðx; yÞ ¼ Ddm�1zm2 :

�

Therefore, it is enough to deal with the case that F is irreducible over K. Let a be a root of
FðX ; 1Þ and let L ¼ KðaÞ. Then, applying Lemma 3.1 over L we see that for an S-primitive
solution x; y; z there exists a d A LðS;mÞ and a0; . . . ; an�1 A K such that

x� ay ¼ dða0 þ a1aþ � � � þ an�1a
n�1Þm;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL=KðdÞ

D

m

r
NL=K

�Pn�1
i¼0

aia
i

�
:

We have unique forms bd; i A K½X0; . . . ;Xn�1�, homogeneous of degree m, such that

Pn�1
i¼0

bd; iða0; . . . ; an�1Þa i ¼ dða0 þ a1aþ � � � þ an�1a
n�1Þm:

Consequently, ðx : yÞ ¼
�
bd;0ða0; . . . ; an�1Þ : �bd;1ða0; . . . ; an�1Þ

�
and bd; iða0; . . . ; an�1Þ

should vanish for i ¼ 2; . . . ; n� 1. This gives us

Lemma 3.3. Let K, F, D and S be as above. Suppose that F is irreducible over K, that
a is a root of FðX ; 1Þ and that L ¼ KðaÞ. Suppose that x; y; z A K are S-primitive and satisfy

Fðx; yÞ ¼ Dzm. Then there are a0; . . . ; an�1 A K and d A LðS;mÞ with NL=KðdÞ=D A ðK �Þm
such that for the bd; i as defined above, we have

ðx : yÞ ¼
�
bd;0ða0; . . . ; an�1Þ : �bd;1ða0; . . . ; an�1Þ

�
;

bd; iða0; . . . ; an�1Þ ¼ 0 for i ¼ 2; . . . ; n� 1:

This shows that for irreducible F , models of the CP mentioned in Theorem 3.2 are
given by ideals of the form

IP ¼
�
bd;2ðX0; . . . ;Xn�1Þ; . . . ; bd;n�1ðX0; . . . ;Xn�1Þ

�
for appropriate values of d A LðS;mÞ and that FP takes the form

�
bd;0ðX0; . . . ;Xn�1Þ : �bd;1ðX0; . . . ;Xn�1Þ

�
:

These models have the advantage of being completely explicit, over K, and e‰ciently
computable.

3.3. Elliptic subcovers for F (x, y)FDz2. Consider the situation of Section 3.2 with
m ¼ 2. In principle, Theorem 3.2 guarantees that primitive solutions of the equation
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Fðx; yÞ ¼ Dz2 over a number field K are parametrised by a finite number of curves CP over
K . If the genus of those curves is >1, in which case degðFÞf 5, then it may be possible to
determine CPðKÞ for each of these using an e¤ective Chabauty-method. Since the genus of
CP may be quite high, this would involve computations on high dimensional Abelian vari-
eties. We follow another approach.

We use the notation of Section 3.2 and we will put n ¼ 2 and write F ¼ FP.
Recall that F is Galois with Galois group ht1; . . . ; tni. Furthermore, note that
H :¼ ht1 � t2; t2 � t3; t5; . . . ; tni is a normal subgroup of GalðCd=P

1Þ of index 2. Conse-
quently, F : CP ! P1 splits in CP ! EP !

j
P1, induced by the map Hn: : Cd ! Ed. In gen-

eral, dividing out a variety by a finite group of automorphisms gives a variety again. See
[19], Exercise 3.13 or [18], §7. This is quite a deep result. In this special case, observe that
Hn: is induced by the map ðY1 : � � � : YnÞ 7! ðY 2

1 Y4 : Y
2
2Y4 : Y1Y2Y3 : Y

3
4 Þ, which can be

seen from the fact that it is invariant under H and induces a map of degree 2n�2 on Cd. The
curve Ed is the image of Cd under this map. That the image gives a smooth model is not
important for our purposes and is left to the reader.

This construction is nicely summarised in the following commutative diagram.

Cd  �������c
CP

Hn:
p

c�1Hcn:

Ed EP
F

j

P1

����! ����!

���������!
���������!

���������!

���������!

From degree and ramification behaviour, it follows that j : EP ! P1 is a double cover,
which is ramified exactly above a1; . . . ; a4. Therefore it is of genus 1 and has a model of
the form

EP : gY 2 ¼ ðX � a1ÞðX � a2ÞðX � a3ÞðX � a4Þ ¼ RðXÞ;

where j ¼ X . This model is not smooth at y. We denote the branches at infinity by yþ

and y�, separated by the two branches of Y=X 2. Which of the two branches is labeled yþ

is arbitrary, but fixed. It does have good reduction at primes outside SW f2g in the sense
that the locally regular charts ðX ;YÞ and ð1=X ;Y=X 2Þ in reduction cover the curve with
locally regular charts again.

Let KðRÞ denote the field of definition of RðX Þ. If FðPÞ ¼ X
�
pðPÞ

�
A P1ðKÞ, then

gY
�
pðPÞ

�2
A KðRÞ. Therefore, it su‰ces to consider only g that are representatives of

KðRÞðS; 2Þ. Note that the choices of d are absorbed in g.

Now P A CPðKÞ leads to a point G ¼ pðPÞ A EP
�
KðRÞ

�
with jðGÞ ¼ FðPÞ A P1ðKÞ. If

EP has a KðRÞ-rational point, then we can make it into an elliptic curve. This places us in
the situation of Section 4.2.

Lemmas 3.6, 3.7 and 3.8 apply this procedure to some equations where degðFÞ ¼ 5.
In those cases, genusðCdÞ ¼ 5. For a more general treatment of curves of genus 5 admitting
maps to curves of genus 1, see [1], exercise section VI.F.

3.4. Application to covering collections of a hyperelliptic curve. Another interesting
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subcover exists if m ¼ 2 and n is even, say n ¼ 2gþ 2. We consider the same construction
as in Section 3.3, but now we consider the subgroup H ¼ ht1 � t2; t1 � t3; . . . ; t1 � t2gþ2i.
The map Hn: : Cd ! Dd induces a subcover Cd ! Dd ! P1. From degree and ramification
behaviour, it follows that j : Dd ! P1 is a double cover that is ramified exactly above
a1; . . . ; a2gþ2. It follows that Dd is a hyperelliptic curve of genus g and has a model of the
form

Dd : gY
2 ¼ FðX ; 1Þ:

Consequently, the cover Cd ! Dd is unramified and Abelian Galois with
AutðCd=DdÞ ¼ ðZ=2ZÞ2g. It follows from [17], Proposition 9.1, that Cd is isomorphic to a
pullback along the multiplication-by-two map of an embedding of Dd in its Jacobian. The
techniques described here to find the primitive solutions to an equation Fðx; yÞ ¼ Dz2 can
be used to find the rational points on a hyperelliptic curve. See [3] for a more detailed
analysis of this approach.

3.5. Parametrising curves for x8 B y3 F z2 and x2 G y4 F z5. We determine
parametrising curves for x2 G y4 ¼ z5 by first parametrising the primitive solutions to
x2 G u2 ¼ z5 using Theorem 3.2. For each of these parametrisations, we impose y2 ¼ u.
This leads to an equation of the type y2 ¼ Uðs; tÞ, so we can again apply Theorem 3.2.

Lemma 3.4. Let x; y; z A Z be coprime integers satisfying x2 þ y2 ¼ z5. Then there

exist s; t A Zf2;5g with ðs; tÞ mod p3 ð0; 0Þ for any pF 10 such that

8><
>:
x ¼ tðt4 � 10t2s2 þ 5t4Þ;
y ¼ sðs4 � 10s2t2 þ 5t4Þ;
z ¼ s2 þ t2:

Proof. Let i2 ¼ �1. Then x2 þ y2 ¼ ðxþ iyÞðx� iyÞ. Since x and y are coprime, we

have ðxþ iy; x� iyÞ j 2. Consequently, xþ iy ¼ dðsþ itÞ5, where d is some fifth power free
2-unit in Z½i� such that NormðdÞ is a fifth power. Since there 2 ¼ �ið1þ iÞ2, it follows that d
is a unit. Since every unit in Z½i� is a fifth power, we can assume that d ¼ 1. r

Lemma 3.5. Let x; y; z A Z be coprime integers satisfying x2 � y2 ¼ z5. Then there

exist s; t A Zf2;5g with ðs; tÞ3 ð0; 0Þ mod p for any prime pF 10 such that

8><
>:
Gx ¼ 1

2
ðs5 þ t5Þ;

y ¼ 1
2
ðs5 � t5Þ;

Gz ¼ st;

or

8><
>:
Gx ¼ s5 þ 8t5;

y ¼ s5 � 8t5;

Gz ¼ 2st:

Proof. By factorisation, it follows that there are s; t A Zf2;5g and a fifth power
free d A Z such that, neglecting the sign of y, xþ y ¼ ds5 and x� y ¼ d4t5. Since x

and y are coprime, we can take d j 2. Note that ðd; s; tÞ 7! ð�d;�s; tÞ corresponds to
ðx; y; zÞ 7! ðx; y;�zÞ. So, if we neglect the sign of z, we can assume that d is positive.
Taking d ¼ 1; 2 gives the relations mentioned above. The map ðs; tÞ 7! ð�s;�tÞ induces
ðx; y; zÞ 7! ð�x;�y; zÞ, so the mentioned relations also take into account the sign of y. r

Using Lemmas 3.4 and 3.5 we see that the primitive solutions to x2 G y2 ¼ z5 can be
obtained from the f2; 5g-primitive solutions to one of the equations
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y2 ¼ sðs4 � 10s2t2 þ 5t2Þ;

y2 ¼ 1

2
ðs5 � t5Þ;

y2 ¼ s5 � 8t5:

According to Theorem 3.2, solutions to equations as mentioned in the lemmas above, are
parametrised by the rational points on genus 5 curves. By Section 3.3, these curves cover
elliptic curves. The next three lemmas determine these elliptic curves including the induced
cover of the projective line. We only give the proof of Lemma 3.7. The proofs for the other
lemmas are similar.

Lemma 3.6. The f2; 5g-primitive solutions to y2 ¼ sðs4 � 10s2t2 þ 5t4Þ have

s=t ¼ jðPÞ, where j : EP ! P1 is a double cover of genus 1 over a field L and P A EPðLÞ. It
su‰ces to take E1; . . . ;E4 as described in Table 1.

Lemma 3.7. The f2; 5g-primitive solutions to 2y2 ¼ s5 � t5 have s=t ¼ jðPÞ, where
j : EP ! P1 is a double cover of genus 1 over a field L and P A EPðLÞ. It su‰ces to take

E5;E6;E7 as in Table 1.

Proof. Let z4 � z3 þ z2 � zþ 1 ¼ 0. Then

X 5 � 1 ¼ ðX � 1ÞðX þ zÞðX � z2ÞðX þ z3ÞðX � z4Þ:

j Ej jjðX ;Y Þ L

1 Y 2 ¼ X 4 � 10X 2 þ 5 X Q

2 5Y 2 ¼ X 4 � 10X 2 þ 5 X Q

3 ð8b � 2b3 � 6ÞY 2 ¼ b3X 3 þ ð4b2 � 5ÞX 2 þ ðb3 � 4bÞX � 1 1=X QðbÞ
4 ð2b3 � 8b � 6ÞY 2 ¼ b3X 3 þ ð4b2 � 5ÞX 2 þ ðb3 � 4bÞX � 1 1=X QðbÞ
5 5Y 2 ¼ X 4 þ X 3 þ X 2 þ X þ 1 X Q

6 2ðz� z2 � 1ÞY 2 ¼ X 4 � zX 3 þ z2X 2 � z3X þ z4 X QðzÞ
7 2ð1� zþ z2ÞY 2 ¼ X 4 � zX 3 þ z2X 2 � z3X þ z4 X QðzÞ
8 Y 2 ¼ X 4 þ r35X

3 þ 2r5X
2 þ 2r45X þ 4r25 X Qðr5Þ

9 ðr35 þ r25 � 1ÞY 2 ¼ X 4 þ r35X
3 þ 2r5X

2 þ 2r45X þ 4r25 X Qðr5Þ
10 Y 2 ¼ X 4 � 2r3X

3 þ 6r23X
2 þ 8X þ 8r3 X Qðr3Þ

11 Y 2 ¼ R11ðXÞ X QðaÞ
12 Y 2 ¼ R12ðXÞ X QðaÞ

R11;R12 A QðaÞ of degree 4. Their coe‰cients are too large to display here.
Defining relations:

a12 þ 6a10 þ 39a8 þ 64a6 þ 15a4 � 6a2 � 3 ¼ 0,
b4 � 5b2 þ 5 ¼ 0,

z4 � z3 þ z2 � zþ 1 ¼ 0,
r55 � 2 ¼ 0,
r33 � 2 ¼ 0.

Table 1. Parametrising curves and their fields of definition.
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Put a ¼ �z. It follows that

s� t ¼ 2NormðdÞa24;

sþ zt ¼ dða0 þ a1zþ a2z
2 þ a3z

3Þ2

where d A LðS; 2Þ. It follows that ðs=tÞ4 þ ðs=tÞ3 þ ðs=tÞ2 þ ðs=tÞ þ 1 ¼ ðy=a4t2Þ2=NormðdÞ
as well. As is easily checked, the curve X 4 þ X 3 þ X 2 þ X þ 1 ¼ DY 2 has Q-rational
points for D ¼ 1; 5 only. For D ¼ 5, the curve is mentioned in the lemma. For D ¼ 1 we
find a curve of positive rank, so we examine the case where NormðdÞ is a square in more
detail. We can take d to be a multiplicative combination of f2; z3 þ z� 1; zg. Local argu-
ments at 2 and 5 show that, without loss of generality, d ¼ z3 � 1; 1� z3. It follows that for
some y1 A QðzÞ and x ¼ s=t, we have

ðx5 � 1Þ=ðxþ zÞ ¼ 2NormðdÞ=dy21 :

This leads to the remaining two curves. r

Lemma 3.8. The f2; 5g-primitive solutions to y2 ¼ s5 � 8t5 have s=t ¼ jðPÞ, where
j : EP ! P1 is a double cover of genus 1 over a field L and P A EPðLÞ. It su‰ces to take

E8;E9 as in Table 1.

For the equation x8 þ y3 ¼ z2, we could proceed in a similar way. First find para-
metrisations of u2 � z2 ¼ �y3, which would express u as a cubic form Uðs; tÞ. For
each of those forms, we could obtain parametrising curves for x4 ¼ Uðs; tÞ. However,
work by Beukers, Edwards and Zagier have already determined parametrisations of
v4 þ y3 ¼ z2.

Lemma 3.9 (Zagier, Edwards). Suppose x; y; z are coprime integers such that

x4 þ y3 ¼ z2. Then there are s; t A Zf2;3g such that one of the relations in Table 2 holds.

The first 6 parametrisations in Table 2 were computed by Zagier and first appeared
in [2]. The last parametrisation has been found by Edwards [12]. This last parametrisa-
tion generates solutions that are weighted homogeneously equivalent to those of the first. If
ðx0; y0; z0Þ is a solution to x4 þ y3 ¼ z2 that can be obtained by specialising s; t in the first
parametrisation, then ð23x0; 24y0; 26z0Þ can be obtained from the last parametrisation by
taking the same values for s; t. Therefore, if one is only interested in generating weighted
homogeneous equivalence classes containing primitive solutions, which is the goal in [2],
then the first six parametrisations su‰ce. However, taking s ¼ t ¼ 1=2 in the last para-
metrisation yields the primitive solution ðx; y; zÞ ¼ ð�7; 15; 76Þ. Of course, the equivalence
class of this solution is hit by the first parametrisation by taking s ¼ t ¼ 1, yielding
ð�23 � 7; 24 � 15; 26 � 76Þ, but the primitive solution itself cannot be obtained from the first
parametrisation. The proof of Lemma 3.9 can be found in [12].

We can use Lemma 3.9 to get a set of equations x2 ¼ sextic form, whose f2; 3g-
primitive solutions contain the primitive solutions to x8 þ y3 ¼ z2. According to Theorem
3.2, we obtain a finite set of curves of genus 17 that parametrise those solutions. However,
if we apply the remark made in Section 3.4, we get an intermediate set of curves. These
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curves are only of genus 2 and they are considerably less in number. In order to structure
the considerable computations we have to do to determine the rational points on the para-
metrising curves, we formulate the following lemma.

Lemma 3.10. Let x; y; z A Z be a primitive solution to x8 þ y3 ¼ z2. Then there is a

C ¼ Ci from Table 3 with P A CðQÞ and t A Q such that x ¼ t3YðPÞ.

Gx ¼ ðs2 � 3t2Þðs4 þ 18t2s2 þ 9t4Þ,
y ¼ �ðs2 þ 2tsþ 3t2Þðs2 � 2tsþ 3t2Þðs2 þ 6tsþ 3t2Þðs2 � 6tsþ 3t2Þ,

Gz ¼ 4stðs2 þ 3t2Þð3s4 � 2t2s2 þ 3t4Þðs4 � 6t2s2 þ 81t4Þ,
Gx ¼ 6stðs4 þ 12t4Þ,
y ¼ ðs4 � 12t2s2 � 12t4Þðs4 þ 12t2s2 � 12t4Þ,

Gz ¼ ðs4 � 12t4Þðs8 þ 408t4s4 þ 144t8Þ,
Gx ¼ 6stð3s4 þ 4t4Þ,
y ¼ ð3s4 þ 12t2s2 � 4t4Þð3s4 � 12t2s2 � 4t4Þ,

Gz ¼ ð3s4 � 4t4Þð9s8 þ 408t4s4 þ 16t8Þ,
Gx ¼ s6 þ 40t3s3 � 32t6,
y ¼ �8tsðs3 � 16t3Þðs3 þ 2t3Þ,

Gz ¼ ðs6 þ 32t6Þðs6 � 176t3s3 � 32t6Þ,
Gx ¼ s6 þ 6s5t� 15s4t2 þ 20t3s3 þ 15s2t4 þ 30st5 � 17t6,
y ¼ 2ðs4 � 4ts3 � 6t2s2 þ 4t3s� 7t4Þðs4 þ 6t2s2 � 8t3s� 3t4Þ,

Gz ¼ 3s12 � 12ts11 þ 66t2s10 þ 44t3s9 � 99t4s8 � 792t5s7 þ 924t6s6

� 2376t7s5 þ 1485t8s4 þ 1188t9s3 � 2046t10s2 þ 156t11s� 397t12;

Gx ¼ 9s6 � 18ts5 þ 45t2s4 � 60t3s3 þ 15t4s2 þ 6t5s� 5t6,
y ¼ �2ð3s4 � 6t2s2 þ 8t3s� t4Þð3s4 � 12ts3 þ 6t2s2 � 4t3sþ 3t4Þ,

Gz ¼ 27s12 þ 324ts11 � 1782t2s10 þ 3564t3s9 � 3267t4s8 þ 2376t5s7 � 2772t6s6

þ 3960t7s5 � 4059t8s4 þ 2420t9s3 � 726t10s2 þ 156t11s� 29t12;
Gx ¼ 23ðs2 � 3t2Þðs4 þ 18t2s2 þ 9t4Þ,
y ¼ �24ðs2 þ 2tsþ 3t2Þðs2 � 2tsþ 3t2Þðs2 þ 6tsþ 3t2Þðs2 � 6tsþ 3t2Þ,

Gz ¼ 28stðs2 þ 3t2Þð3s4 � 2t2s2 þ 3t4Þðs4 � 6t2s2 þ 81t4Þ.

Table 2. Parametrisations of x4 B y3 F z2.

C1 : Y
2 ¼ ðX 2 � 3ÞðX 4 þ 18X 2 þ 9Þ,

C2 : Y
2 ¼ �ðX 2 � 3ÞðX 4 þ 18X 2 þ 9Þ,

C3 : Y
2 ¼ 6X ðX 4 þ 12Þ,

C4 : Y
2 ¼ 6X ð3X 4 þ 4Þ,

C5 : Y
2 ¼ X 6 þ 40X 3 � 32,

C6 : Y
2 ¼ �X 6 � 40X 3 þ 32,

C7 : Y
2 ¼ X 6 þ 6X 5 � 15X 4 þ 20X 3 þ 15X 2 þ 30X � 17,

C8 : Y
2 ¼ �X 6 � 6X 5 þ 15X 4 � 20X 3 � 15X 2 � 30X þ 17,

C9 : Y
2 ¼ X 6 � 6X 5 þ 45X 4 � 180X 3 þ 135X 2 þ 162X � 405,

C10 : Y
2 ¼ �X 6 þ 6X 5 � 45X 4 þ 180X 3 � 135X 2 � 162X þ 405,

C11 : Y
2 ¼ 2ðX 2 � 3ÞðX 4 þ 18X 2 þ 9Þ,

C12 : Y
2 ¼ �2ðX 2 � 3ÞðX 4 þ 18X 2 þ 9Þ.

Table 3. Parametrising curves for x8 B y3 F z2.

Bruin, Chabauty methods using elliptic curves38



Proof. Let x; y; z be such a solution. Then, by Lemma 3.9, we have some homoge-
neous F A Z½S;T � of degree 6 as in Table 2 and s; t A Q such thatGx2 ¼ Fðs; tÞ. This leads
to a point P ¼ ðs=t; x=t3Þ onGY 2 ¼ FðX ; 1Þ. These curves are given in Table 3. Note that,
for the curves C3 and C4, we can control the sign of Fðs; tÞ with the sign of t. Therefore, we
only need one ofGY 2 ¼ FðX ; 1Þ. The curves C9 and C10 have undergone a small transfor-
mation to make FðX ; 1Þ monic. r

For some of the curves in Lemma 3.10, it is easy to determine their rational
points.

Lemma 3.11. C1ðQÞ ¼ fyþ;y�g.

Proof. The curve is a double cover of an elliptic curve by the map X 7! X 2. The
elliptic curve Y 2 ¼ ðX � 3ÞðX 2 þ 18X þ 9Þ is of rank 0 and has 2 rational points: y and
ð3; 0Þ. The first is covered by yþ and y�, which are indeed rational points of C1. The
second is covered by ðG

ffiffiffi
3
p

; 0Þ, which are quadratic conjugate points. r

Lemma 3.12. The curves C2, C6, C8, C10, C11 and C12 have no Q-rational points.

Proof. Each of the curves has no points over Q2 or Q3. r

For C3 and C4 we consider a curve C : y2 ¼ FðxÞ, where FðxÞ ¼ QðxÞRðxÞ, with RðxÞ
of degree 4. Using this factorisation, we recover an elliptic subcover as in Section 3.3 of the
multiplication-by-two cover of the curve C as in Section 3.4. In Section 4, we develop a
method to use elliptic subcovers defined over an extension of the base field for finding the
rational points on a curve. If the elliptic subcover is defined over the base field, the method
becomes particularly straightforward. It is instructive to see how that method (also used in
[6]) works in that case.

Lemma 3.13. C3ðQÞ ¼ fy; ð0; 0Þg and C4ðQÞ ¼ fy; ð0; 0Þg.

Proof. We prove the statement for C3ðQÞ, the argument for the other curve being
similar.

We see that for solutions with X 3 0;y, we have X 4 þ 12 ¼ dY 2
1 with d in the set

fG1;G2;G3;G6g. It is clear that df 0 from real considerations and that 2F d from con-
siderations locally at 2. Both X 4 þ 12 ¼ Y 2

1 and X 4 þ 12 ¼ 3Y 2
1 are genus 1 curves of rank

0 with only 2 rational points: the two branches at infinity and the two points with X ¼ 0
respectively. r

For the curves C5, C7, C9, we apply the same argument. We need a non-trivial exten-
sion of the base field for that. Since the elliptic curves have positive rank, we need the more
refined method developed in the next section. Here, we su‰ce in giving the elliptic sub-
covers. Note that, for C7 and C9, there is another choice that would yield elliptic curves
over a cubic extension. Those elliptic curves have rank 3, which is too high for the method
to work.

Lemma 3.14. The Q-rational points on C5, C7 and C9 correspond to L-rational
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points G on the genus 1 covers j ¼ X : Ej ! P1. The choices E10, E11 and E12 respectively, as
indicated in Table 1 su‰ce.

Proof. Let C : Y 2 ¼ FðXÞ be a hyperelliptic model of the genus 2 curve we con-
sider. Let L be an extension of Q such that F ¼ R �Q with R;Q A L½X �. If ðx; yÞ A CðQÞ,
then there are d; y1; y2 A L such that RðxÞ ¼ dy21 and QðxÞ ¼ dy22. Without loss of general-
ity, we can take d to represent one of the finitely many classes in LðS; 2Þ. We then see for
which of those d there exist x A Q such that dRðxÞ and dQðxÞ are squares simultaneously,
everywhere locally. As it turns out, in all three cases, this only happens for d ¼ 1. Note that
for C7 and C9, we can also find R and Q over QðbÞ but the resulting elliptic curves turn out
to have rank 3, which means that the described methods cannot be applied. Checking that
the covers in Table 4 are indeed birational to the ones mentioned in the lemma is tedious
and straightforward. r

For each of the curves Ei in Table 1 we have that there is a point P A EiðLÞ such that
jðPÞ A P1ðQÞ. In particular, we can represent those curves by Weierstrass-models over L.
In Table 4 we give these models Ei, together with the transformed covers ji : Ei ! P1. See,
for instance, [7] for a recipe for obtaining a Weierstrass-model from a quartic together with
a rational point.

Lemma 3.15. The covers ji : Ei ! P1 in Table 1 are isomorphic to the covers

ji : Ei ! P1 in Table 4.

E3 : ð1þ b � b2ÞY 2 ¼ X 3 � 5X 2 þ 5X ,

j3ðX ;YÞ ¼ ð6b � 2b3ÞX þ 3b3 � 10b

5
,

E6 : ðz2 � zÞY 2 ¼ X 3 � 5X 2 þ 5X ,

j6ðX ;YÞ ¼ X � 2z2 þ z� 2

X þ z3 þ z2 � z� 1
,

E7 : ðz2 � zÞY 2 ¼ X 3 � 5X 2 þ 5X ,

j7ðX ;YÞ ¼ X � 2z2 þ z� 2

X þ z3 þ z2 � z� 1
,

E8 : Y 2 ¼ X 3 � 5X 2 þ 5X ,

j8ðX ;YÞ ¼ �r
3
5X þ 2r35Y

4X � 5
,

E9 : ðr35 þ r25 � 1ÞY 2 ¼ X 3 � 5X 2 þ 5X ,

j9ðX ;YÞ ¼ 2ð6r45 � 4r35 þ 5r25 þ 11r5 � 13ÞX þ 12Y � 10ð3r45 � r35 þ 4r5� 6Þ
ð�4r35 þ 2r25 þ 2r5 þ 2ÞX � 12Y � 5ð3r45 � 3r35 þ r25 � 4Þ

,

E10 : �6Y 2 ¼ X 3 � X ,

j10ðX ;Y Þ ¼ r3X � 6r3Y þ r3
2X � 1

,

E11 : g11Y
2 ¼ X 3 þ 2X 2 þ 2X ,

E12 : g12Y
2 ¼ X 3 þ 2X 2 þ 2X .

The constants g11 and g12 and the maps j11 and j12 are too large to display here.

Table 4. Description of covers with respect to models Ej .
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4. Chabauty methods using elliptic curves

4.1. Elliptic covers of degree 2. Let E be an elliptic curve over a number field L. In
this section we determine what degree 2 covers j : E ! P1 look like. Let E be given by a
homogeneous twisted Weierstrass model over the ring of integers OL of a number field L.

E : gY 2D ¼ X 3 þ a2X
2Dþ a4XD

2 þ a6D
3:

Suppose that j is a degree 2 cover E ! P1 over L. Then we can choose a model�
j1ðX ;Y ;DÞ : j2ðX ;Y ;DÞ

�
, with j1; j2 A OL½X ;Y ;D� homogeneous polynomials of

equal degree. By choosing a‰ne coordinates on P1, we write j ¼ j1=j2. Since degðjÞ ¼ 2,
there are at most two points G1;G2 A EðLÞ such that jðG1Þ ¼ jðG2Þ ¼ 0. These two
points determine the intersection of j1ðX ;Y ;DÞ ¼ 0 with E in P2. If G1 ¼ G2, then
j1ðX ;Y ;DÞ ¼ 0 should be tangent to E in G1. Along the same lines, there are two points
G3;G4 with jðG3Þ ¼ jðG4Þ ¼y. Up to scalar multiplication, j is determined by the lines
through G1 and G2 and through G3 and G4. We can assume j1 ¼ c11X þ c12Y þ c13D and
j2 ¼ c21X þ c22Y þ c23D, with cij A OL. Note that j1ðX ;Y ;DÞ ¼ 0 has 3 points of inter-
section with E and so has j2ðX ;Y ;DÞ ¼ 0. For j to have degree 2, we must have that the
unique point Gj with j1ðGjÞ ¼ j2ðGjÞ ¼ 0 lies on E. If we define

Gj;1 ¼ c12c23 � c13c22;

Gj;2 ¼ c13c21 � c11c23;

Gj;3 ¼ c11c22 � c12c21;

then we have Gj ¼ ðGj;1 : Gj;2 : Gj;3Þ. The map t ¼ tj : E ! E that interchanges the
elements of the fibers of j is an involution, i.e. t A AutðEÞ (where E is the algebraic
curve corresponding to E) and t � t ¼ id. From [19], Corollary III.10.2, we know that
AutðEÞ½2� ¼ f½1�; ½�1�g and from [19], Example III.4.7, that an automorphism of E as a
curve is the composition of an automorphism of E as an elliptic curve with a translation.
Translations over 2-torsion points are involutions, but they give unramified covers. Thus,
there is a Gt A EðLÞ such that tðGÞ ¼ Gt � G. Note that G2 ¼ tðG1Þ ¼ Gt � G1. Therefore
G1, G2 and �Gt are collinear. Note however that Gj is collinear with G1 and G2 as well.
It follows that Gt ¼ �Gj and thus that t is defined over L. We will either assume that
Gt 3Gj or that Gt ¼ Gj ¼y. If Gj ¼ Gt, then we can take Gj ¼y by choosing the dis-
tinguished point on the algebraic curve corresponding to E.

We now derive some expressions that allow us to calculate p-adic approximations to
j. Let p be a prime of OL. We call p a good prime with respect to j : E ! P1 if

. E has good reduction at p,

. j1 mod p and j2 mod p have degree 1 and are linearly independent,

. if Gj3�Gj, then Gj mod p3�Gj mod p,

. np
�
charðO=pÞ

�
< charðO=pÞ � 1.

Suppose that p is such a prime. Then Expp : pOp ! Eð1ÞðLpÞ is a group isomorphism
with the property that Z

�
ExppðzÞ

�
¼ z mod p2, where Z ¼ Y=X . Let G A EðLpÞ with
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G mod p3Gt mod p. Then, by choosing coordinates on P1 (e.g., by interchanging j1 and
j2 if necessary), we can assume that jðGÞ mod p3y. Then j

�
G þ ExppðzÞ

�
is a power

series with coe‰cients in L and convergent on pOp with values in Op. We derive some
approximations to these power series. Suppose that z A pOp. If G ¼y and Gt 3Gj then

j
�
ExppðzÞ

�
¼ jðyÞ þ Gj;3

c222
z mod p2:

Put F 0ðxÞ ¼ 3x2 þ 2a2xþ a4. If G ¼ ðx; yÞ and G mod p3y, then

j
�
ðx; yÞ þ ExppðzÞ

�
¼ jðx; yÞ þ F 0ðxÞðxGj;3 � Gj;1Þ � 2gyðyGj;3 � Gj;2Þ

gðc21xþ c22yþ c23Þ2
z mod p2:

Now suppose that Gt ¼ Gj ¼y. Then jðX : Y : DÞ ¼ ðc11X þ c13DÞ=ðc21X þ c23DÞ and
t ¼ ½�1�. Consequently, j

�
ExppðZÞ

�
and j

�
ðx; 0Þ þ ExppðZÞ

�
will be power series in Z2.

Using higher order terms, we derive

j
�
ExppðzÞ

�
¼ c11

c21
þ Gj;2

gc21
z2 mod p3;

j
�
ðx; 0Þ þ ExppðzÞ

�
¼ jðx; 0Þ � F 0ðxÞGj;2

gðc21xþ c23Þ2
z2 mod p3:

4.2. Rationality restrictions on elliptic curves. Let QHKHL be number fields and
let j : E ! P1 be an elliptic cover defined over L. In this section we propose a method for
determining the L-rational points G on E such that jðGÞ is K-rational. Note that, although
j is just defined over L, the answer to this question requires P1 to be viewed as a curve over
K and not over L. The method we explain here might give a sharp bound on the number of
such G if rk

�
EðLÞ

�
< ½L : K �.

By the Mordell-Weil theorem ([19], VIII), EðLÞ is a finitely generated Abelian
group. Suppose that EðLÞ ¼ hG1; . . . ;Gr;Grþ1; . . . ;Grþti, where hG1; . . . ;GriFZr and
hGrþ1; . . . ;Grþti is finite.

We choose a prime p of OK such that all p j p of OL are unramified in OL=OK ,
np
�
charðO=pÞ

�
< charðO=pÞ � 1, E has good reduction at p and j mod p : ðE mod pÞ ! P1

is again a cover.

Choose B1; . . . ;Br HEðLÞ such that

hB1; . . . ;Bri ¼
T
p j p

�
Eð1ÞðLpÞXEðLÞ

�
:

Since EðLÞ=hB1; . . . ;Bri is finite, we need only finitely many G0 A EðLÞ to cover EðLÞ with
translates G0 þ hB1; . . . ;Bri.

We fix G0 and try to determine how many points G of the form
G ¼ G0 þ n1B1 þ � � � þ nrBr exist such that jðGÞ A P1ðKÞ. Note that jðGÞ is K-rational
if and only if 1=jðGÞ is. If p; q j p such that jðG0Þ mod p ¼y and jðG0Þ mod q3y,
then there is no G ¼ G0 þ n1B1 þ � � � nrBr with jðGÞ A P1ðKÞ, as this would imply
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jðG0Þ mod p ¼ jðG0Þ mod q. Therefore, by changing from j to 1=j if necessary, which
corresponds to a K-rational coordinate transformation on P1, we can assume that
jðG0Þ mod p3y for any p j p. Since B1; . . . ;Br A Eð1ÞðLpÞ for all p j p, we have

n1B1 þ � � � þ nrBr ¼ Expp
�
n1 LogpðB1Þ þ � � � þ nr LogpðBrÞ

�
:

Consequently, we can write

yG0

p ðn1; . . . ; nrÞ ¼ j
�
G0 þ Expp

�P
ni LogpðBiÞ

��
A Lwn1; . . . ; nrx;

which is convergent for ðn1; . . . ; nrÞ A ðOpÞr and has values in Op. If jðG0þ
P

niBiÞ A P1ðKÞ,
then, identifying P1ðLÞnfyg with L, we have yG0

p ðn1; . . . ; nrÞ A OpHOp. If q j p as well then
yG0
p ðn1; . . . ; nrÞ ¼ yG0

q ðn1; . . . ; nrÞ. These requirements can be expressed in power series over
K in the following way. Let I ¼ ½Lp : Kp� and let 1; a; . . . ; aI�1 be an Op-basis of Op. Then
there are unique yG0

p; i A Kpwn1; . . . ; nrx such that

yG0
p ¼ yG0

p;0 þ ayG0

p;1 þ � � � þ aI�1yG0

p; I�1:

The statement jðG0 þ
P

niBiÞ A P1ðKÞ translates into yG0

p; i and yG0

p;0 � yG0

q;0 having a simul-

taneous zero in ðn1; . . . ; nrÞ for all p; q j p and if 1. Taking all these conditions together,

this corresponds to some yG0 A Kpwn1; . . . ; nrx
½L:K ��1 vanishing in ðn1; . . . ; nrÞ. If p splits

completely (i.e. Lp ¼ Kp for all pjp) then it is particularly easy to compute this power
series. Suppose that p1; . . . ; pm j p. Then

yG0ðn1; . . . ; nrÞ ¼

0
BBB@

yG0
p2
ðn1; . . . ; nrÞ � yG0

p1
ðn1; . . . ; nrÞ

..

.

yG0
pm
ðn1; . . . ; nrÞ � yG0

p1
ðn1; . . . ; nrÞ

1
CCCA:

It is often possible to give a bound on the number of zeros that such a power series has
if r < m. The following lemma is an example of the kind of arguments that might apply.

Lemma 4.1. Let Op be a complete local ring with maximal ideal p and

f ¼ ð f1; . . . ; fmÞ A ðOpwX1; . . . ;XrxÞm;

convergent on Or
p. Write X ¼ ðX1; . . . ;XrÞ. If one of the following conditions holds:

. f ðX1; . . . ;XrÞ ¼ bþ AX mod p, where A is an m� r matrix over Op such that

A mod p has rank r,

. fið0; . . . ; 0Þ ¼ 0,
qfi

qXj

ð0; . . . ; 0Þ ¼ 0 and fiðX1; . . . ;XrÞ ¼ X tAiX mod p for all i; j,

where the A1; . . . ;Am are symmetric r� r matrices such that the projective variety in Pr�1

described by fX tðAi mod pÞX ¼ 0gi¼1;...;m has no points over Op=p,

then f has at most one zero in Or
p.

Bruin, Chabauty methods using elliptic curves 43



Proof. Let u be a uniformiser of Op. Consider the first case. Note that
gðXÞ ¼ f ðXÞ � b� AX A ðpOpwX1; . . . ;XrxÞm. If x A ðOpÞr and f ðxÞ ¼ 0 then we have
that Ax ¼ �b mod p. By assumption, there is at most one such x mod p. It remains to show
that f cannot have two zeros reducing to the same vector mod p. Suppose that there is an
ef 1 and x; y A ðOpÞr, y3 0 mod p, such that f ðxÞ ¼ f ðxþ ueyÞ ¼ 0. Subtraction yields
0 ¼ �ueAyþ gðxÞ � gðxþ ueyÞ. By the assumption on the rank of A and y3 0 mod p, it
follows that �ueAy3 0 mod peþ1, but since all coe‰cients of g are divisible by p, we have
that gðxÞ ¼ gðxþ ueyÞ mod peþ1. It follows that such y; e cannot exist.

For the second case, suppose that there is a y A Or
p with y mod p3 0 and an ef 0

such that f ðueyÞ ¼ 0. Then 0 ¼ fiðueyÞ ¼ u2eytAi y mod p2eþ1. It follows that y reduces to
a point on fX tðAi mod pÞX ¼ 0gi¼1;...;m. r

We apply these ideas to the case where degðjÞ ¼ 2. We adopt the notation from Sec-
tion 4.1 and we assume that the p j p are good with respect to j : E ! P1. If we stay away
from Gj mod p then the formulas given there lead to

yyp ¼ jðyÞ þ Gj;3

c222

Pr
i¼1

niZðBiÞ mod p2;

yðx;yÞp ¼ jðx; yÞ þ F 0ðxÞðxGj;3 � Gj;1Þ � 2gyðyGj;3 � Gj;2Þ
gðc21xþ c22yþ c23Þ2

Pr
i¼1

niZðBiÞ mod p2;

which enables us to compute yy mod p2 and yðx;yÞ mod p2. For the case Gj ¼ Gt ¼y we
have

yyp ¼
c11

c21
þ Gj;2

gc21

Pr
i; j¼1

ninjZðBiÞZðBjÞ mod p3;

yðx;0Þp ¼ jðx; 0Þ � F 0ðxÞGj;2

gðc21xþ c23Þ2
Pr
i; j¼1

ninjZðBiÞZðBjÞ mod p3;

which enable us to compute yy mod p3 and yðx;0Þ mod p3 in these cases. Note that the fact
that j is even in this case, guarantees that only monomials of even degree occur in yy and
yðx;0Þ. Furthermore, since np

�
ZðBiÞ

�
f 1, we only need ZðBiÞ mod p2 to compute any of

these approximations. We summarise this information in

ZðBÞ=up ¼

0
BB@

ZðB1Þ=up mod p1 � � � ZðBrÞ=up mod p1

..

. . .
. ..

.

ZðB1Þ=up mod pm � � � ZðBrÞ=up mod pm

1
CCA

where up is some fixed uniformiser for p in K . (Since the pi are unramified over p, up is also
a uniformiser for pi in L.)

For simplicity, we assumed that we have generators of EðLÞ. Note that Eð1ÞðLpÞ
is isomorphic to pOp and as such has an Op-module structure. In particular, it is
an Op-module. In fact, instead of generators of EðLÞ, we only need EðLÞ mod p and
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a set fB1; . . . ;BrgHEðLÞ that generates an Op-module in Eð1ÞðLpÞ containingT�
Eð1ÞðLpÞXEðLÞ

�
. This means that we only have to prove that

charðO=pÞF
h T
p j p

�
Eð1ÞðLpÞXEðLÞ

�
: hB1; . . . ;Bri

i
;

which is much easier to establish. The following lemma is a useful tool.

Lemma 4.2. Let E be an elliptic curve over a number field L and let p > 2 be a

rational prime, unramified in OL=Z. Suppose that p1; . . . ; pm are the primes of OL above

p and that for i ¼ 1; . . . ;m, we have that E has good reduction at pi j p and that

KðE mod piÞðO=piÞ is prime to p for i ¼ 1; . . . ;m. Let B1; . . . ;Br A EðLÞ with Bj ¼ 0 mod pi
such that hB1; . . . ;Bri in EðLÞ is of finite index divisible by p, then there are n1; . . . ; nr A Zp

with ðn1; . . . ; nrÞ3 ð0; . . . ; 0Þ mod p such that n1ZðB1Þ þ � � � þ nrZðBrÞ ¼ 0 mod p2
i for

i ¼ 1; . . . ;m.

Proof. The conditions in the lemma imply that there exists a G A EðLÞ
and n1; . . . ; nr A Z, not all divisible by p, such that n1B1 þ � � � þ nrBr ¼ pG. Let
i A f1; . . . ;mg. Note that pG A EðLÞXEð1ÞðLpiÞ. Since the reduction group has order
prime to p, we have that G ¼ 0 mod pi. By the good reduction properties, we have
n1 LogpiðB1Þ þ � � � þ nr LogpiðBrÞ ¼ pLogpiðGÞ. The statement follows by observing that
Z ¼ Logpi mod p2

i and that Z
�
Eð1ÞðLpiÞ

�
¼ 0 mod pi. r

We assumed that we used the information at all primes of L above p. The argument

might already work if we just use the information at p1; . . . ; pm j p with
Pm
i¼1
½Lp : Kp� > r.

Then, it is su‰cient to take B1; . . . ;Br to generate a subgroup of
Tm
i¼1

�
Eð1ÞðLpiÞXEðLÞ

�
of

index prime to charðO=pÞ.

By bounding the number of zeroes of yG0 , for instance, by using Lemma 4.1, we
obtain a bound on the number of G A EðLÞ with a K-rational image under j, with G and
G0 reducing to the same point modulo p1; . . . ; pm. This yields the following lemma.

Lemma 4.3. Let K ;L; p; p1; . . . ; pm and j : E ! P1 be defined as above. Let

G A EðLÞ.

. If yG mod p3 0, then jðGÞ mod p is not hit by j
�
EðLÞ

�
XP1ðKÞ.

. If jðGÞ A P1ðKÞ and yG=p satisfies the first condition in Lemma 4.1, then G and

tjðGÞ are the only G 0 A EðLÞ such that jðG 0Þ A P1ðKÞ and jðGÞ mod p ¼ jðG 0Þ mod p.

. If G ¼ Gj ¼ Gt ¼ ð0 : 1 : 0Þ and yG=p2 satisfies the second condition in Lemma 4.1,
then G is the only G 0 A EðLÞ such that jðG 0Þ A P1ðKÞ and jðGÞ mod p ¼ jðG 0Þ mod p.

5. Sketch of proof of Theorems 1.1, 1.2 and 1.3

In Section 3.5, we have reduced the problem of finding the primitive solutions to
x2 G y4 ¼ z5 and x8 þ y3 ¼ z2 to determining the sets ji

�
EiðLÞ

�
XP1ðQÞ for the covers

ji : Ei ! P1 given in Table 1. Here we use the method introduced in Section 4.2 to
accomplish this.
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Proposition 5.1. For each of the curves Ei in Table 1 we have

i ji
�
EiðLÞ

�
XP1ðQÞ i ji

�
EiðLÞ

�
XP1ðQÞ

1 fyg 7 f1; 1=3; 3g
2 f0g 8 f0;�2;yg
3 f0g 9 fyg
4 f0g 10 f0; 1;yg
5 fyg 11 f1=2;yg
6 f1;�1g 12 fy; 9=2g

Proof. We apply the method proposed in Section 4.2 to each of the curves
individually. We work with the twisted Weierstrass models Ei from Table 4 instead of
the models Ei. The map X : Ei ! P1 corresponds to ji : Ei ! P1. Note that the map
ðX ;Y ; bÞ ! ð�X ;Y ;�bÞ gives a map between the covers j4 : E4 ! P1 and j3 : E3 ! P1.
Consequently, the statement on E4 follows from the one on E3. The method is almost
automatic, so we only give the argument for E7, which illustrates the di¤erent facets of the
method nicely. The arguments for the other curves are similar. Many of the computational
steps cannot be reproduced here on paper. Instead, a program is available that does the
computations for you. It is written for KASH 2.0 (see [10]) and is available via [5] from the
preprint server of the Mathematical Institute of Leiden University or through the author’s
homepage.

We put K ¼ Q, L ¼ QðzÞ, E ¼ E7 and j ¼ j7. Consider the points

G1 ¼ ð1� 3z2 þ 3z3; 1þ 3z� 2z2 þ z3Þ;

G2 ¼ ð1� 1z2 þ z3; z3Þ;

G3 ¼ ð2� z2 þ z3; 0Þ;

G4 ¼ ð0; 0Þ:

From a 2-isogeny descent, it follows that hG1; . . . ;G4iHEðLÞ is a subgroup of odd index.
One would expect that G1; . . . ;G4 in fact generate EðLÞ, but we don’t need to prove that.
As we will see, it is su‰cient to show that the index is coprime to 2 � 31.

We choose p ¼ 31 and we consider the four primes p1; . . . ; p4 above 31 charac-
terised by

z mod p1 ¼ 15; z mod p3 ¼ 27;

z mod p2 ¼ 23; z mod p4 ¼ 29:

Since KðE mod piÞðO=piÞ ¼ 32, we see that ½EðLÞ mod pi : hG1; . . . ;G4i mod pi�
is a power of 2. We know that ½EðLÞ : hG1; . . . ;G4i� is odd, so we have
EðLÞ mod pi ¼ hG1; . . . ;G4i mod pi.

It is straightforward to compute that
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hG1; . . . ;G4iXEð1ÞðLpiÞ ¼ h2G1 þ G2 þ G4; 4G2 þ G4i;

h2G1 þ 3G2 þ G4; 4G2 þ G1 þ G2i;

h2G1 þ G2 þ G3; 4G2 þ G3 þ G4i;

h2G1 þ 3G2; 4G2 þ G4i for i ¼ 1; 2; 3; 4

respectively. Consequently, B1 ¼ 8G1 þ 4G2, B2 ¼ 8G2 generate the intersection of the
kernels of reduction.

In order to determine j
�
EðLÞ

�
XP1ðQÞ, we first look at the reduction mod 31. If

P A j
�
EðLÞ

�
XP1ðQÞ, then certainly P mod31 A j

�
EðLÞ

�
mod pi. The latter is something

we can compute explicitly. We find

j
�
EðLÞ

�
mod p1 ¼ f0; 1; 2; 3; 4; 8; 9; 13; 15; 16; 17; 21; 24; 25; 26; 27; 29;yg;

j
�
EðLÞ

�
mod p2 ¼ f1; 2; 3; 4; 5; 6; 7; 9; 10; 11; 14; 15; 16; 18; 19; 21; 25; 27g;

j
�
EðLÞ

�
mod p3 ¼ f1; 2; 3; 5; 7; 8; 9; 16; 17; 18; 19; 20; 21; 23; 25; 26; 28; 29g;

j
�
EðLÞ

�
mod p4 ¼ f0; 1; 2; 3; 4; 5; 6; 7; 8; 11; 12; 15; 16; 21; 22; 23; 29;yg:

It follows that j
�
EðLÞ

�
XP1ðQÞ mod31H f1; 2; 3; 16; 21g. Upon closer inspection, we

see that if G A EðLÞ and jðGÞ mod p1 ¼ 2, then G A fG3g þ Eð1ÞðLp1Þ. Similarly, for
jðGÞ mod p4 ¼ 2, we get G A f2G2; 2G2 þ G4g þ Eð1ÞðLp4Þ. But then we have that 2G2 � G3

or 2G2 þ G4 � G3 is in Eð1ÞðLp1ÞXEð1ÞðLp4Þ ¼ h2G1 þ G2;G2;G4i. This is clearly not the
case. A similar argument rules out 16. Thus we see that

j
�
EðLÞXP1ðQÞ

�
mod31H f1; 3; 1=3g:

We know that equality holds, since G ¼ 0;G1 � G2 þ G4;G1 þ G2 þ G4 realise these values.

It remains to show that these are the only points (apart from the points
Gt � G) with rational image under j. We can do so by applying Lemma 4.3. If
jðGÞ A P1ðQÞ, we know that G A G0 þ

T
i

Eð1ÞðLpiÞXEðLÞ, for G0 or Gt � G0 a member

of f0;G1 � G2 þ G4;G1 þ G2 þ G4g. We would expect hB1;B2i to be the intersection of
the kernels of reduction, but we only need that

hB1;B2inZ31 ¼
�T

i

Eð1ÞðLpiÞXEðLÞ
	
nZ31:

We compute ZðB1Þ;ZðB2Þ mod p2
i . We do that either by performing the group addition

with exact precision and then reduce mod p2
i or (more e‰ciently), do the group operations

with finite pi-adic precision. Either way, we find the values

ZðB1Þ=31 mod p1 ZðB2Þ=31 mod p1
ZðB1Þ=31 mod p2 ZðB2Þ=31 mod p2
ZðB1Þ=31 mod p3 ZðB2Þ=31 mod p3
ZðB1Þ=31 mod p4 ZðB2Þ=31 mod p4

0
BBB@

1
CCCA ¼

21 8

2 2

0 15

22 27

0
BBB@

1
CCCA:
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By applying Lemma 4.2 to these, we get that hG1; . . . ;G4i has index prime to 31 in EðLÞ.
This implies B1;B2 indeed generate the intersections of the kernels of reduction as Z31-
modules.

Using these values we can compute approximations to yG0ðn1; n2Þ, as described in
Section 4.2. It is easily checked that in each case, one of the criteria in Lemma 4.3 applies.
We conclude that a A j

�
EðLÞ

�
XP1ðQÞ with a mod31 A f1; 3; 21g are a ¼ 1; 3; 1=3. r

Proof of Theorem 1.1. Consider x2 þ y4 ¼ z5. Lemma 3.4 together with Lemma 3.6
show that the curves E1; . . . ;E4 from Table 1 parametrise the primitive solutions and in
what way the parameter values s=t can be recovered from the points P A EiðLÞ with
jiðPÞ A P1ðQÞ. Proposition 5.1 gives those points. We see all points must have s=t ¼ 0;y,
so we have that either s ¼ 0 or t ¼ 0 which leads to y ¼ 0 or x ¼ 0. r

Proof of Theorem 1.2. Consider x2 � y4 ¼ z5. Lemmas 3.5, 3.7 and 3.8 show that
E5; . . . ;E9 determine all possible solutions. Proposition 5.1 gives the possible candidates
and the values of s=t belonging to them. The values s=t ¼y; 1;�1 in Lemma 3.7 lead to
solutions with z ¼ 0, y ¼ 0 or x ¼ 0. The values s=t ¼ 3; 1=3 lead to x ¼G122, y ¼G11,
z ¼ 3.

The points on E8ðLÞ lead to s=t¼ 1;y;�2. These correspond to ðx; y; zÞ ¼ ð0;G1;�1Þ
and ðG16;G4; 0Þ. While

�
�2; 2ða� a2 � a3Þ

�
is a genuine point on E8ðLÞ, we have

that lð2þ a3Þ is not a square in L for any l A Q�. We therefore see that no rational
s; t with s=t ¼ �2 exist that satisfy Lemma 3.8. The point on E9ðLÞ leads to
ðx; y; zÞ ¼ ðG7;G3;�2Þ. r

Proof of Theorem 1.3. Lemma 3.10 shows that the primitive solutions to x8þ y3 ¼ z2

can be obtained from rational points on the curves Ci in Table 3. For most curves, we
already determined the rational points. Lemma 3.14 establishes that the rational points on
C5, C7 and C9 can be obtained from E10, E11 and E12. Proposition 5.1 gives the necessary
information to do that.

We now complete our proof by checking to which solutions the rational points
on C1; . . . ;C10 correspond. Since at least one of the forms for x; y; z in Lemma 3.9,
corresponding to C1; . . . ;C6, is divisible by s and t, points with X ¼ 0;y correspond to
solutions with xyz ¼ 0. This only leaves ð1;G3Þ on C5. The corresponding solutions are
ðx; y; zÞ ¼ ðG3; 23 � 32 � 5;G33 � 11 � 23Þ. Being a remarkable relation in itself, it does not
satisfy the condition that ðx; y; zÞ ¼ 1. Furthermore, it cannot be transformed into such a
solution using a weighted multiplication ðx; y; zÞ 7! ðl3x; l8y; l12zÞ either.

On C7, the points yG correspond to ðG1; 2;G3Þ and the points ð1=2;G15=8Þ cor-
respond (after clearing denominators) to ðG3 � 5; 2 � 32 � 29 � 37;G33 � 99431Þ. On C9, yG

correspond to ðG3;�2 � 32;G33Þ and ð9=2;G387=8Þ (after clearing denominators) to
ðG43; 2 � 3 � 7 � 29 � 79;G109 � 275623Þ. We conclude that the list stated in the theorem is
complete. r
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