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Chapter 1

The generalised Fermat equation

1.1 Introduction

The roots of Diophantine geometry go back to at least the ancient Greeks. The Pythagore-

ans already knew that in every right triangle, the lengths of the sides satisfy a relation of

the form x

2

+ y

2

= z

2

. They probably were not the �rst to be aware of this relation, but

we do know that they were aware of the fact that it is not automatic (but true) that there

are integral solutions to this equation, i.e. that not all right triangles with two sides of

integral length have an integral length for their third side, but that there are some that

do.

In Arithmetica, Diophantus formulated the related arithmetic question of writing a

square as the sum of two other squares. Pierre de Fermat came across this and wondered if

the 2 as exponent is essential to this equation, i.e. if x

n

+y

n

= z

n

has positive integer solu-

tions for n > 2. The remark he scribbled in the margin of the book vexed mathematicians

for 350 years, but as we now know (see [Wil95]), this equation admits no solutions.

Several generalisations spring to mind. One may wonder what integral solutions to

x

n

1

+ � � �+ x

n

m

= 0 exist. This is not the direction we will pursue. When we talk about the

generalised Fermat equation we mean

Ax

r

+By

s

= Cz

t

with r; s; t 2Z

>0

and A;B;C 2Z, not all zero. Note that this equation is not homogeneous

and thus, the argument that it su�ces to look at gcd(x; y; z) = 1 to describe all solutions

is not valid. However, as Beukers points out, describing general solutions is often not

a very interesting problem. For instance, if we take U; V 2 Zand W := U + V , then

(U

5

V

4

W

3

)

5

+(U

8

V

7

W

5

)

3

= (U

12

V

10

W

8

)

2

. For any solution x

5

+y

3

= z

2

, we have that the

solution resulting from U = x

5

, V = y

3

, W = z

2

is weighted homogeneously equivalent (as

described below) to (x; y; z). Therefore, the given formula parametrises all solutions up to

equivalence. We will restrict ourselves to gcd(x; y; z) = 1 (or, more generally, gcd(x; y; z)

composed of a given �nite set of primes), which is a much more interesting problem.

Note that the described equation is weighted homogeneous: If (x; y; z) is a solution and

d = lcm(r; s; t), then (�

d=r

x; �

d=s

y; �

d=t

z) also satis�es the equation. We call two such solu-

tions weighted homogeneously equivalent. Let g = gcd(r; s; t) and write P (x; y; z) := (x

r=g

:

y

s=g

: z

t=g

) 2 P

2

(Q). It follows that two equivalent solutions (x

1

; y

1

; z

1

) and (x

2

; y

2

; z

2

) have

1
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P (x

1

; y

1

; z

1

) = P (x

2

; y

2

; z

2

). Conversely, if two solutions (x

1

; y

1

; z

1

) and (x

2

; y

2

; z

2

) have

P (x

1

; y

1

; z

1

) = P (x

2

; y

2

; z

2

), then there is a � 2 Q such that

(x

1

; y

1

; z

1

) = (�

x

�

d=r

x

2

; �

y

�

d=s

y

2

; �

z

�

d=t

z

2

);

where �

x

= 1 if r=g is odd and �

x

= �1 otherwise and �

y

, �

z

are de�ned analogously. As

a consequence, P (x; y; z) does not necessarily distinguish between equivalence classes that

are related by trivial transformations such as x 7! �x, but is faithful otherwise.

Let S be a �nite set of primes. We call a solution S-primitive if gcd(x; y; z) contains

only primes from S. We call an equivalence class of solutions S-primitive if it contains an

S-primitive solution. If S = ; then we call such a class simply primitive.

1.2 Classi�cation

The structure of the solution sets depends mainly on the quantity � = �(r; s; t) := 1=r +

1=s + 1=t. First we look at what is known for � > 1. In this case, we have (r; s; t) =

(2; 3; 3); (2; 3; 4); (2; 3; 5); (2; 2; t) (for any t � 2) or permutations of these. This is what we

call the spherical case. Beukers showed that there exists a �nite set of polynomial solutions

such that the integral solutions can be obtained by specialising:

1.2.1. Theorem (Beukers). Let A;B;C 2Z, ABC 6= 0 and r; s; t 2 Z

�2

such that � > 1.

Then the equation Ax

r

+By

s

= Cz

t

has either zero or in�nitely many solutions x; y; z 2Z

with gcd(x; y; z) = 1. Moreover, there is a �nite set of triples X;Y;Z 2 Q[U; V ] with

gcd(X;Y;Z) = 1 and AX

r

+ BY

s

= CZ

t

such that for every primitive integral solution

(x; y; z), there is a triple (X;Y;Z) and u; v 2 Q such that x = X(u; v), y = Y (u; v),

z = Z(u; v).

(See [Beu98].) Beukers' proof is based on the fact that there are only �nitely many number

�elds of bounded degree and rami�cation. In principle, this is an e�ective statement in the

sense that this �nite set of number �elds can be enumerated. This enumeration process is

not very e�cient, however, so practical limitations become inhibitive. In Chapter 3 we will

discuss some special cases where we can determine such a set of polynomials in practice.

A pair u; v, as in the theorem, represents a point (u : v) 2 P

1

(Q). The theorem basically

says that there is a �nite number of rational maps ' : P

1

! P

2

, de�ned over Q, such that

the representatives (x

r=g

: y

s=g

: z

t=g

) of primitive classes of solutions in the P

2

are covered

by the images of P

1

(Q) under the maps '. We say that the solutions are parametrised by

a �nite set of P

1

's.

If � = 1 then (r; s; t) = (3; 3; 3); (4; 4; 2) or (2; 3; 6). This is the Euclidean case. Here,

solutions correspond to rational points on curves of genus 1. We �nd the curves A(x=y)

3

+

B = C(z=y)

3

, A(x=y)

4

+ B = C(z=y

2

)

2

and A(x=z

3

)

2

+ B(y=z

2

)

3

= C respectively. We

basically see the same phenomenon. Primitive solution classes are parametrised by the

rational points on �nitely many algebraic curves. In this case, the curves are of genus 1

instead of genus 0. Depending on the curves, there will be zero, �nitely many or in�nitely

many solutions. However, since the rational points on curves of genus 1 have a very special
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structure (they form a �nitely generated group, if there are any), we still have a fairly

satisfactory description of the primitive solutions in this case.

For � < 1, the hyperbolic case, there is also a �nite set of parametrising curves, but

they are of genus > 1 and so, by Faltings' theorem (Theorem 2.3.3), there is only a �nite

number of primitive solutions:

1.2.2. Theorem (Darmon, Granville). Let A;B;C 2 Z, ABC 6= 0 and r; s; t 2 Z

�2

such that � < 1. Then the equation Ax

r

+ By

s

= Cz

t

has only �nitely many solutions

x; y; z 2Zwith gcd(x; y; z) = 1.

(See [DG95].) The proof is ine�ective in two places. They use Riemann's Existence The-

orem to obtain the parametrising curves and invoke Faltings' theorem to get �niteness of

the set of rational points. The main part of this text deals with making this statement

e�ective in a number of special cases.

The ABC-conjecture suggests an even stronger �niteness result.

1.2.3. Conjecture (ABC-Conjecture). For every � > 0 there are only �nitely many

coprime positive integers a; b; c satisfying the relation a+ b = c such that

log c

log(product of prime divisors of abc)

> 1 + �:

The following argument comes from [Tij89]. Let r; s; t be positive integers. If 1=r +

1=s+1=t < 1, then 1=r+1=s+1=t � 41=42. If we apply the ABC-conjecture with � < 1=41

to (a; b; c) = (Ax

r

; By

s

; Cz

t

) (possibly dividing out common factors to a; b; c), then we get

for each A;B;C 2 Z, that there are only �nitely many pairwise prime triples (x

r

; y

s

; z

t

)

with � < 1 such that Ax

r

+By

s

= Cz

t

. Thus, �niteness should still hold if we allow r; s; t

to vary under the restriction that � < 1, but �xing A;B;C.

From here on, we restrict ourselves to A = B = C = 1. In all spherical cases, we

have in�nitely many solutions and, apart from x

2

+ y

3

= z

5

, we have an e�cient way of

obtaining the parametrisations (see Chapter 3). In [Thi96], some bounds on the number

of needed parametrisations for x

2

+ y

3

= z

5

are derived which are better than the bounds

following from the proof of Theorem 1.2.1, but are not guaranteed to be sharp. In the

Euclidean cases, no nontrivial primitive solutions exist.

For the hyperbolic cases, we �nd that (x; y; z) = (1; 0; 1); (0; 1; 1) are not the only

positive primitive solutions, as can be seen in Table 1.1, copied from [Beu98]. One of the

striking facts is that this table does not contain any example for which r; s; t � 2. This

leads to the following bold conjecture.

1.2.4. Conjecture (Tijdeman, Zagier, Beal Prize Problem). Let x; y; z; r; s; t be positive

integers with r; s; t > 2. If x

r

+ y

s

= z

t

then x; y; z have a factor in common.

This conjecture was also posed by a Dallas banker named Beal, who awarded a prize

for its proof or a counterexample (see [Mau97]).
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1

r

+ 2

3

= 3

2

(r > 6)

13

2

+ 7

3

= 2

9

2

7

+ 17

3

= 71

2

2

5

+ 7

2

= 3

4

3

5

+ 11

4

= 122

2

17

7

+ 76271

3

= 21063928

2

1414

3

+ 2213459

2

= 65

7

33

8

+ 1549034

2

= 15613

3

43

8

+ 96222

3

= 30042907

2

9262

3

+ 15312283

2

= 113

7

Table 1.1: Positive and primitive solutions to x

r

+ y

s

= z

t

; � < 1

1.3 Main results

Although the generalised Fermat equation (even with A = B = C = 1) seems well beyond

present techniques for solving, some of the special cases are solved. For the remainder of

this text, we put A = B = C = 1. As was pointed out in the previous section, the spherical

and Euclidean cases are fairly well understood. In this section, we assume that � < 1.

The case r = s = t is dealt with by Wiles. The equations x

r

+ y

r

= z

2

and x

r

+ y

r

= z

3

are proved not to have any nontrivial primitive solutions in [DM97] for r � 7 (assuming

Shimura-Tanayama-Weil for the latter). There, they also deal with x

r

+y

r

= 2z

r

, a special

case of x

p

+2

�

y

p

+ z

p

investigated in [Rib97]. Poonen deals with x

r

+ y

r

= z

2

, x

r

+ y

r

= z

3

and x

r

+ y

r

= 2z

r

for r < 7 in [Poo98].

According to the ABC-conjecture, the complete list in Table 1.1 should be �nite. In

this thesis we shall show that, for some exponent triples (r; s; t), the list is complete.

1.3.1. Theorem. If x; y; z 2Zsatisfy x

2

� y

4

= �z

6

and gcd(x; y; z) = 1 then xyz = 0.

1.3.2. Theorem. The only integer, pairwise prime, solutions to x

2

+ y

8

= z

3

are

(x; y; z) 2 f(�1; 0; 1); (0;�1; 1); (�1549034;�33; 15613)g

1.3.3. Theorem. The only integer, pairwise prime, solutions to x

8

+ y

3

= z

2

are

(x; y; z) 2 f(�1; 0;�1); (0; 1;�1); (�1; 2;�3); (�43; 96222;�30042907)g:

1.3.4. Theorem. If x; y; z 2Zsatisfy x

2

+ y

4

= z

5

and gcd(x; y; z) = 1 then xyz = 0.

1.3.5. Theorem. The only integer, pairwise prime solutions to x

2

� y

4

= z

5

are

(x; y; z) 2 f(�1; 0; 1); (0;�1;�1); (�122;�11; 3); (�7;�3;�2)g:
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The main part of the rest of this text develops the machinery to prove these theorems.

Upon inspection of Table 1.1, we see that the only r; s; t for which a nontrivial solution

(other than 1 + 2

3

= 3

2

) not dealt with in one of the theorems above exist, are 2; 3; 9 and

2; 3; 7. While 2; 3; 9 seems vulnerable to an attack along the lines presented in this text,

the case 2; 3; 7 seems well out of reach. See [Beu98] for details of what can be done.
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Chapter 2

Basic de�nitions

In this chapter we �x some notation and review some standard results. The reader may

prefer to skim through this chapter rather than read it thoroughly.

2.1 Number �elds

Let K be a number �eld (i.e. a �nite �eld extension of the �eld of rationals Q). Then we

write O

K

, or O if K is understood from the context, for the ring of integers of K (i.e.

the ring of elements that are a root of a monic polynomial over Z). Let p be a prime

ideal of O. Then we write �

p

: K

�

! Z for the normalised discrete valuation related to

it (i.e. �

p

(K

�

) = Z). Let N

O=Z

(p) := #(O=p) denote the norm of p over Z. Then we

de�ne the normalised absolute value related to p by jxj

p

:= N

O=Z

(p)

��

p

(x)

for x 2 K. The

�eld K is a topological �eld with respect to the metric topology induced by this absolute

value and we write K

p

for the metric completion of K. We extend j:j

p

and �

p

to K

p

. The

completion of O is O

p

:= fx 2 K

p

: �

p

(x) � 0g. It is a local ring with maximal ideal

pO

p

= fx 2 K

p

: �

p

(x) � 1g. We choose a uniformiser u

p

2 O at p, i.e. an element such

that (u

p

)O

p

= pO

p

. Dividing out by any power of p gives us a notion of reduction. We

have the following exact sequence.

0 �! p

e

O

p

�! O

p

modp

e

�! O=p

e

�! 0;

where we use that O

p

=p

e

O

p

is canonically isomorphic to O=p

e

. We induce this reduction

map on polynomial ringsO

p

[X

1

; : : : ;X

n

] and free, �niteO

p

-modules with basis by reducing

the coe�cients individually. Note that O=p is a �nite �eld. We write char(p) for the

characteristic of this �eld, i.e. the rational prime that divides N

O=Z

(p).

Field embeddings � : K ,! C give rise to Archimedean absolute values on K. If

�(K) � R, we call � a real place of K. In this case we de�ne jxj

�

= j�(x)j. Otherwise, �

is called a complex place and we write jxj

�

= j�(x)j

2

. These Archimedean places are called

primes at in�nity.

Let Q � K � L be a tower of number �elds. We say that a prime p of L lies above a

prime p of K (notation p j p) if the topology on K induced by j:j

p

is that of j:j

p

. Let S be

a �nite set of primes of sub�elds of K, containing the (unique) in�nite prime of Q. We say

a prime p of K lies outside S (p - S) if p does not lie above any prime in S. We de�ne the

ring of S-integers

(O

K

)

S

= O

S

= fx 2 K : x 2 O

p

for all p - Sg:

7
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Suppose we have a tuple (x

1

; : : : ; x

n

) 2 K

n

. We call such a tuple S-primitive if we have

that min(�

p

(x

1

); : : : ; �

p

(x

n

)) = 0 for every p - S.

Following [Sil86, Chapter X], we adopt the notation

K(S;m) := fx 2 K

�

=(K

�

)

m

: �

p

(x)modm = 0 for all p - Sg:

We have that K(S;m) is �nite. We write � 2 K(S;m) as a shorthand for a representative

� 2 K

�

of an element ofK(S;m). If them-torsion part of the ideal class group is a subgroup

of the part generated by p j S, then K(S;m) = O

�

S

=(O

�

S

)

m

and then the representatives

can be chosen to be m-th power free S-units (as far as m-th power freeness is de�ned for

units). This is trivially the case if the class number (the order of the class group) h(K) of

K is prime to m.

If K � L is a Galois extension (i.e. normal and separable), then we write Gal(L=K)

for the group of �eld automorphisms of L that are the identity on K. We write

�

K for an

algebraic (separable) closure of K and Gal(K) := Gal(

�

K=K) for the absolute Galois group

of K, i.e. the Galois group of the extension K �

�

K.

2.2 Resultants

Let R be an integral domain and let F;G 2 R[X] be polynomials with deg(F ) = n and

deg(G) = m. We write F (X) = f

0

X

n

+ � � � + f

n

and G(X) = g

0

X

m

+ � � � + g

m

and

de�ne

res(F;G) := det

0

B

B

B

B

B

B

B

B

B

@

f

0

: : : f

n

0 0 : : : 0

0 f

0

: : : f

n

0 : : : 0

.

.

.

.

.

.

.

.

.

0 : : : 0 f

0

f

1

: : : f

n

g

0

g

1

: : : g

m

0 : : : 0

.

.

.

.

.

.

0 : : : 0 g

0

g

1

: : : g

m

1

C

C

C

C

C

C

C

C

C

A

9

>

>

=

>

>

;

m

9

=

;

n

:

| {z }

n+m

Consequently, res(F;G) is a polynomial in the coe�cients of F andG, and res(F;G)mod p =

res(F modp; Gmod p), where the latter should be read as the resultant of a degree n and

a degree m polynomial, with leading coe�cients that are possibly 0. Suppose that

F (X) = f

0

n

Y

i=1

(X � �

i

); G(X) = g

0

m

Y

j=1

(X � �

j

)

over some extension of R. As shown in [Lan65, V,x10, Proposition 4], we have that

res(F;G) = f

m

0

g

n

0

Q

n

i=1

Q

m

j=1

(�

i

� �

j

). Consequently, two polynomials over a domain have

a common root only if their resultant vanishes. This gives us the following lemma, which

is the central principle of all the results in this text.
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2.2.1. Lemma. Let K be a number �eld, let F;G 2 O

K

[X;Y ] be non-constant homoge-

neous polynomials and coprime over K. Let m 2Z

>0

and D 2 O

K

. Suppose that S is a set

of primes such that res(F (X; 1); G(X; 1)), res(F (1; Y ); G(1; Y )), D 2 O

�

S

. If x; y; z 2 K

with (x; y; z) S-primitive such that

F (x; y)G(x; y) = Dz

m

;

then there are z

1

; z

2

2 K, with (z

1

; z

2

) S-primitive and �

1

; �

2

2 K(S;m) with �

1

�

2

=D 2

(K

�

)

m

such that

F (x; y) = �

1

z

m

1

;

G(x; y) = �

2

z

m

2

;

�

1

�

2

D

=

�

z

z

1

z

2

�

m

:

Proof: Let p be a prime of K outside S. Note that since F and G have integral coe�cients

and D 2 O

�

p

, we have that m�

p

(z) = �

p

(F (x; y)G(x; y)=D) � min(�

p

(x); �

p

(y)): Therefore

(x; y) is S-primitive as well. So, xmod p 6= 0 or ymod p 6= 0. Assume the latter. Since

res(F (X; 1); G(X; 1)) 2 O

�

p

we have that F (X; 1)mod p andG(X; 1)mod p have no common

root. It follows that �

p

(F (x=y; 1)) = 0 or �

p

(G(x=y; 1)) = 0. By homogeneity, we have

that �

p

(F (x; y)) = �

p

(F (x=y; 1))+deg(F )�

p

(y) = �

p

(F (x=y; 1)) and the same for G. Since

m�

p

(z) = �

p

(Dz

m

) = �

p

(F (x; y)G(x; y)) = �

p

(F (x; y)) + �

p

(G(x; y));

we see that �

p

(F (x; y)); �

p

(G(x; y)) 2 mZfor all p - S. The case xmod p 6= 0 follows from

symmetry. �

Furthermore, we de�ne disc(F ) = res(F; (d=dX)(F )). It is straightforward to check

that res(F;G) j disc(FG).

2.3 Algebraic curves

It is surprising to see how di�cult it is to give a satisfactory elementary de�nition of an

algebraic curve over a number �eld. Intuitively, we mean dimension 1 subsets of a vector

space K

n

over a �eld K, described by polynomial equations. However, we do want to be

able to apply (non-linear) changes of coordinates and we want to look at points at in�nity as

well. Furthermore, we often use reduction mod p. This would lead us to consider schemes

over the ring of integers. The language of schemes, although appropriate, is considered

to be di�cult by many people and, in fact, once a model of a curve is chosen, not really

necessary for e�ective computations.

In this section, we de�ne the concept of a curve (over number �elds, completions of

number �elds, �nite �elds and over their algebraic closures) in terms of smooth projective

models. The reduction map will only be dealt with in relation to a model of the curve

over the ring of integers of a number �eld or a completion of it at a prime. It is in

no way a complete treatment of the subject and we refer the reader to any basic text
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on algebraic geometry for proofs and details. See for instance [Sil86, Chapter I,II] and

[Har77, Chapter IV], although Hartshorne only considers algebraically closed �elds. Our

curves satisfy Hartshorne's de�nition if considered over the algebraic closure of their �eld

of de�nition.

By an algebraic curve over a �eld K we mean a smooth projective, geometrically irre-

ducible variety of dimension 1. Such a curve admits a smooth projective model C over K.

This is given by an ideal I(C) � K[X

0

; : : : ;X

n

], generated by homogeneous polynomials

F

1

; : : : ; F

m

. Let

�

K be an algebraic closure of K. The

�

K-rational points form a non-empty

set

C(

�

K) =

�

(x

0

: : : : : x

n

) 2 P

n

(

�

K) : F

i

(x

0

; : : : ; x

n

) = 0 for i = 1; : : : ;m

	

:

That the model represents a smooth variety of dimension 1, follows if C(

�

K) 6= ;, does not

contain isolated points and for all (x

0

: : : : : x

n

) 2 C(

�

K) we have

rk

�

@F

i

@X

j

(x

0

; : : : ; x

n

)

�

i;j

= n� 1:

Geometrically irreducible means that C(

�

K) is not the union of two strictly smaller sets

C

1

(

�

K) and C

2

(

�

K), given by polynomials over

�

K. Let P = (x

0

: : : : : x

n

) 2 C(

�

K) and

let L be a sub�eld of

�

K containing K. Suppose that x

0

6= 0. We call P L-rational if

x

1

=x

0

; : : : ; x

n

=x

0

2 L. We write K(P ) for the smallest sub�eld L of

�

K such that P is

L-rational. We write C(L) for the set of L-rational points of C.

Note that Gal(L) acts on P

n

(

�

L). If C is de�ned over L and P 2 C(

�

L), then a point

�

P conjugate to P over L will also satisfy the polynomial equations that de�ne C. Thus,

Gal(L) acts on C(

�

L). We can characterise C(L) as the Gal(L)-invariant points C(

�

L)

Gal(L)

.

If K is a number �eld then we can choose F

1

; : : : ; F

m

2 O[X

0

; : : : ;X

n

]. This gives us

a notion of reduction at a prime p of K for projective models

I(Cmod p) = (F

1

mod p; : : : ; F

m

mod p) � (O=p)[X

0

; : : : ;X

n

]:

We say C has good reduction at p if Cmod p is again a smooth projective model over O=p.

Let '

0

; : : : ; '

m

2 K[X

0

; : : : ;X

n

] be homogeneous polynomials of degree d � 0. Then

the (partially de�ned) map

' : P

n

(

�

K) ! P

m

(

�

K)

(x

0

: : : : : x

n

) 7! ('

0

(x

0

; : : : ; x

n

) : : : : : '

m

(x

0

; : : : ; x

n

))

is called a representative of a rational map over K. If '

0

is another representative that

agrees with ' where both are de�ned, then '

0

is said to represent the same rational map.

We denote the represented map with ' as well. A rational map is de�ned where one of its

representatives is de�ned.

Let C and D be smooth projective models of curves over K. A non-constant map

' : D ! C is called a cover over K if it is induced by rational maps over K from the

ambient projective space of D to that of C. As it turns out, such covers can always be

extended to the whole of D(

�

K) and are surjective on C(

�

K). Being de�ned by polynomials,
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the map ' : D(

�

K) ! C(

�

K) has �nite �bres. We put deg(') := max

P2C(

�

K)

#'

�1

(fPg). If

deg(') = 1, then ' is invertible and '

�1

is again a cover over K. In that case, C and D are

called birationally equivalent. A curve over K can be de�ned as a birational equivalence

class of smooth projective models over K. We will often not distinguish between a curve

and a representing model.

The set of degree 1 covers C ! C over K forms a group and is called the group

of automorphisms Aut

K

(C) of C over K. We write Aut(C) := Aut

�

K

(C). Suppose that

' : D ! C is a cover over K. We write Aut(D=C) for the subgroup of automorphisms

� 2 D such that ' � � = '. If #Aut(D=C) = deg('), then ' is called a Galois cover

and we write Gal(D=C) := Aut(D=C). As a shorthand, we sometimes write (Gal(D=C)n:) :

D ! Gal(D=C)nD for '. Note that, although suppressed in this notation, the choice of '

is important in this construction, especially if Gal(D=C) 6� Aut

K

(D).

A curve D over K that is birational to C over

�

K by a cover  : D ! C (but not

necessarily over K) is called a twist of C. Note that Gal(K) acts on Aut(C), induced by

the action on C(

�

K). We write Twist(C=K) for the set of twists of C modulo isomorphisms

over K. In terms of group cohomology (see [Ser79, Chapter VII] for instance), we have

Aut

K

(C) = H

0

(Gal(K);Aut(C)). Elements of H

1

(Gal(K);Aut(C)) can be represented by

maps � : Gal(K) ! Aut(C) satisfying the cocycle property �(�

1

� �

2

) =

�

1

(�(�

2

)) � �(�

1

).

The following theorem links twists to 1-cocyles.

2.3.1. Theorem. Let C be a curve over a �eld K of characteristic 0. Then the map

Twist(C=K) ! H

1

(Gal(K);Aut(C))

 7! (� 7!

�

 �  

�1

)

is a bijection.

(See [Sil86, Theorem X.2.2].)

Consider the a�ne part fX

0

6= 0g � P

n

with coordinate functions Y

1

= X

1

=X

0

; : : : ; Y

n

=

X

n

=X

0

. A projectivemodel C leads to an a�ne model given by I

a�

C

= (F

i

(1; Y

1

; : : : ; Y

n

))

i=1:::m

.

Smoothness implies that for any P

0

2 C(

�

K) there is an a�ne model and a coordinate func-

tion Y

i

such that Z(P ) := Y

i

(P )�Y

i

(P

0

) is a uniformiser at P

0

, i.e. all coordinate functions

can be uniquely expressed as formal power series in Z such that P (Z) = (1 : Y

1

(Z) : : : : :

Y

n

(Z)) 2 C(K(P )[[Z]]) with P (0) = P

0

and Y

i

(P (Z)) = Z + Y

i

(P

0

).

Let ' : D ! C be a cover of curves over K, let P 2 D(

�

K), Z be a uniformiser of D at

P and Y

1

; : : : ; Y

n

be coordinate functions of an a�ne part of C such that Y

i

('(P )) = 0.

We can express the Y

i

uniquely as power series in Z. This gives us e 2 Z

>0

such that

Y

i

(Z) = 0modZ

e

and Y

i

(Z) 6= 0modZ

e+1

. We write ord

P

(Y

i

) := e. We de�ne the

rami�cation index of ' at P as e

P

(') := minford

P

(Y

1

� Y

1

(P )); : : : ; ord

P

(Y

n

� Y

n

(P ))g

and we call ' rami�ed at P if e

P

(') > 1. For �elds of characteristic 0 we have that

P

P2'

�1

(fQg)

e

P

(') = deg('). Covers are rami�ed at only �nitely many points.

We will not explicitly de�ne the genus of a curve here. We will only need that genus(C) 2

Z

�0

is a birational invariant and obeys the following lemma.

2.3.2. Theorem (Hurwitz). Let ' : D ! C be a �nite cover of smooth curves over a
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�eld K of characteristic 0. Then

2(genus(D) � 1) = 2deg(')(genus(C)� 1) +

X

P2D(

�

K)

(e

P

(')� 1):

(See [Sil86, Theorem II.5.9] or [Har77, IV.2].)

We will often meet curves given as covers of the projective line. If such a cover is Galois

with cyclic Galois group, we say that the curve is a cyclic cover of the projective line. We

restrict ourselves to cyclic covers with an a�ne model Y

m

= F (X) where F is a square

free polynomial. Such a model is smooth at all �nite points. For m = 2, we have that with

respect to U = 1=X and V = Y=X

ddeg(F )=2e

, we get the model V

2

= U

2ddeg(F )=2e

F (1=U).

The points at in�nity in the original model correspond to points with U = 0 and this

model is smooth there. If 2 j n+1, then there is only one such point and we denote it with

1. Otherwise, there are 2 of those points. We denote these with 1

+

and 1

�

. Instead of

working with a smooth model of cyclic covers, we will work with this singular model and

understand it to represent the smooth curve corresponding to it.

A motivating fact for the work in this thesis is that for a curve C over a number �eld

K, the genus turns out to be crucial for the arithmetic properties of C.

2.3.3. Theorem (Faltings). Let C be a curve over a number �eld K with genus(C) � 2.

Then C(K) is �nite.

(See [Fal83] and [Fal84] or [Bom90].)

2.4 Elliptic curves

An elliptic curve E over K is an algebraic curve E over K with genus(E) = 1, together

with a point O 2 E(K). The map E ! Pic

0

(E) given by P ! [P � O] induces an abelian

group structure on E, where O is the neutral element. This makes E a group variety, which

we write additively (see [Sil86] for proofs and details). Such curves admit (in characteristic

6= 2; 3) what we will call a projective twisted Weierstrass model in P

2

with coordinates

(X : Y : D)

E : Y

2

D = X

3

+ a

2

X

2

D + a

4

XD

2

+ a

6

D

3

;

sending O to the point 1 = (0 : 1 : 0). This relates to the ordinary a�ne Weierstrass

model

U

2

= V

3

+ a

2

V

2

+ 

2

a

4

V + 

3

a

6

via (U; V ) = (Y=(D);X=(D)). The group law is characterised by the rules that 1 is

neutral and that P

1

+P

2

+P

3

=1 if and only if P

1

; P

2

; P

3

are collinear. We write E for an

elliptic curve (given by a Weierstrass model) and E for the corresponding genus 1 curve.

Naturally, if we consider non-constant maps E

1

! E

2

between elliptic curves, we should

insist that the distinguished point of E

1

lands on the distinguished point on E

2

. Covers

between elliptic curves with this property are called isogenies. They are automatically

group homomorphisms.
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We have the following theorem.

2.4.1. Theorem (Mordell-Weil theorem). Let E be an elliptic curve over a number �eld

K. Then the group E(K) is �nitely generated. Thus there is an r 2 Z

�0

(the rank of

E(K)) and a �nite subgroup E

tor

(K) � E(K) such that E(K)

�

=

Z

r

� E

tor

(K).

(See [Sil86, Theorem VIII.6.7].)

Let E be a twisted Weierstrass model over a number �eld K with ; a

2

; a

4

; a

6

2 O (so

it is actually a model over O). Let p be a prime of good reduction of E. Then E is also

a curve over K

p

and E(K

p

) ! (Emod p)(O=p) is a surjective group homomorphism. We

de�ne the kernel of reduction E

(1)

(K

p

) to be the kernel of this map.

0 �! E

(1)

(K

p

) �! E(K

p

)

modp

�! (Emod p)(O=p) �! 0:

We de�ne the a�ne coordinates Z = X=Y , W = D=Y . The function Z is a uniformiser

around 1 and we have the equation

W = Z

3

+ a

2

Z

2

W + a

4

ZW

2

+ a

6

W

3

:

Note that P 2 E

(1)

(K

p

) implies Z(P ) 2 pO

p

. Let E(O[

�1

][[Z]]) denote the collection of

formal power series solutions to E, i.e. triples X;Y;D 2 O[

�1

][[Z]] such that Y

2

D =

X

3

+ a

2

X

2

D + a

4

XD

2

+ a

6

D

3

as formal power series. We consider G(Z) 2 E(O[

�1

][[Z]])

de�ned by Z(G(Z)) = Z and G(Z)mod (Z

2

) = (Z : 1 : 0)modZ

2

. We expand the

group law in a power series F (Z

1

; Z

2

) = Z(G(Z

1

) + G(Z

2

)) 2 O[

�1

][[Z

1

; Z

2

]]. As is

described in [Sil86, Chapter IV], this leads to a formal group F in one variable Z with

coe�cients inO[

�1

]. The group E

(1)

(K

p

) is isomorphic to F(pO

p

) (good reduction implies

 2 O

�

p

). By [Sil86, Proposition IV.5.5] we have a power series Log

F

(Z) 2 K[[Z]] with

Log

F

(Z) = Z mod(Z

2

) and if �

p

(char(p)) < char(p)� 1, then by [Sil86, Theorem IV.6.4],

Log

F

: F(pO

p

)! pO

p

is a group isomorphism. This induces a group isomorphism

Log

p

: E

(1)

(K

p

)! pO

p

;

with inverse Exp

p

. Furthermore, since for z 2 pO

p

we have Log

F

(z)modp

2

= zmodp

2

, it

follows that if G

1

; G

2

2 E

(1)

(K

p

) then Z(G

1

+G

2

)mod p

2

= Z(G

1

) + Z(G

2

)mod p

2

.

Note that the concept of reduction is dependent on the chosen model E over O. In

that sense, the notation E

(1)

(K

p

) is misleading, since it suggests an object given over K

p

.

Writing 0 ! E

(1)

(O

p

)! E(O

p

) would be even more misleading, since this would suggest

we are looking at p-integral points, which most people would interpret as points with p-

integral values for X=D and Y=D. As long as one remembers that E

(1)

(K

p

) is a set with a

group structure which comes from a formal group F over O and that the object is really

dependent on the chosen model, misunderstandings are unlikely to arise. As to whether

the

(1)

should be a super- or a subscript, authors do not agree. In this text a superscript

is chosen since subscripts are used to distinguish di�erent curves. The parentheses are

just ornaments to avoid confusion with an exponent. In some books, a

0

is used (see for

instance [CF96]). This is not preferable, since the index 0 is widely used to indicate the
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inverse image of the smooth part of Emod p (which is not the whole of E in the case of

bad reduction).

The inclusion E(K) ,! E(K

p

) splits the study of E(K) in two subgroups of groups of

which we have a better understanding.

0 E(K) \ E

(1)

(K

p

)

E(K) E(K)mod p

0

0 E

(1)

(K

p

)

E(K

p

)
(Emod p)(O=p)

0

w w

y

u

w

y

u

w

y

u

w w w

modp

w

2.4.2. Theorem (Hasse). Let E be an elliptic curve over a �nite �eld F . Then

j#F + 1�#E(F )j � 2

p

#F:

(See [Sil86, Theorem V.1.1].)

We will use the following lemma to bound the size of the torsion subgroup of elliptic

curves.

2.4.3. Lemma. Let E be a Weierstrass model over a number �eld K with good reduction

at p and suppose that �

p

(char(p)) < char(p)� 1. Then

E

tor

(K) ,! (E(K)mod p) � (Emod p)(O=p)

as groups.

Proof: Since E(K) � E(K

p

) and E

(1)

(K

p

)

�

=

pO

p

, and thus free of torsion, we have that

E(K

p

) ! E(K

p

)=E

(1)

(K

p

) does not kill any torsion. Then the induced map on E(K) is

injective on torsion too. �



Chapter 3

Some spherical cases

In this chapter, we discuss an e�cient way of determining a set of parametrising curves for

some Fermat equations. The method utilises common factors in the exponents and yields

a full parametrisation in all spherical cases except x

2

+ y

3

= z

5

. These parametrisations

were �rst calculated by Zagier and published (without proof) in [Beu98].

The �rst section discusses the underlying principles that also apply to some nonspherical

cases. These were �rst sketched in [DG95]. The second section applies the method to some

spherical cases that are of interest to the rest of this thesis.

3.1 Parametrisation of F (x; y) = Dz

m

In this section we show how Lemma 2.2.1 leads to an e�ective and practical way to �nd the

parametrising curves for the S-primitive solutions of a weighted homogeneous equation of

the form F (x; y) = Dz

n

(where F is a square free homogeneous polynomial of degree n � 2)

over a number �eld K. First we investigate the underlying geometry of the parametrising

curves.

Let K be a number �eld and let F (X;Y ) 2 O

K

[X;Y ] and D 2 O

K

. Let S be a set

of primes such that disc(F (X; 1));disc(F (1; Y ));D 2 O

�

S

. The presence of D allows us

to assume that F is monic in X. Let L be a splitting �eld of F (X; 1) over K. We have

�

1

; : : : ; �

n

2 L such that F (X;Y ) =

Q

n

i=1

(X � �

i

Y ). Note that � 2 Gal(L=K) acts

as a permutation on the �

i

and use this to �x Gal(L=K) ,! S

n

. We write

�

�

i

= �

�(i)

.

Suppose that x; y; z is an S-primitive solution in K. Lemma 2.2.1 gives that we have

�

1

; : : : ; �

n

2 L(S;m) with (�

1

� � � �

n

)=D 2 (K

�

)

m

and S-primitive (z

1

; : : : ; z

n

) 2 L

n

such

that

x� �

i

y = �

i

z

m

i

z =

m

q

�

1

����

n

D

z

1

� � � z

n

:

Since x; y 2 K, we can assume, without loss of generality, that

�

�

i

= �

�(i)

and

�

z

i

= z

�(i)

for � 2 Gal(L=K). If F is irreducible over K then Gal(L=K) acts transitively on the �

i

,

so then �

1

determines all �

i

. See Lemma 3.1.2 for details.

If we eliminate x and y from these equations, then we see that (z

1

; : : : ; z

n

) must be a

zero of the ideal

I

�

:= f(�

i

� �

j

)(�

k

Z

m

k

� �

l

Z

m

l

)� (�

k

� �

l

)(�

i

Z

m

i

� �

j

Z

m

j

)g

i;j;k;l

15
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such that its image under ' : (Z

1

; : : : ; Z

n

) 7!

�

j

�

i

Z

m

i

��

i

�

j

Z

m

j

�

i

Z

m

i

��

j

Z

m

j

is K-rational (corresponding

to x=y), where the de�nition of ' is independent of the actual choice of i; j because of

the relations generating I

�

. Also note that the zero-locus of I

�

does not intersect any

Z

i

= Z

j

= 0, since the �

i

are distinct.

We claim that the model C

�

described by I

�

is a smooth projective model of a curve

over L in P

n�1

. For n = 2 we have nothing to prove, since I

�

= 0, so C

�

= P

1

, which is

smooth. Otherwise, we have that, away from Z

i

= Z

k

= 0,

d

�

Z

i

Z

k

�

=

(�

k

� �

i

)�

j

(�

k

� �

j

)�

i

mZ

m�1

j

mZ

m�1

i

d

�

Z

j

Z

k

�

;

so Z

j

=Z

k

can be used as a uniformiser there.

Let � be a primitive m-th root of unity. The variety C

�

has several automorphisms.

Consider �

i

: P

n�1

7! P

n�1

de�ned by Z

i

7! �Z

i

. Note that �

n

= (�

1

� � � � � �

n�1

)

�1

. It is

straightforward to check that ' : C

�

! P

1

is �nite of degree m

n�1

and Galois with Galois

group h�

1

; : : : ; �

n

i.

To conclude that C

�

is actually geometrically irreducible, we consider the following

argument. Since C

�

is smooth, it is a disjoint union of components. Each �

i

has a �xed

point, so the component containing that point is mapped to itself by �

i

. Since C

�

is a Galois

cover of the (connected) projective line, we have that the abelian Galois group h�

1

; : : : ; �

n

i

acts transitively on the set of components of C

�

. Consequently, the �

i

act as the trivial

permutation on the components, so there is only one.

Since

�

I

�

= I

�

and

�

' = ' for � 2 Gal(L=K), we see that both are de�ned over K, so

' : C

�

! P

1

is in fact a model of a cover over K. Furthermore, C

�

has good reduction at

primes outside S [ fp j mg.

We can now calculate the genus of C

�

using Theorem 2.3.2. Note that #'

�1

(fag) =

m

n�1

if a 62 f�

1

; : : : ; �

n

g and #'

�1

(f�

i

g) = m

n�2

. As a consequence,

P

P2C(

�

K)

(e

P

(') �

1) = nm

n�2

(m� 1). Since genus(P

1

) = 0 we get

genus(C

�

) = 1 +m

n�2

�

1

2

n(m� 1)�m

�

:

Now suppose that x; y; z is an S-primitive K-rational solution to F (x; y) = Dz

m

and

that a = x=y (if y = 0, then a is the point 1 2 P

1

(K)). Suppose P 2 '

�1

(fag). If

� 2 Gal(

�

K=K) then

�

'(P ) =

�

a = a. Since

�

' = ', it follows that there is a �

�

2 Gal(C=P

1

)

such that

�

P = �

�

(P ). It is easy to check that �

P

: � 7! �

�

is a cocycle. By Theorem 2.3.1

there is a curve C

P

over K and a degree 1 cover  : C

P

! C

�

(not necessarily over K) such

that �

P

= (� 7!

�

  

�1

). Since

�

( 

�1

(P )) =

�

 

�1

(�

�

(P )) =

�

 

�1�

  

�1

(P ) =  

�1

(P );

we see that  

�1

(P ) 2 C

P

(K). Furthermore, since ' is � -invariant, ' �  

�1

: C

P

! P

1

is

a cover over K and a 2 ' �  

�1

(C

P

(K)). We see that the C

P

form a parametrising set

of curves for the S-primitive solutions. (Note that the C

�

themselves are twists of each

other). To see that we only need a �nite number of C

P

, we need that C

P

has again good
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m

17

reduction outside S and that the number of twists with this property is �nite. This follows

from [Sil86, Lemma X.4.3]. Alternatively, �niteness follows from Lemma 2.2.1 together

with Lemma 3.1.2. Summarising:

3.1.1. Theorem. Let K, F (x; y) = Dz

m

and S be as above. Then there is a �nite number

of Galois-covers '

P

: C

P

! P

1

over K with Gal(C

P

=P

1

)

�

=

(Z=mZ)

n�1

, where C

P

is of

genus 1 +

1

2

m

n�2

(n(m� 1)�m) and has good reduction outside S [ fmg such that

[

C

P

'

P

(C

P

(K)) =

�

(x : y) : F (x; y) = Dz

m

with x; y; z 2 K and (x; y; z) S-primitive

	

:

The C

P

are all birationally equivalent over

�

K and the '

P

are rami�ed exactly above the

points (x : y) for which F (x; y) = 0.

While the model C

�

is well suited to analyse the underlying geometry of the problem,

it is not very useful for explicitly determining a set of curves. This is partly because

the model itself is a priori given over L and that we conclude that C

�

is de�ned over

K by Galois invariance. This means that even the question P 2 C

�

(K) is not easily

answered. Furthermore, while by the correspondence proved in Theorem 2.3.1, determining

the appropriate twists is e�ective, it is not a very practical procedure. We can do better.

First, note that if F = F

1

F

2

with F

1

; F

2

2 O

K

[X;Y ] then we can apply Lemma 2.2.1

to obtain a �nite number of systems of equations over O

K

of the form

�

F

1

(x; y) = �z

m

1

F

2

(x; y) = D�

m�1

z

m

2

:

Therefore, it is enough to deal with the case that F is irreducible over K. Let � be a

root of F (X; 1) and let L = K(�). Then, applying Lemma 2.2.1 over L we see that for an

S-primitive solution x; y; z there exists a � 2 L(S;m) and a

0

; : : : ; a

n�1

2 K such that

x� �y = � (a

0

+ a

1

�+ � � � + a

n�1

�

n�1

)

m

z =

m

q

N

L=K

(�)

D

N

L=K

�

P

n�1

i=0

a

i

�

i

�

:

We have unique forms b

�;i

2 K[X

0

; : : : ;X

n�1

], homogeneous of degree m, such that

n�1

X

i=0

b

�;i

(a

0

; : : : ; a

n�1

)�

i

= �

�

a

0

+ a

1

�+ � � � + a

n�1

�

n�1

�

m

:

Consequently, (x : y) = (b

�;0

(a

0

; : : : ; a

n�1

) : �b

�;1

(a

0

; : : : ; a

n�1

)) and b

�;i

(a

0

; : : : ; a

n�1

)

should vanish for i = 2; : : : ; n� 1. This gives us

3.1.2. Lemma. Let K, F , D and S be as above. Suppose that F is irreducible over K,

that � is a root of F (X; 1) and that L = K(�). Suppose that x; y; z 2 K are S-primitive

and satisfy F (x; y) = Dz

m

. Then there are a

0

; : : : ; a

n�1

2 K and � 2 L(S;m) with

N

L=K

(�)=D 2 (K

�

)

m

such that for the b

�;i

as de�ned above, we have

(x : y) = (b

�;0

(a

0

; : : : ; a

n�1

) : �b

�;1

(a

0

; : : : ; a

n�1

))

b

�;i

(a

0

; : : : ; a

n�1

) = 0 for i = 2; : : : ; n� 1.
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This shows that for irreducible F , models of the C

P

mentioned in Theorem 3.1.1 are

given by ideals of the form

I

P

= (b

�;2

(X

0

; : : : ;X

n�1

); : : : ; b

�;n�1

(X

0

; : : : ;X

n�1

))

for appropriate values of � 2 L(S;m) and that '

P

takes the form (b

�;0

(X

0

; : : : ;X

n�1

) :

�b

�;1

(X

0

; : : : ;X

n�1

)). These models have the advantage of being completely explicit, over

K, and e�ciently computable.

3.2 Solutions

In this section we apply the ideas of the previous section to several spherical equations.

Note that, in each case, we are interested in primitive solutions x; y; z. Lemma 2.2.1 only

tells us something about S-primitive solutions, where S contains some primes related to

the equation. The complete primitivity yields congruences on the parameters s; t at the

primes in S as well. In general, it is a rather laborious job to determine these. We will

only say something about s; t at primes in S if we use this information later on.

3.2.1. Lemma. Let x; y; z be coprime integers such that x

2

+ y

2

= z

2

. Possibly by

interchanging x and y, we can assume that x is divisible by 2. Then there are coprime

integers s and t, not both odd, such that

8

<

:

x = 2st;

y = s

2

� t

2

;

�z = s

2

+ t

2

:

Proof: This is a classical result. That x and y are not both odd can be seen mod 4. The

polynomials can be obtained by observing that y

2

= z

2

� x

2

= (z + x)(z � x). �

3.2.2. Lemma. Let x; y; z be coprime integers such that x

2

+ y

2

= z

3

. Then there are

coprime integers s; t such that

8

<

:

x = s(s

2

� 3t

2

);

y = t(t

2

� 3s

2

);

z = s

2

+ t

2

:

Proof: This is a direct application of Lemma 3.1.2. Write i =

p

�1 and L = Q(i). Note

that S = f2; 3g and L(S; 3) = h1 + i; 3i and that none has a norm that is a third power.

That s and t must be integral and coprime, follows from the polynomials. �

To get a taste of the kind of arguments one meets when determining parametrisations

in more complicated situations, we give the proof of the following lemma in detail. In other

situations, one proceeds in a similar fashion.

3.2.3. Lemma (Zagier). Let x; y; z be pairwise prime integers such that x

2

+ y

4

= z

3

.

Then there are s; t 2Z

f2;3g

such that one of the relations in Table 3.1 holds.
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x = 4st(s

2

� 3t

2

)(s

4

+ 6s

2

t

2

+ 81t

4

)(3s

4

+ 2s

2

t

2

+ 3t

4

)

�y = (s

2

+ 3t

2

)(s

4

� 18s

2

t

2

+ 9t

4

)

z = (s

4

� 2s

2

t

2

+ 9t

4

)(s

4

+ 30s

2

t

2

+ 9t

4

)

�x = (s

4

+ 12t

4

)(s

8

� 408s

4

t

4

+ 144t

8

)

y = 6st(s

4

� 12t

4

)

z = s

8

+ 168s

4

t

4

+ 144t

8

�x = (3s

4

+ 4t

4

)(9s

8

� 408s

4

t

4

+ 16t

8

)

y = 6st(3s

4

� 4t

4

)

z = 9s

8

+ 168s

4

t

4

+ 16t

8

�x = (1=8)(s

4

+ 3t

4

)(s

8

� 102s

4

t

4

+ 9t

8

)

y = (3=2)st(s

4

� 3t

4

)

z = (1=4)(s

8

+ 42s

4

t

4

+ 9t

8

)

Table 3.1: Parametrisations of x

2

+ y

4

= z

3

Proof: From Lemma 3.2.2 it follows that there are s; t 2Zsuch that y; s; t form a primitive

solution to t(t

2

�3s

2

) = �y

2

. First note that the sign of the left hand side can be controlled

by the sign of t. It therefore su�ces to look at t(t

2

� 3s

2

) = y

2

. By Lemma 2.2.1 we have

� 2 f1;�1; 3;�3g and y

1

; y

2

2 Q such that t = �y

2

1

and t

2

� 3s

2

= �y

2

2

. Modulo 3; 9 we see

that only for � = 1;�3 we have solutions. We treat these cases separately. First suppose

� = 1. Then t

2

� y

2

2

= 3s

2

. It follows that for some � 2 f�1;�2;�3;�6g (this need not

be the � we have used before), we have s

1

; s

2

2 Q such that

t = y

2

1

=

1

2

�(s

2

1

+ 3s

2

2

)

y

2

=

1

2

�(s

2

1

� 3s

2

2

)

s = ��s

1

s

2

It follows that � > 0 and, since 2 is inert in Q(

p

�3), we have 2 j �. For � = 2 we get

s

2

1

+3s

2

2

= y

2

1

and for � = 6 we get 3s

2

1

+(3s

2

)

2

= y

2

1

. Therefore, by interchanging s

1

and s

2

we see that these cases are equivalent in the sense that both belong to the same parametric

family. We restrict to � = 2.

Again, we conclude that there is a � 2 f�1;�2;�3;�6g (not necessarily equal to any

of the �s we have used before) and u; v 2 Q such that

y

1

=

1

2

�(u

2

+ 3v

2

)

s

1

=

1

2

�(u

2

� 3v

2

)

s

2

= �uv:

If we substitute these expressions back in the forms for s; t and remember that s; t are

coprime integers, we see that 2 j �. Furthermore, the sign of � only inuences the sign of

y. We obtain forms for x; y; z that are equivalent to the �rst parametrisation in Table 3.1

if we let u; v be rational multiples of the s; t in the table.
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This leaves the case

t = �3y

2

1

t

2

� 3s

2

= �3y

2

2

�y = 3y

1

y

2

:

Then we have � 2 f�1;�2;�3;�6g and t

1

; t

2

2 Q such that

s =

1

2

�(t

2

1

+ 3t

2

2

);

y

2

=

1

2

�(t

2

1

� 3t

2

2

);

t = �3y

2

1

= �3�t

1

t

2

:

From the last equation, we conclude that there is an � 2 f�1;�2;�3;�6g and u; v 2 Q

such that

�t

1

= ��u

2

;

�t

2

= �v

2

:

It follows that t = �3�

2

�

2

u

2

v

2

and s =

1

2

�

2

(�

3

u

4

+ 3�v

4

). If s; t are to be coprime integers,

then 3 - �; �. Upon inspection, one sees that the signs of � and � are only going to a�ect

the signs of x; y; z. Furthermore, � = 1; � = 2 does not lead to any s; t that are integral

and primitive at 2. The case � = � = 2 leads (up to rational scaling) to the second

parametrisation in Table 3.1 and � = 2; � = 1 and � = � = 1 lead to the third and fourth

parametrisation respectively. This concludes the proof. �

3.2.4. Lemma. Let x; y; z 2 Zbe coprime integers satisfying x

2

+ y

2

= z

5

. Then there

exist s; t 2Z

f2;5g

with (s; t)modp 6= (0; 0) for any p - 10 such that

8

<

:

x = t(t

4

� 10t

2

s

2

+ 5t

4

)

y = s(s

4

� 10s

2

t

2

+ 5t

4

)

z = s

2

+ t

2

Proof: Let i

2

= �1. Then x

2

+ y

2

= (x+ iy)(x� iy). Since x and y are coprime, we have

(x + iy; x � iy) j 2. Consequently, x + iy = �(s + it)

5

, where � is some �fth power free

2-unit in Z[i] such that N(�) is a �fth power. Since there 2 = �i(1 + i)

2

, it follows that �

is a unit. Since every unit in Z[i] is a �fth power, we can assume that � = 1. This is an

application of Lemma 3.1.2 again. �

3.2.5. Lemma. Let x; y; z 2 Zbe coprime integers satisfying x

2

� y

2

= z

5

. Then there

exist s; t 2Z

f2;5g

with (s; t) 6= (0; 0)mod p for any prime p - 10 such that

8

<

:

�x =

1

2

(s

5

+ t

5

)

y =

1

2

(s

5

� t

5

)

�z = st

or

8

<

:

�x = s

5

+ 8t

5

y = s

5

� 8t

5

�z = 2st

Proof: By factorisation, it follows that there are s; t 2 Z

f2;5g

and a �fth power free � 2 Z

such that, neglecting the sign of y, x+y = �s

5

and x�y = �

4

t

5

. Since x and y are coprime,

we can take � j 2. Note that (�; s; t) 7! (��;�s; t) corresponds to (x; y; z) 7! (x; y;�z).
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�x = (s

2

� 3 t

2

)(s

4

+ 18 t

2

s

2

+ 9 t

4

)

y = �(s

2

+ 2 ts+ 3 t

2

)(s

2

� 2 ts+ 3 t

2

)(s

2

+ 6 ts+ 3 t

2

)(s

2

� 6 ts + 3 t

2

)

�z = 4 st(s

2

+ 3 t

2

)(3 s

4

� 2 t

2

s

2

+ 3 t

4

)(s

4

� 6 t

2

s

2

+ 81 t

4

)

�x = 6 st(s

4

+ 12 t

4

)

y = (s

4

� 12 t

2

s

2

� 12 t

4

)(s

4

+ 12 t

2

s

2

� 12 t

4

)

�z = (s

4

� 12 t

4

)(s

8

+ 408 t

4

s

4

+ 144 t

8

)

�x = 6 st(3 s

4

+ 4 t

4

)

y = (3 s

4

+ 12 t

2

s

2

� 4 t

4

)(3 s

4

� 12 t

2

s

2

� 4 t

4

)

�z = (3 s

4

� 4 t

4

)(9 s

8

+ 408 t

4

s

4

+ 16 t

8

)

�x = s

6

+ 40 t

3

s

3

� 32 t

6

y = �8 t s(s

3

� 16 t

3

)(s

3

+ 2 t

3

)

�z = (s

6

+ 32 t

6

)(s

6

� 176 t

3

s

3

� 32 t

6

)

�x = s

6

+ 6 s

5

t� 15 s

4

t

2

+ 20 t

3

s

3

+ 15 s

2

t

4

+ 30 st

5

� 17 t

6

y = 2 (s

4

� 4 ts

3

� 6 t

2

s

2

+ 4 t

3

s � 7 t

4

)(s

4

+ 6 t

2

s

2

� 8 t

3

s� 3 t

4

)

�z = 3 s

12

� 12 ts

11

+ 66 t

2

s

10

+ 44 t

3

s

9

� 99 t

4

s

8

� 792 t

5

s

7

+ 924 t

6

s

6

�2376 t

7

s

5

+ 1485 t

8

s

4

+ 1188 t

9

s

3

� 2046 t

10

s

2

+ 156 t

11

s � 397 t

12

�x = 9 s

6

� 18 ts

5

+ 45 t

2

s

4

� 60 t

3

s

3

+ 15 t

4

s

2

+ 6 t

5

s� 5 t

6

y = �2 (3 s

4

� 6 t

2

s

2

+ 8 t

3

s� t

4

)(3 s

4

� 12 ts

3

+ 6 t

2

s

2

� 4 t

3

s + 3 t

4

)

�z = 27 s

12

+ 324 ts

11

� 1782 t

2

s

10

+ 3564 t

3

s

9

� 3267 t

4

s

8

+ 2376 t

5

s

7

� 2772 t

6

s

6

+3960 t

7

s

5

� 4059 t

8

s

4

+ 2420 t

9

s

3

� 726 t

10

s

2

+ 156 t

11

s� 29 t

12

Table 3.2: Parametrisations of x

4

+ y

3

= z

2

So, if we neglect the sign of z, we can assume that � is positive. Taking � = 1; 2 gives the

relations mentioned above. The map (s; t) 7! (�s;�t) induces (x; y; z) 7! (�x;�y; z), so

the mentioned relations also take into account the sign of y. �

We do not use the following lemma in the rest of this thesis, but for completeness we

do include it here. Since the proof is along the same lines as the lemmas above, we do not

give it here.

3.2.6. Lemma (Zagier). Let x; y; z 2 Zbe coprime integers satisfying x

3

+ y

3

= z

2

. Then

there exist s; t 2 Z

f2;3g

with (s; t) 6= (0; 0)mod p for any prime p - 6 such that one of the

following holds:

8

<

:

x or y = s

4

+ 6s

2

t

2

� 3t

4

y or x = �s

4

+ 6s

2

t

2

+ 3t

4

z = 6st(s

4

+ 3t

4

)

8

<

:

x or y =

1

4

(s

4

+ 6s

2

t

2

� 3t

4

)

y or x =

1

4

(�s

4

+ 6s

2

t

2

+ 3t

4

)

z =

3

4

st(s

4

+ 3t

4

)

8

<

:

x or y = s(s

3

+ 8t

3

)

y or x = 4t(t

3

� s

3

)

�z = s

6

� 20s

3

t

3

� 8t

6
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3.2.7. Lemma (Zagier). Suppose x; y; z are coprime integers such that x

4

+y

3

= z

2

. Then

there are s; t 2Z

f2;3g

such that one of the relations in Table 3.2 holds.

(Completely analogous to Lemma 3.2.3 but, as can be seen from the table, a little more

work.)



Chapter 4

Some hyperbolic cases

In this chapter we determine all primitive solutions to the hyperbolic generalised Fermat

equations x

2

� y

4

= �z

6

, x

2

� y

8

= z

3

and x

2

� y

4

= z

5

. First we solve some cases that

can be done using relatively elementary techniques. Then we develop some more general

techniques and apply them to the remaining equations.

4.1 The equations x

2

� y

4

= �z

6

This section is part of [Bru97]. We solve the generalised Fermat equations with exponents

2, 4 and 6. These form very good examples for the more general methods that will be

discussed in the next section because, as it turns out, the fundamental ideas can be applied

to elliptic curves over Q.

The strategy pursued is the following. First we observe that we have x

2

+(y

2

)

2

= (�z

2

)

3

and thus that y

2

and z

2

satisfy relations given by Lemma 3.2.2, or that x

2

�(y

2

)

2

= �(z

3

)

2

,

so that y

2

and z

3

satisfy relations given by Lemma 3.2.1. In each case we obtain a �nite

number of Diophantine equations over Q in U; V;W of the form

DV

2

= U

6

+ c

1

W

6

or DV

2

= (U

2

+ c

1

W

2

)(U

4

+ c

2

U

2

W

2

+ c

3

W

4

):

In both cases, we have that (X;Y ) = (U

2

=W

2

; V=W

3

) gives an equation of the form

DY

2

= X

3

+ a

2

X

2

+ a

4

X + a

6

. This equation describes an elliptic curve, the rational

points of which form an abelian group. If this group is �nite, then there are only �nitely

many candidates for values of (X;Y ) and thus for (U : V :W ).

For the second form, we can apply Lemma 2.2.1 to get a �nite number of equations

U

2

+ c

1

W

2

= D�V

2

1

; U

4

+ c

2

U

2

W

2

+ c

3

W

4

= �V

2

2

:

If, for some value of �, one of these equations has no solutions over Q

p

, then we will not get

any solutions from that �. Otherwise, we can try to �nd a rational solution to the second

equation. By writing X = U=W;Y = V

2

=W

2

we get �Y

2

= X

4

+ c

2

X

2

+ c

3

. This describes

a curve of genus 1 over Q. If we have a rational point on that curve, we can use that point

to make the curve into an elliptic curve. Again if the group of rational points on such a

curve is �nite, then only �nitely many solutions to the original equation come from that

curve. We have to consider all relevant values of �, however.

23
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In both constructions we start out with a curve given by a polynomial equation of the

form C : D(V=W

3

)

2

= F (U=W ) of genus 2, the rational points of which give solutions to the

Diophantine equation under consideration. The �rst construction realises a cover over Q

from C to an elliptic curve E. Rational points of C necessarily map to rational points on E.

If E(Q) is �nite, then simple enumeration gives us C(Q). The second construction is a bit

more subtle. The geometric interpretation is explained in Section 5.2. This interpretation

is not essential for applying the method.

4.1.1. Theorem. If x; y; z 2Zare coprime such that x

2

+ y

4

= z

6

, then xyz = 0.

Proof: Suppose we have a primitive solution x; y; z. Then, by applying Lemma 3.2.2 to

x

2

+ (y

2

)

2

= (z

2

)

3

, we have coprime a; b 2Zsuch that

x = b(3a

2

� b

2

) (4.1)

y

2

= a(a

2

� 3b

2

) (4.2)

z

2

= a

2

+ b

2

: (4.3)

Equation (4.3) implies that either a = s

2

� t

2

; b = 2st or a = 2st; b = s

2

� t

2

. We treat

each of the possibilities separately.

The case a = s

2

� t

2

; b = 2st: By substitution in Equation (4.2), we get

y

2

= (s

2

� t

2

)(s

4

� 14s

2

t

2

+ t

4

):

Note that t = 0 implies that b = 0 and thus x = 0. We can therefore safely put Y =

y=t

3

;X = s

2

=t

2

. Solutions with x 6= 0 correspond to a�ne rational points on the elliptic

curve

Y

2

= (X � 1)(X

2

� 14X + 1):

Using GP/Pari or Apecs, one can calculate the minimal model and the conductor of this

curve. From this, we see that it is isomorphic to 144A2 from Cremona's tables [Cre92].

These tables show that this curve has only one a�ne rational point, namely (1; 0). This

corresponds to solutions with y = 0.

The case a = 2st; b = s

2

� t

2

: Put s� t = u; s+ t = v. This gives a = (v

2

� u

2

)=2; b = uv.

Substitution in Equation (4.2) yields

8y

2

= (v

2

� u

2

)(v

4

� 14v

2

u

2

+ u

4

):

Note that u = 0 implies that b = 0 and thus x = 0. By putting Y = y=u

3

, X = v

2

=u

2

,

other solutions correspond to a�ne rational points on the elliptic curve

8Y

2

= (X � 1)(X

2

� 14X + 1):

This curve is isomorphic to 576A2 in [Cre92] and has only one a�ne rational point, namely

(1; 0). This corresponds to solutions with y = 0. �

4.1.2. Theorem. If x; y; z 2Zare coprime such that x

2

= z

6

+ y

4

, then xyz = 0.
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Proof: Suppose we have a primitive solution x; y; z. Then Lemma 3.2.1 states that there

exist coprime s; t of distinct parity such that y

2

= 2st; z

3

= s

2

� t

2

or y

2

= s

2

� t

2

; z

3

= 2st.

We treat these cases separately.

The case y

2

= 2st; z

3

= (s + t)(s � t): Since gcd(y; x) = 1 and s + t and s � t are both

odd, we have that s + t and s � t are coprime. Therefore, there exist u; v 2 Zsuch that

u

3

= s� t, v

3

= s+ t. Rewriting y

2

in u; v gives

2y

2

= v

6

� u

6

:

Note that u = 0 implies that s = t and thus z = 0. Other solutions correspond to the

a�ne rational points on the elliptic curve curve 2Y

2

= X

3

� 1, which is isomorphic to

576E1 and has just (1,0) as a�ne rational point.

The case y

2

= s

2

� t

2

; z

3

= 2st: Since y is odd, we have y

2

= 1mod 4. Therefore, s is odd.

From z

3

= 2st we then conclude that s = v

3

; t = 4u

3

. Rewriting y

2

in u; v gives

y

2

= v

6

� 16u

6

:

Note that u = 0 implies t = 0 and thus z = 0. Other solutions correspond to a�ne rational

points on the elliptic curve Y

2

= X

3

� 16, which is 432A1 in [Cre92]. The curve has no

a�ne rational points at all. �

4.1.3. Theorem. If x; y; z 2Zare coprime such that x

2

+ z

6

= y

4

, then xyz = 0.

Proof: Suppose we have a primitive solution x; y; z. If z 6= 0 then y

4

� x

2

> 0. Therefore,

both y

2

�x > 0 and y

2

+x > 0. Since x and y are coprime, gcd(y

2

�x; y

2

+x) j 2. Possibly

after change of sign of x we have y

2

� x = 2u

6

; y

2

+ x = 2

5

v

6

or y

2

� x = u

6

; y

2

+ x = v

6

.

We treat these cases separately.

The case y

2

� x = 2u

6

; y

2

+ x = 2

5

v

6

: Eliminating x gives

y

2

= u

6

+ 16v

6

:

Note that v = 0 implies that z = 0. Other solutions correspond to a�ne rational points on

the elliptic curve Y

2

= X

3

+ 16, which is isomorphic to 27A3 and has only the two a�ne

rational points (0; 4); (0;�4). The corresponding solutions have u = z = 0.

The case y

2

�x = u

6

; y

2

+x = v

6

: It follows that u and v are odd and coprime. Eliminating

x gives 2y

2

= u

6

+v

6

. Proceeding as before does not work, as the elliptic curve 2Y

2

= X

3

+1

has in�nitely many rational points. However, we remark that, by Lemma 2.2.1,

2y

2

= (u

2

+ v

2

)(u

4

� u

2

v

2

+ v

4

)

implies that

u

2

+ v

2

= � y

2

1

;

u

4

� u

2

v

2

+ v

4

= � y

2

2

;
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where �� = 2y

2

0

and �; � consist only of factors 2 and 3. Positivity shows that �; � > 0 and

modulo 3 we see that 3 - �. Furthermore, the parity of u and v implies that u

4

�u

2

v

2

+ v

4

is odd. Therefore we have

u

2

+ v

2

= 2y

2

1

(4.4)

u

4

� u

2

v

2

+ v

4

= y

2

2

(4.5)

Solutions of (4.5) correspond to rational points on the genus 1 curve Y

2

= X

4

�X

2

+ 1,

which is birational to 27A1 which has 8 rational points. These are f1

+

;1

�

; (0;�1); (�1;�1)g

on our model. The points at in�nity and (0;�1) correspond to solutions with v = 0 and

u = 0 respectively. Equation (4.4) has no solution for those points. Solutions corresponding

to (�1;�1) have u

6

= v

6

, which implies that x = 0. �

Proof of Theorem 1.3.1: Collect the results of Theorems 4.1.1, 4.1.2 and 4.1.3.

4.2 Overview of general method

In Section 4.1 we saw that a number of Diophantine equations can be solved by relating

the solutions of the equation to the rational points on some elliptic curves of rank 0. For

the other equations we treat in this thesis, these techniques do not apply. Either such

elliptic curves do not exist or they are of positive rank.

In Sections 4.3 through 4.5 we develop the machinery to treat such more general cases.

In Section 4.3 we consider an elliptic curve E over a number �eld K with a non-zero 2-

torsion point de�ned over K. We describe a method of bounding #E(K)=2E(K), which in

turn gives a bound on the rank of E(K). This gives us the tools to get enough information

about the Mordell-Weil group of E over K in the cases that we are interested in. At the

end, we include a worked example to show how the method works in practice.

For x

2

� y

4

= �z

6

, we could �nd elliptic curves over Q such that solutions to the

equation correspond to rational points on the curves. In the more general cases, we �nd

that solutions to the equation under consideration correspond to K-rational points G of

some elliptic cover ' : E ! P

1

over a number �eld K such that '(G) 2 P

1

(Q). As it turns

out, in each case we can get ' to be of degree 2. In Section 4.4 we investigate the structure

of degree 2 elliptic covers of the projective line.

In Section 4.5 we put everything together to �nd a way of bounding '(E(K))\P

1

(Q).

First we use Section 4.3 to get an adequate description of E(K). Then Section 4.4 gives

us the structure of ' : E ! P

1

. An adaptation of Chabauty's technique (see for instance

[Fly97]) for bounding the number of rational points on a curve of genus � 2 gives the

required results. A necessary condition for the method to work is that rk(E(K)) < [K : Q].

At the end we include a worked example to show how the method works in practice.
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4.3 Descent on elliptic curves using 2-isogeny

In Section 4.1 we saw that knowledge of the structure of the set of rational points on an

elliptic curve helps to solve some Diophantine equations. In the sequel, we meet elliptic

curves E over number �elds K. We will need the group structure of E(K). As was pointed

out in Theorem 2.4.1, E(K) consists of a free part and a torsion part. Lemma 2.4.3

helps to bound E

tor

(K). In this section, we discuss a method of bounding #E(K)=2E(K)

for curves of a certain type. This gives a (hopefully sharp) bound on rk(E(K)). This

section basically describes [Sil86, Theorem X.4.9]. At some places, we use a somewhat

di�erent notation (for instance, we deal with twisted Weierstrass forms) and we discuss

some enhancements which might help carrying out the procedure over number �elds other

than Q.

Let K be a number �eld and consider an elliptic curve over K of the form

E : Y

2

= X

3

+AX

2

+BX:

Such a curve has a non-trivial 2-torsion point T = (0; 0). Dividing out the subgroup fO;Tg

gives an isogeny of degree 2 to

E

0

: Y

2

= X

3

� 2AX

2

+ (A

2

� 4B)X

given by

 : E ! E

0

(X;Y ) 7! (

Y

2

X

2

;

Y (B�X

2

)

X

2

)

Analogously, there is an isogeny

 

0

: E

0

! E

(X;Y ) 7! (

Y

2

4X

2

;

Y (A

2

�4B�X

2

)

8X

2

)

We assume that ;A;B are in O

K

. Let S be the set of primes dividing 2 (A

2

� 4B)

together with the in�nite primes. The models E and E

0

have (possibly) bad reduction at

the primes in S. Given some �eld L � K (for instance a localisation of K), it is easy to

check that the map

�

( 

0

)

L

: E(L)= 

0

(E

0

(L)) ! L

�

=(L

�

)

2

(x; y) 7! x (x 6= 0;1)

(0; 0) 7! B

1 7! 1

is an injective group homomorphism. We de�ne �

( )

L

analogously. For L = K, it is

straightforward to check that �

( 

0

)

K

(E(K)) � K(S; 2). Note that a class represented by �

is in the image of �

( 

0

)

L

if and only if

H

�

: V

2

= 

2

�

3

U

4

+ �

2

AU

2

+ �B
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has a point (u; v) 2 H

�

(L). A corresponding point on E(L) is (�u

2

; uv) for u 6= 0;1.

Note that H

1

and H

B

indeed contain points with u =1 and u = 0, respectively.

For every prime p of K, we have the commutative diagram

E(K)= 

0

(E

0

(K)) K(S; 2)

E(K

p

)= 

0

(E

0

(K

p

))
K

�

p

=(K

�

p

)

2

w

�

( 

0

)

K

u

u

w

�

( 

0

)

K

p

Consequently, if H

�

(K) is non-empty, then H

�

(K

p

) is non-empty for all primes p of K.

The set of � for which H

�

has points everywhere locally, is called the Selmer-group of  

0

,

S

( 

0

)

(E=K) :=

n

� 2 K(S; 2) : � 2 �

( 

0

)

K

p

(E(K

p

)) for all p of O

K

o

:

This set contains the image of E(K)= 

0

(E

0

(K)) and we hope it is isomorphic to it.

Since H

�

will certainly have points locally at primes not in S, we can calculate S

( 

0

)

by enumerating all � and see if H

�

(K

p

) is non-empty for all p j S (and for the real

places of K). This method generally works well, but especially when working over a

large degree extension of Q, it is reassuring to have some certi�cate for the obtained

bound. We can do so by taking the intersections of the pullbacks of �

( 

0

)

K

p

(E(K

p

)) un-

der K(S; 2) ! K

�

p

=(K

�

p

)

2

for p 2 S and p j 1, since, as it turns out, we can calculate

#(E(K

p

)= 

0

(E

0

(K

p

)))#(E

0

(K

p

)= (E(K

p

))) beforehand.

Since the multiplication-by-2 on E factors as  

0

�  , we have Diagram 4.1 with exact

rows and columns. For brevity, the designators (L) are left out. The diagram holds for the

L-valued points for any �eld L � K. We see that

#E(L)=2E(L) =

#E

0

(L)= (E(L))#E(L)= 

0

(E

0

(L))

4=#E[2](L)

: (4.6)

Note that  is of degree 2, so E[ ](L) = f(0; 0);1g regardless of L. Since E(K

p

) is a Lie-

group of dimension 1 over K

p

we have that, locally, the multiplication-by-2 map multiplies

the Haar-measure with j2j

p

and, consequently,

#E(K

p

)=2E(K

p

) = #E[2](K

p

)=j2j

p

:

See [FPS97, page 451] for more information or [CF96, Chapter 7,x5, x6] for a more algebraic

argument. These two formulas give the cardinalities of the images of �

( )

K

p

and �

( 

0

)

K

p

. We

get

#E

0

(K

p

)= (E(K

p

))#E(K

p

)= 

0

(E

0

(K

p

)) = 4=j2j

p

:

With this, we can give a list of p-adic points on E(K

p

) that provably generate E(K

p

)= 

0

(E

0

(K

p

)).

These determine a subspace of the F

2

-vector spaceK(S; 2) containing �

( 

0

)

K

(E(K)= 

0

(E

0

(K))).

The intersection of several such subspaces gives a (hopefully sharp) bound on #E(K)= 

0

(E(K)).
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0 0 0

0

E[2]=E[ ]
E

0

[ 

0

] E

0

[ 

0

]= (E[2])

0

0

E=E[ ]

E

0

E

0

= (E)

0

0

E=E[2]

E

E=2E

0

0

E= 

0

E

0

E= 

0

E

0

0

0 0

u
u u

w w

u

w

u

w

u

w w

 

u

w

u

 

0

w

u

w w

[2]

u

w

u

w

u

w w

u

w

u

Diagram 4.1: The 2-isogeny for elliptic curves

Combining (4.6) with the fact that if r is the rank of the free part of E(K), then

#E(K)=2E(K) = 2

r

#E[2](K);

we get the (hopefully sharp) bound

2

r

�

1

4

#S

( 

0

)

(E=K)#S

( )

(E

0

=K):

Now, if we have a subgroup hG

1

; : : : ; G

r

1

i � E(K) that maps onto �

( 

0

)

K

(E(K)= 

0

(E(K)))

and hG

0

1

; : : : ; G

0

r

2

i � E

0

(K) has the same property, then

hG

1

; : : : ; G

r

1

;  

0

(G

0

1

); : : : ;  

0

(G

0

r

2

)i � E(K)

is of odd index. To prove divisibility properties with respect to other primes, the following

lemma is useful. We remind the reader of the de�nition Z := X=Y in Section 2.4.

4.3.1. Lemma. Let E be an elliptic curve over a number �eld L and let p 2Zbe a prime

> 2, unrami�ed in O

L

=Z, such that E has good reduction at p

i

j p and #(Emod p

i

)(O=p

i

)

is prime to p for i = 1; : : : ;m. Let B

1

; : : : ; B

r

2 E(L) with B

j

= 0mod p

i

such that

hB

1

; : : : ; B

r

i in E(L) is of �nite index divisible by p, then there are n

1

; : : : ; n

r

2 Z

p

with (n

1

; : : : ; n

r

) 6= (0; : : : ; 0)mod p such that n

1

Z(B

1

) + � � � + n

r

Z(B

r

) = 0mod p

2

i

for

i = 1; : : : ;m.

Proof: The conditions in the lemma imply that there exists a G 2 E(L) and n

1

; : : : ; n

r

2Z,

not all divisible by p, such that n

1

B

1

+ � � � + n

r

B

r

= pG. Let i 2 f1; : : : ;mg. Note

that pG 2 E(L) \ E

(1)

(L

p

i

). Since the reduction group has order prime to p, we have

that G = 0mod p

i

. By the good reduction properties, we have n

1

Log

p

i

(B

1

) + � � � +
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n

r

Log

p

i

(B

r

) = pLog

p

i

(G). The statement follows by observing that Z = Log

p

i

mod p

2

i

and that Z(E

(1)

(L

p

i

)) = 0mod p

i

. �

As an example, we prove the following lemma (which is chosen such that we can use

the result later on in Section 4.6).

4.3.2. Lemma. Let � =

p

3, K = Q(�) and

E : 2Y

2

= X

3

� 2�X:

Then E

tor

(K) = f1; G

2

:= (0; 0)g and hG

1

:= (2; � � 1); G

2

i is a subgroup of E(K) of

odd index prime to 23. Let p; q j 23 such that �mod p = 7 and �modq = �7. Then

hG

1

; G

2

imod p spans E(K)mod p and the same for q.

Proof: First, we describe the arithmetic structure of K. We have that O

�

K

= h�1; � =

2 + �i, 2O = p

2

2

and 3O = p

2

3

, where p

2

= (1 + �)O and p

3

= �O. The ideal class group

of O is trivial. E has good reduction outside S = f2; 3g and K(S; 2) is represented by

elements of h�1; �; �; 1 + �i.

We start with bounding E

tor

(K). Let p

13

be the prime above 13 such that �modp

13

=

9. Counting shows that #(Emod p

13

)(O=p

13

) = 10, that #(hG

1

; G

2

imod p) = 12 and that

#(hG

1

; G

2

imod q) = 24. By Theorem 2.4.2 we have #(Emod p)(O=p) = #(Emod q)(O=q) =

24. Applying Lemma 2.4.3 shows that #E

tor

2

(L) j 10; 24. Since G

2

is 2-torsion point, we

have E

tor

(K) as stated in the lemma.

We use a 2-isogeny descent to determine the rank. Note that the size of K(S; 2) gives

an a priori bound rk(E) � 6, since the Selmer groups are subgroups of K(S; 2).

Let E

0

: 2Y

2

= X

3

+ 8�X be the 2-isogenous curve to E. We have G

0

1

= (2 + 2�; 4 +

4�) 2 E

0

(K) and  

0

(G

0

1

) = G

1

. We start with L = K

p

2

. Note that j2j

p

2

= 1=4, so

dim

F

2

E(L)= 

0

(E

0

(L)) + dim

F

2

E

0

(L)= (E(L)) = 4. Since K(S; 2) ! L

�

=(L

�

)

2

is injective,

this already gives rk(E) � 2. Apart from G

0

1

and (0; 0), we have a point with X = 2 + 4�

in E

0

(L). Computation modulo a su�ciently high power of p

2

shows that they are F

2

-

independent in E

0

(L)= (E(L)). In E(L) we have G

2

, which spans a 1-dimensional space

in E(L)= 

0

(E

0

(L)). This shows that we have generators of the image of �

( )

L

and �

( 

0

)

L

.

Pulling back shows that �

( )

K

(E

0

(K)) � h8�;� � 1;��i � K(S; 2) and �

( 

0

)

K

(E(K)) �

h�2�i � K(S; 2):

We combine this information with information at L = K

p

3

. Here we have that (0; 0)

spans a 1-dimensional space in E(L)= 

0

(E

0

(L)) and E

0

(L)= (E(L)) and by j2j

p

3

= 1, it

spans the whole space in both cases. Since � � 1 is a non-square unit in O

p

3

, we see that

� � 1 62 S

( )

(E

0

=K). Consequently, rk(E(K)) < 2 and G

1

; G

2

span a subgroup of odd

index.

From Hasse, we know that 15 � #(Emod p)(O=p);#(Emod q)(O=q) � 33. Con-

sequently, the subgroup generated by hG

1

; G

2

imod p has index � 2 in E(L)mod p and

hG

1

; G

2

imod q index 1 in E(L)mod q. Since this index divides the odd number [E(L) :

hG

1

; G

2

i], it follows that it is 1 in both cases.

To see that hG

1

; G

2

i is of index prime to 23, we prove that h12G

1

i has the same

property. This follows from applying Lemma 4.3.1 using that Z(12G

1

) = 23 � 21mod p and

Z(12G

1

) = 23 � 16mod q. �
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4.4 Elliptic covers of degree 2

Let E be an elliptic curve over a number �eld L. In this section we determine what degree

2 covers ' : E ! P

1

look like. Suppose that E is a twisted Weierstrass model over the

ring of integers O

L

of a number �eld L.

E : Y

2

D = X

3

+ a

2

X

2

D + a

4

XD

2

+ a

6

D

3

Suppose that ' is a degree 2 cover E ! P

1

over L. Then we can choose a model

('

1

(X;Y;D) : '

2

(X;Y;D)), with '

1

; '

2

2 O

L

[X;Y;D] homogeneous polynomials of equal

degree. By choosing a�ne coordinates on P

1

, we write ' = '

1

='

2

. Since deg(') = 2,

there are at most two points G

1

; G

2

2 E(

�

L) such that '(G

1

) = '(G

2

) = 0. These two

points determine the intersection of '

1

(X;Y;D) = 0 with E in P

2

. If G

1

= G

2

, then

'

1

(X;Y;D) = 0 should be tangent to E in G

1

. Along the same lines, there are two points

G

3

; G

4

with '(G

3

) = '(G

4

) =1. Up to scalar multiplication, ' is determined by the lines

through G

1

and G

2

and through G

3

and G

4

. We can assume '

1

= c

11

X + c

12

Y + c

13

D

and '

2

= c

21

X + c

22

Y + c

23

D, with c

ij

2 O

L

. Note that '

1

(X;Y;D) = 0 has 3 points of

intersection with E and so has '

2

(X;Y;D) = 0. For ' to have degree 2, we must have

that the unique point G

'

with '

1

(G

'

) = '

2

(G

'

) = 0 lies on E. If we de�ne

G

';1

= c

12

c

23

� c

13

c

22

G

';2

= c

13

c

21

� c

11

c

23

G

';3

= c

11

c

22

� c

12

c

21

then we have G

'

= (G

';1

: G

';2

: G

';3

). The map � = �

'

: E ! E that interchanges

the elements of the �bres of ' is an involution, i.e. � 2 Aut(E) (where E is the algebraic

curve corresponding to E) and � � � = id. From [Sil86, Corollary III.10.2] we know

that Aut(E)[2] = f[1]; [�1]g and from [Sil86, Example III.4.7] that an automorphism of

E as a curve is the composition of an automorphism of E as an elliptic curve with a

translation. Translations over 2-torsion points are involutions, but they give unrami�ed

covers (see Section 4.3). Thus, there is a G

�

2 E(

�

L) such that � (G) = G

�

�G. Note that

G

2

= � (G

1

) = G

�

�G

1

. Therefore G

1

, G

2

and �G

�

are collinear. Note however that G

'

is

collinear with G

1

and G

2

as well. It follows that G

�

= �G

'

and thus that � is de�ned over

L. We will either assume that G

�

6= G

'

or that G

�

= G

'

= 1. If G

'

= G

�

, then we can

take G

'

=1 by choosing the distinguished point on the algebraic curve corresponding to

E.

We now derive some expressions that allow us to calculate p-adic approximations to '.

Let p be a prime of O

L

. We call p a good prime with respect to ' : E ! P

1

if

� E has good reduction at p

� '

1

mod p and '

2

modp have degree 1 and are linearly independent

� if G

'

6= �G

'

, then G

'

mod p 6= �G

'

mod p

� �

p

(char(p)) < char(p)� 1.
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Suppose that p is such a prime. Then Exp

p

: pO

p

! E

(1)

(L

p

) is a group isomorphism

with the property that Z(Exp

p

(z)) = zmodp

2

. Let G 2 E(L

p

) with Gmod p 6= G

�

mod p.

Then, by choosing coordinates on P

1

(i.e., by interchanging '

1

and '

2

if necessary), we

can assume that '(G)mod p 6=1. Then '(G+Exp

p

(z)) is a power series with coe�cients

in L and convergent on pO

p

with values in O

p

. We derive some approximations to these

power series. Suppose that z 2 pO

p

. If G =1 and G

�

6= G

'

then

'(Exp

p

(z)) = '(1) +

G

';3

c

2

22

zmod p

2

:

Put F

0

(x) = 3x

2

+ 2a

2

x+ a

4

. If G = (x; y) and Gmod p 6=1, then

'((x; y) + Exp

p

(z)) = '(x; y) +

F

0

(x)(xG

';3

�G

';1

)� 2y(yG

';3

�G

';2

)

(c

21

x+ c

22

y + c

23

)

2

zmod p

2

:

Now suppose that G

�

= G

'

=1. Then '(X : Y : D) = (c

11

X + c

13

D)=(c

21

X + c

23

D) and

� = [�1]. Consequently, '(Exp

p

(Z)) and '((x; 0) + Exp

p

(Z)) will be power series in Z

2

.

Using higher order terms, we derive

'(Exp

p

(z)) =

c

11

c

21

+

G

';2

c

21

z

2

mod p

3

;

'((x; 0) + Exp

p

(z)) = '(x; 0)�

F

0

(x)G

';2

(c

21

x+ c

23

)

2

z

2

mod p

3

:

4.5 Rationality restrictions on elliptic covers

Let Q � K � L be number �elds and let ' : E ! P

1

be an elliptic cover de�ned over

L. In this section we propose a method for determining the L-rational points G on E

such that '(G) is K-rational. Note that, although ' is just de�ned over L, the answer to

this question requires P

1

to be viewed as a curve over K and not over L. The method we

explain here might give a sharp bound on the number of such G if rk(E(L)) < [L : K]. In

Proposition 4.5.3 as well as in Sections 4.6, 4.7 and 4.8, we will only deal with cases where

K = Q.

By Theorem 2.4.1, E(L) is a �nitely generated abelian group. Suppose that E(L) =

hG

1

; : : : ; G

r

; G

r+1

; : : : ; G

r+t

i, where hG

1

; : : : ; G

r

i 'Z

r

and hG

r+1

; : : : ; G

r+t

i is �nite.

We choose a prime p of O

K

such that all p j p of O

L

are unrami�ed in O

L

=O

K

,

�

p

(char(p)) < char(p) � 1, E has good reduction at p and 'mod p : (Emod p) ! P

1

is

again a cover.

Choose B

1

; : : : ; B

r

� E(L) such that

hB

1

; : : : ; B

r

i =

\

pjp

�

E

(1)

(L

p

) \ E(L)

�

:

Since E(L)=hB

1

; : : : ; B

r

i is �nite, we need only �nitely many G

0

2 E(L) to cover E(L)

with translates G

0

+ hB

1

; : : : ; B

r

i.
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We �x G

0

and try to determine how many points G of the form G = G

0

+ n

1

B

1

+

� � � + n

r

B

r

exist such that '(G) 2 P

1

(K). Note that '(G) is K-rational if and only if

1='(G) is. If p; q j p such that '(G

0

)mod p = 1 and '(G

0

)mod q 6= 1, then there is

no G = G

0

+ n

1

B

1

+ � � � n

r

B

r

with '(G) 2 P

1

(K), as this would imply '(G

0

)mod p =

'(G

0

)mod q. Therefore, by changing from ' to 1=' if necessary, which corresponds to a

K-rational coordinate transformation on P

1

, we can assume that '(G

0

)mod p 6=1 for any

p j p. Since B

1

; : : : ; B

r

2 E

(1)

(L

p

) for all p j p, we have

n

1

B

1

+ � � �+ n

r

B

r

= Exp

p

(n

1

Log

p

(B

1

) + � � �+ n

r

Log

p

(B

r

)):

Consequently, we can write

�

G

0

p

(n

1

; : : : ; n

r

) = '

�

G

0

+ Exp

p

�

X

n

i

Log

p

(B

i

)

��

2 L[[n

1

; : : : ; n

r

]];

which is convergent for (n

1

; : : : ; n

r

) 2 (O

p

)

r

and has values in O

p

. If '(G

0

+

P

n

i

B

i

) 2

P

1

(K), then, identifying P

1

(L) n f1g with L, we have �

G

0

p

(n

1

; : : : ; n

r

) 2 O

p

� O

p

. If q j p

as well then �

G

0

p

(n

1

; : : : ; n

r

) = �

G

0

q

(n

1

; : : : ; n

r

). These requirements can be expressed in

power series over K in the following way. Let I = [L

p

: K

p

] and let 1; �; : : : ; �

I�1

be an

O

p

-basis of O

p

. Then there are unique �

G

0

p;i

2 K

p

[[n

1

; : : : ; n

r

]] such that

�

G

0

p

= �

G

0

p;0

+ ��

G

0

p;1

+ � � �+ �

I�1

�

G

0

p;I�1

:

The statement '(G

0

+

P

n

i

B

i

) 2 P

1

(K) translates into �

G

0

p;i

and �

G

0

p;0

� �

G

0

q;0

having a simul-

taneous zero in (n

1

; : : : ; n

r

) for all p; q j p and i � 1. Taking all these conditions together,

this corresponds to some �

G

0

2 K

p

[[n

1

; : : : ; n

r

]]

[L:K]�1

vanishing in (n

1

; : : : ; n

r

). If p splits

completely (i.e. L

p

= K

p

for all p j p) then it is particularly easy to express this power

series. Suppose that p

1

; : : : ; p

m

j p. Then

�

G

0

(n

1

; : : : ; n

r

) =

0

B

@

�

G

0

p

2

(n

1

; : : : ; n

r

)� �

G

0

p

1

(n

1

; : : : ; n

r

)

.

.

.

�

G

0

p

m

(n

1

; : : : ; n

r

)� �

G

0

p

1

(n

1

; : : : ; n

r

)

1

C

A

:

It is often possible to give a bound on the number of zeros that such a power series has

if r < m. The following lemma is an example of the kind of arguments that might apply.

4.5.1. Lemma. Let O

p

be a complete local ring with maximal ideal p and

f = (f

1

; : : : ; f

m

) 2 (O

p

[[X

1

; : : : ;X

r

]])

m

;

convergent on O

r

p

. Write X = (X

1

; : : : ;X

r

). If one of the following conditions holds,

� f(X

1

; : : : ;X

r

) = b + AXmod p, where A is an m � r matrix over O

p

such that

Amod p has rank r,

� f

i

(0; : : : ; 0) = 0,

@f

i

@X

j

(0; : : : ; 0) = 0 and f

i

(X

1

; : : : ;X

r

) = X

t

A

i

Xmod p for all i; j,

where the A

1

; : : : ; A

m

are symmetric r � r matrices such that the projective variety

in P

r�1

described by fX

t

(A

i

modp)X = 0g

i=1;::: ;m

has no points over O

p

=p,
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then f has at most one zero in O

r

p

.

Proof: Let u be a uniformiser of O

p

. Consider the �rst case. Note that g(X) = f(X)� b�

AX 2 (pO

p

[[X

1

; : : : ;X

r

]])

m

. If x 2 (O

p

)

r

and f(x) = 0 then we have that Ax = �bmod p.

By assumption, there is at most one such xmod p. It remains to show that f cannot

have two zeros reducing to the same vector mod p. Suppose that there is an e � 1

and x; y 2 (O

p

)

r

, y 6= 0mod p, such that f(x) = f(x + u

e

y) = 0. Subtraction yields

0 = �u

e

Ay + g(x)� g(x+ u

e

y). By the assumption on the rank of A and y 6= 0mod p, it

follows that �u

e

Ay 6= 0mod p

e+1

, but since all coe�cients of g are divisible by p, we have

that g(x) = g(x+ u

e

y)mod p

e+1

. It follows that such y; e cannot exist.

For the second case, suppose that there is a y 2 O

r

p

with ymod p 6= 0 and an e � 0

such that f(u

e

y) = 0. Then 0 = f

i

(y) = u

2e

y

t

A

i

ymodp

2e+1

. It follows that y reduces to a

point on fX

t

(A

i

mod p)X = 0g

i=1;::: ;m

. �

We apply these ideas to the case where deg(') = 2. We adopt the notation from Section 4.4

and we assume that the p j p are good with respect to ' : E ! P

1

. If we stay away from

G

'

mod p then the formulas given there lead to

�

1

p

= '(1) +

G

';3

c

2

22

r

X

i=1

n

i

Z(B

i

)mod p

2

;

�

(x;y)

p

= '(x; y) +

F

0

(x)(xG

';3

�G

';1

)� 2y(yG

';3

�G

';2

)

(c

21

x+ c

22

y + c

23

)

2

r

X

i=1

n

i

Z(B

i

)mod p

2

;

which enables us to compute �

1

mod p

2

and �

(x;y)

mod p

2

. For the case G

'

= G

�

= 1 we

have

�

1

p

=

c

11

c

21

+

G

';2

c

21

r

X

i;j=1

n

i

n

j

Z(B

i

)Z(B

j

)mod p

3

;

�

(x;0)

p

= '(x; 0)�

F

0

(x)G

';2

(c

21

x+ c

23

)

2

r

X

i;j=1

n

i

n

j

Z(B

i

)Z(B

j

)mod p

3

:

which enable us to compute �

1

mod p

3

and �

(x;0)

mod p

3

in these cases. Note that the fact

that ' is even in this case, guarantees that only monomials of even degree occur in �

1

and

�

(x;0)

. Furthermore, since �

p

(Z(B

i

)) � 1, we only need Z(B

i

)mod p

2

to compute any of

these approximations. We summarise this information in

Z(B)=u

p

=

0

B

@

Z(B

1

)=u

p

mod p

1

� � � Z(B

r

)=u

p

mod p

1

.

.

.

.

.

.

.

.

.

Z(B

1

)=u

p

mod p

m

� � � Z(B

r

)=u

p

mod p

m

1

C

A

where u

p

is some �xed uniformiser for p in K. (Since the p

i

are unrami�ed over p, u

p

is

also a uniformiser for p

i

in L).
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For simplicity, we assumed that we have generators of E(L). Note that E

(1)

(L

p

) is iso-

morphic to pO

p

and as such has an O

p

-module structure. In particular, it is an O

p

-module.

In fact, instead of generators of E(L), we only need E(L)mod p and a set fB

1

; : : : ; B

r

g 2

E(L) that generates an O

p

-module in E

(1)

(L

p

) containing

T

(E

(1)

(L

p

)\E(L)). This means

that we only have to prove that

char(p) -

2

4

\

pjp

�

E

(1)

(L

p

) \ E(L)

�

: hB

1

; : : : ; B

r

i

3

5

;

which is much easier to establish. For instance, this follows from Lemma 4.3.1 if all L

p

= K

p

and Z(B)=u

p

mod p has rank r. If E(L)mod p = hG

1

; : : : ; G

r+t

i, then representatives of

E(L)mod p are easily generated.

We assumed that we used the information at all primes of L above p. The argument

might already work if we just use the information at p

1

; : : : ; p

m

j p with

P

m

i=1

[L

p

: K

p

] > r.

Then, it is su�cient to take B

1

; : : : ; B

r

to generate a subgroup of

T

m

i=1

(E

(1)

(L

p

i

) \ E(L))

of index prime to char(p). Thus, we can bound the number of G 2 E(L) with K-rational

image under ' in a p-adic neighbourhood by bounding the number of zeros of �

G

0

. This

can be done using Lemma 4.5.1. We have the following.

4.5.2. Lemma.Let K;L; p; p

1

; : : : ; p

m

and ' : E ! P

1

be de�ned as above. Let G 2 E(L).

� If �

G

mod p 6= 0, then '(G)mod p is not hit by '(E(L)) \P

1

(K).

� If '(G) 2 P

1

(L) and �

G

=p satis�es the �rst condition in Lemma 4.5.1, then G

and �

'

(G) are the only G

0

2 E(L) such that '(G

0

) 2 P

1

(K) and '(G)mod p =

'(G

0

)mod p.

� If G = G

'

= G

�

= (0 : 1 : 0) and �

G

=p

2

satis�es the second condition in Lemma 4.5.1,

then G is the only G

0

2 E(L) such that '(G

0

) 2 P

1

(K) and '(G)mod p = '(G

0

)mod p.

As an example we prove the following proposition. The example is chosen such that the

result can be used later on.

4.5.3. Proposition. Let � =

p

3 and let L = Q(�). Let E : 2Y

2

= X

3

� 2�X and let

' : E ! P

1

be the cover (X;Y )! X. Then '(E(L)) \P

1

(Q) = f1; 0; 2g.

Proof: We refer to Lemma 4.3.2 for notation. We have Emodp : Y

2

= X

3

+ 9X

and Emod q : Y

2

= X

3

+ 14X. The following describes hG

1

; G

2

imod p (clearly 6G

1

+

G

2

mod p =1).

n 0 1 2 3 4 5

nG

1

1 (2; 6) (4; 21) (3; 21) (8; 19) (16; 2)

nG

1

+G

2

(0; 0) (16; 21) (8; 4) (3; 2) (4; 2) (2; 17)

We do the same for hG

1

; G

2

imod q (we see that 12G

1

mod q =1).

n 0 1 2 3 4 5 6

nG

1

1 (2; 15) (9; 18) (18; 11) (6; 9) (8; 17) (3; 0)

nG

1

+G

2

(0; 0) (7; 5) (22; 2) (11; 15) (10; 8) (19; 20) (20; 0)
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C

1

: Y

2

= �(X

2

+ 3)(X

4

� 18X

2

+ 9)

C

2

: Y

2

= (X

2

+ 3)(X

4

� 18X

2

+ 9)

C

3

: Y

2

= 6X(X

4

� 12)

C

4

: Y

2

= 6X(3X

4

� 4)

C

5

: Y

2

= 6X(X

4

� 3)

Table 4.2: Parametrising curves for x

2

+ y

8

= z

3

Now, if '(G) = X(G) 2 P

1

(Q) then in particular, X(G)mod p = X(G)mod q. Since

G

1

; G

2

span E(L)mod p and E(L)mod q, we can �nd k

1

; k

2

2 Z and B 2 (E(L) \

E

(1)

(L

p

)) \ E

(1)

(L

q

) such that G = k

1

G

1

+ k

2

G

2

+ B. A priori, we get X(G)mod 23 2

f1; 0; 2; 3; 8g, since other values do not occur in both tables. Note that X(G) = X(k

1

G

1

+

k

2

G

2

)mod p and X(G) = X(k

1

G

1

+ k

2

G

2

)mod q. For instance, if X(G) 2 P

1

(Q) and

X(G) = 8mod 23, then at p it follows that k

1

G

1

+ k

2

G

2

2 f4G

1

; 2G

1

+G

2

g+ h6G

1

+G

2

i

and at q we get that k

1

G

1

+ k

2

G

2

2 f5G

1

; 7G

1

g + h12G

1

i. These contradict each other

and we conclude that X(G) = 8mod 23 does not happen. For X(G) = 3mod 23 we pro-

ceed similarly. Note that for the remaining values, we have X(1) = 1, X(G

1

) = 2 and

X(G

2

) = 0, so these values really do occur. It remains to prove that for each of these

values x, we have that if X(G) 2 P

1

(Q) and X(G) = xmod p and X(G) = xmod q, then

X(G) = x.

For that, we have to �nd a subgroup of hG

1

; G

2

i that generates a Z

23

-submodule con-

taining (E(L)\E

(1)

(L

p

))\E

(1)

(L

q

). The cyclic group generated by B

1

= 12G

1

is one. To

check this we can calculate Z(B

1

) = (X=Y )(B

1

) mod p

2

and mod q

2

. This gives 23 � 21

and 23 � 16 respectively. These values can be obtained by computing Z(12G

1

) globally

and then reducing using � = 306mod p

2

and � = 223mod q

2

, but it is much more e�-

cient to only calculate an approximation of 12G

1

. Since Z : E

(1)

(L

p

)mod p

2

! pO=p

2

is a group homomorphism, we see that 12G

1

indeed is not divisible by 23 in E

(1)

(L

p

)

(as was already pointed out in Lemma 4.3.2 by the same argument). The same group

homomorphism shows that Z(n

1

B

1

)mod p

2

= n

1

Z(B

1

)mod p

2

for n

1

2 Z

23

, and the

same for q. This information enables us to compute 1=(�

1

p

(n

1

)) =

1

2

n

2

1

� 23

2

21

2

mod p

3

and 1=(�

1

q

(n

1

)) =

1

2

n

2

1

� 23

2

16

2

mod q

3

. If '(n

1

B

1

) 2 P

1

(Q), then these values should

agree, so the equation 23

2

� 11n

2

1

mod23 should hold. This (truncated) power series sat-

is�es the second criterion in Lemma 4.5.2, so n

1

= 0 is the only solution. We proceed

similarly for G

2

+ n

1

B

1

and G

1

+ n

1

B

1

. Note that if '(G

1

+ n

1

B

1

) 2 P

1

(Q), then the

same holds for '(�G

1

� n

1

B

1

), so we only have to look around one of G

1

;�G

1

. We

�nd �

G

2

(n

1

) = 23

2

(3n

2

1

)mod 23

3

and �

G

1

(n

1

) = 23(2n

1

)mod 23

2

. In all cases we can use

Lemma 4.5.2 to obtain the desired result. �

4.6 The equation x

2

+ y

8

= z

3

This section provides an alternative proof to that in [Bru97]. Throughout this section, we

write � :=

p

3 and � :=

4

p

3. First we determine parametrising curves for the primitive
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integral solutions to the equation.

4.6.1. Lemma. Let x; y; z be pairwise coprime integers such that x

2

+y

8

= z

3

. Then there

is a C

i

from Table 4.2, t 2 Q and P 2 C

i

(Q) such that Y (P ) = y=t

3

for i = 1; : : : ; 4 and

Y (P ) = 2y=t

3

for i = 5.

Proof: First consider x

2

+ (y

2

)

4

= z

3

. Then, by Lemma 3.2.3, we have s; t 2 Z

f2;3g

and a

homogeneous degree 6 polynomial F 2 Q[S; T ] such that y

2

= F (s; t). If t 6= 0, this leads

to (y=t

3

)

2

= F (s=t; 1), i.e. a �nite rational point on the curve Y

2

= F (X; 1). If t = 0, then

this leads to one of the in�nite points on the curve. The curves in Table 4.2 are exactly

those, except C

5

, where the model has been made integral. �

The rational points on C

1

and C

2

are easily determined.

4.6.2. Proposition. C

1

(Q) = f1

+

;1

�

g.

Proof: The curve C

1

is a double cover of the elliptic curve Y

2

= �(X + 3)(X

2

� 18X + 9)

by the map X 7! X

2

. The elliptic curve is of conductor 2304 and has rank 0, which can

be veri�ed by performing a 2-isogeny descent as described in Section 4.3. The only a�ne

torsion-point is (�3; 0), which lifts to (�

p

�3; 0) on C

1

. �

4.6.3. Proposition. C

2

(Q) = f(0; 0);1g.

Proof: Unfortunately, by applying the map X 7! X

2

we get an elliptic curve of rank 1. We

observe that, because (X

2

+3)(X

4

� 18X

2

+9) has no rational roots and res(X

2

+3;X

4

�

18X

2

+ 9) = 2

6

3

4

, every rational solution must satisfy

�Y

2

1

= X

2

+ 3 (4.7)

�Y

2

2

= X

4

� 18X

2

+ 9 (4.8)

for one � 2 f�1;�2;�3;�6g. Equation (4.7) shows that � � 0. A simple computer search

shows that there are no solutions to �Y

2

2

= X

4

� 18X

2

Z

2

+ 9Z

4

mod128 for � = 2; 3; 6

with (X;Z) 2 Z

2

; (X;Z) 6= (0; 0)mod 2, which only leaves � = 1. For � = 1, (4.8) is

isomorphic to 288D1, which is a curve with 4 rational points. For our model, these are

1

+

;1

�

; (0; 3); (0;�3). The a�ne points clearly do not satisfy (4.7). �

Although the technique used in Proposition 4.6.3 in principle does apply to C

3

; C

4

; C

5

, in

each case we come across a genus 1 curve with in�nitely many rational points. Therefore,

we �nd other elliptic curves that describe C

i

(Q) in some way. The following lemmas make

this precise.

4.6.4. Lemma. For points P 2 C

3

(Q) there exists an elliptic cover ' : E ! P

1

over a

number �eld L and a point Q 2 E(L) such that '(Q) = X(P ). The curves E

1

; E

2

from

Table 4.3 su�ce.

Proof: Suppose we have (x; y) 2 C

3

(Q). Then we can write

6x = �

1

y

2

1

x

2

� 2� = �

2

y

2

2

y

2

= �

1

y

2

1

N

Q(�)=Q

(�

2

y

2

2

)
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j E

j

'(X; Y ) L

1 �3Y

2

= X

4

� 12 X Q

2 2Y

2

= X(X

2

� 2�) X Q(�)

3 3Y

2

= 3X

4

� 4 X Q

4 �Y

2

= X

3

� 2�X X Q(�)

5 Y

2

= X

4

� 3 X Q

6 �3Y

2

= X

4

� 3 X Q

7 �(�

3

� �

2

� � + 1)Y

2

= (X � �)(X

2

+ �

2

) X Q(�)

�

2

� 3 = 0; �

4

� 3 = 0

L Z-basis of O

L

disc(O

L

=Z) O

�

L

reg(O

�

L

) h(O

L

)

Q(�) 1; � 12 h�1; 2 + �i 1:3170 1

Q(�) 1; �; �

2

; �

3

�2

8

3

3

h�1; 2 + �

2

; 1 + � � �

3

i 5:2459 1

L p p de�ning relation

Q(�) 2 p

2

p

2

= (1 + �)O; 2O = p

2

2

3 p

3

p

3

= �O; 3O = p

2

3

23 p

23;1

�� 7mod p

23;1

= 0

p

23;2

�+ 7mod p

23;1

= 0

L p p de�ning relation

Q(�) 2 p

2

p

2

= (1 + �)O; 2O = p

4

2

3 p

3

p

3

= �O; 3O = p

4

3

13 p

13;1

� � 3mod p

13;1

= 0

p

13;2

� + 2mod p

13;2

= 0

p

13;3

� + 3mod p

13;3

= 0

p

13;4

� � 2mod p

13;4

= 0

Table 4.3: Elliptic covers related to C

3

; C

4

; C

5

with their �elds of de�nition

If y 6= 0;1, then we can take �

2

to be a square free f2; 3g-unit inQ(�) and �

1

= N

Q(�)=Q

(�

2

).

The f2; 3g-units are generated by �1; 2 + �; 1 � �;�, of norms 1; 1;�2;�3 respectively.

Thus, the possible values for �

1

are 1;�2;�3; 6. Note that for y

3

= y=(�

1

y

1

) we have

x

4

� 12 = �

1

y

2

3

. This equation only has solutions over Q

2

for �

1

= 1;�3. For �

1

= �3 we

have E

1

. For �

1

= N(�

2

) = 1 we get a curve of rank 1. The curve x

2

� 2� = �

2

y

2

2

, with �

2

a

square free unit, only has points locally at the prime above 2 for �

2

= 1. This corresponds

to E

2

by observing that 6x(x

2

� 2�) = (y

1

y

2

)

2

. Solutions with y = 0 correspond with

X = 0 on E

1

and y =1 with X =1 on E

2

. �

4.6.5. Lemma. For points P 2 C

4

(Q) there exists an elliptic cover ' : E ! P

1

over a

number �eld L and a point Q 2 E(L) such that '(Q) = X(P ). The curves E

3

; E

4

from

Table 4.3 su�ce.

Proof: Suppose (x; y) 2 C

4

(Q). If y 6= 0;1, then we can write

6x = �

1

y

2

1

2� �x

2

= �

2

y

2

2

y

2

= ��

1

y

2

1

N

Q(�)=Q

(�

2

y

2

2

)

with �

2

a square-free f2; 3g-unit in Q(�) and �

1

= �N(�

2

). As we saw in Lemma 4.6.4,

this means that �

1

= �1; 2; 3;�6. We should have 3x

4

� 4 = �

1

N(y

2

)

2

. This equation has
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no solutions over Q

2

for �

1

= 2;�6. For �

1

= 3, we get E

3

. For �

1

= �1, the corresponding

curve over Q would have rank 1, so we examine this case in more detail. We have that

N(�

2

) = 1. Locally at the prime above 2, we have that 2 � �X

2

= �

2

Y

2

only has points

for �

2

= 2+�. This leads to the equation 6X(2� �X

2

) = �(2 + �)Y

2

. This describes E

4

,

which is E

4

in Table 4.4 if considered as an elliptic curve. �

4.6.6. Lemma. For points P 2 C

5

(Q) there exists an elliptic cover ' : E ! P

1

over a

number �eld L and a point Q 2 E(L) such that '(Q) = X(P ). The curves E

5

; E

6

; E

7

from

Table 4.3 su�ce. The curve E

7

is birational to the curve E

7

in Table 4.4 over L.

Proof: Suppose we have (x; y) 2 C

5

(Q). Then there are y

1

2 Q and y

2

2 Q(�) such that

6x = �

1

y

2

1

x

2

� � = �

2

y

2

2

y

2

= �

1

N

Q(�)=Q

(�

2

y

2

2

)y

2

1

;

where �

2

is a square free f2; 3g-unit in Q(�) and �

1

= N

Q(�=Q

(�

2

). Taking norms gives

x

4

� 3 = �

1

y

2

3

for y

3

= N(y

2

). We are thus led to consider the equation X

4

� 3 = �

1

Y

2

for �

1

= 1;�2;�3; 6. For �

1

= 1;�3, we get E

5

and E

6

respectively. For �

1

= 6 there are

no solutions over Q

2

. We study the case �

1

= �2 in more detail. We put L := Q(�). We

have x

2

� � = N

L=Q(�)

(x� �) for some appropriate embedding Q(�) ,! Q(�). Therefore,

we can take y

3

2 L and �

3

2 L(f2; 3g; 2) with N

L=Q

(�

3

) = N

Q(�)=Q

(�

2

) = �2 and

x� � = �

4

y

2

4

y

2

= �2y

2

1

N

L=Q

(�

4

y

2

4

):

We substitute 6x = �2y

2

1

, which leads to y

2

1

+ 3� = ��

4

(�

2

y

4

)

2

. A local argument at the

prime above 2 shows that, up to squares, �

4

= (2 + �

2

)(1� �) must hold for this equation

to have solutions with y

1

2 Q

2

. Now we use that (X

4

� 3)=(X + �) = (X � �)(X

2

+ �

2

)

and we see that (x� �)(x

2

+ �

2

) = (2 + �

2

)(1� �)(1 + �

2

)y

2

5

for some y

5

2 L. This leads

to E

7

. The model E

7

only di�ers by a linear transformation. �

In order to apply the method described in Section 4.5, we need some data on the

Mordell-Weil groups of the curves we have obtained.

4.6.7. Lemma. Let E

4

be the elliptic curve described in Table 4.4 and L = Q(�). We

have E

tor

4

(L) = hG

2

i. The group hG

1

; G

2

i is a subgroup of odd �nite index in E

4

(L), prime

to 23. The group hG

1

; G

2

imod p

23;i

spans E

4

(L)mod p

23;i

.

Proof: The proof follows the same lines as that of Lemma 4.3.2. The following data give

the necessary ingredients. Let p

13

j 13 such that �modp

13

= 4 and E = E

4

.

#(Emod p

13

)(O=p

11

) = 10

#(Emod p

23;1

)(O=p

23;1

) = 24

#(hG

1

; G

2

imod p

23;1

) = 6

#(hG

1

; G

2

imod p

23;2

) = 24

G

0

1

= (6 + 6�; 24 + 16�); G

1

=  

0

(G

0

1

)

E

0

(L

p

2

= (E(L

p

2

)) = hG

0

1

; (10; ?); (0; 0)i

E(L

p

2

= 

0

(E

0

(L

p

2

)) = hG

3

i

E

0

(L

p

2

= (E(L

p

2

)) = h(0; 0)i

hG

1

; G

2

i \ E

(1)

(L

p

23;1

) \ E

(1)

(L

p

23;2

) = h12G

1

i. See Table 4.4 for values of Z. �
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j G

i

p M

t

Z(B)=p

2

(2; �� 1)

(0; 0)

23

�

12

0

� �

21

16

�

4

(2 +

4

3

�;�

8

3

� 2�)

(0; 0)

23

�

12

0

� �

13

15

�

7

(�3� 2� � 2�

2

�

1

3

�

3

; 2 + 5� +

5

3

�

2

+ 2�

3

)

(�

3

4

�

3

4

� �

1

4

�

2

�

1

12

�

3

;�

1

4

�

1

2

� �

1

3

�

2

)

(0; 0)

13

0

@

2 0

12 24

0 0

1

A

0

B

B

@

9 7

11 11

7 7

1 7

1

C

C

A

E

2

: 2Y

2

= X

3

� 2�X ; '

2

(X; Y ) = X

E

4

: �Y

2

= X

3

� 2�X ; '

4

(X; Y ) = X

E

7

: �(�

2

+ �)Y

2

= X

3

+ 2X

2

+ 2 ; '

7

(X; Y ) = �X + �

Table 4.4: Curves E

j

and data on Mordell-Weil group

4.6.8. Lemma. Let E

7

be the elliptic curve described in Table 4.4 and L = Q(�). We

have E

tor

7

(L) = hG

2

i. The group hG

1

; G

2

i is a subgroup of odd �nite index in E

7

(L), prime

to 13. The group hG

1

; G

2

imod p

13;i

spans E

7

(L)mod p

13;i

.

Proof: Proof as that of Lemma 4.3.2. Let p

11

j 11 such that �modp

11

= 4 and E = E

7

.

#(Emod p

11

)(O=p

11

) = 10

#(hG

1

; G

2

; G

3

imod p

13;i

) = 16; 12; 12; 12

G

0

2

= (�2� � 2�

2

; 2 + 4� + 2�

2

); G

2

=  

0

(G

2

)

E(L

p

2

= 

0

(E

0

(L

p

2

)) = hG

1

; G

3

; (2 + � + �

2

; ?); (2 + 3� + 3�

2

; ?)i

E

0

(L

p

2

= (E(L

p

2

)) = hG

0

2

; (0; 0)i

E(R)= 

0

E

0

(R) = f0g (for both real primes)

E

0

(R)= E(R) = h(0; 0)i (for both real primes)

T

4

i=1

hG

1

; G

2

; G

3

i \ E

(1)

(L

p

13;i

) = h2G

1

+ 12G

2

; 24G

2

i

See Table 4.4 for values of Z. �

Now we can put the information together and determine the rational points on the

remaining curves.

4.6.9. Proposition. C

3

(Q) = f1; (0; 0)g.

Proof: Lemma 4.6.4 shows that we can obtain C

3

(Q) if we determine which L-valued points

have rational image under '

i

: E ! P

1

for i = 1; 2. It is straightforward to show that E

1

is

birational to Y

2

= X

3

+27X. This is 288E1 in [Cre92] and has only 2 rational points. On

E

1

, these are (0;�6). Proposition 4.5.3 gives us that '

2

(E

2

(Q(�))) \ P

1

(Q) = f0;1; 2g.

Together, this shows that Q 2 C

3

(Q) has X(Q) 2 f0;1; 2g. For X(Q) = 2 we get

Q = (2;�4

p

3), which are not rational points. This proves the statement. �

4.6.10. Proposition. C

4

(Q) = f(0; 0);1g.
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j G '(G) �

G

(n

1

; : : : ; n

r

)

2 1 1 23

2

�

11n

2

1

�

mod 23

3

G

2

0 23

2

�

3n

2

1

�

mod 23

3

G

1

2 23

�

2n

1

�

mod23

2

4 1 1 23

2

�

16n

2

1

�

mod 23

3

G

2

0 23

2

�

3n

2

1

�

mod 23

3

7 1 1 13

2

0

@

2n

2

2

� n

1

n

2

n

2

1

+ n

1

n

2

+ 3n

2

2

�2n

2

2

+ n

1

n

2

1

A

mod 13

3

G

1

�G

2

�

1

3

13

0

@

5n

1

� 3n

2

7n

1

� n

2

�n

1

+ 3n

2

1

A

mod 13

2

Table 4.5: Fibres of rational points

Proof: By Lemma 4.6.5, it su�ces to analyse E

3

and E

4

as in the proof of Proposition 4.6.9.

The curve E

3

is birational to 288E1 in [Cre92] and has only 2 rational points, being 1

�

.

These giveX(1

�

) =1. Similar to Proposition 4.5.3, we �nd '

4

(E

4

(L))\P

1

(Q) = f0;1g.

See Table 4.5 for relevant data. It follows that if Q 2 C

4

(Q), then we have X(Q) = 0;1,

which gives the points stated in the proposition. �

4.6.11. Proposition. C

5

(Q) = f(0; 0); (�

1

3

;�

22

9

);1g.

Proof: The curve E

5

is birational to Y

2

= X

3

+ 12X, which is 576F2 in [Cre92] and has

only 2 rational points, which are1

�

on E

5

. The curve E

6

is birational to Y

2

= X

3

+108X,

which is 576G2 in [Cre92]. It also has only 2 rational points, being (0;�1) on E

6

. Similar

to Proposition 4.5.3, we �nd '

7

(E

7

(L))\P

1

(Q) = f0;�

1

3

g. See Table 4.5 for relevant data.

This shows that the list stated is complete. �

Proof of Theorem 1.3.2: This is really just a matter of combining Lemma 4.6.1 and the

Propositions 4.6.2 through 4.6.11. The points (�

1

3

;�

22

9

) 2 C

5

(Q) give rise to the nontrivial

solutions.

4.7 The equation x

8

+ y

3

= z

2

We can apply exactly the samemethods as in the previous section to determine all primitive

solutions to x

8

+ y

3

= z

2

. As it turns out, the computations are a lot more involved in this

case, though. We refer to Table 4.7 for algebraic number theoretic data and notational

conventions used throughout this section. We start by determining a set of parametrising

curves.

4.7.1. Lemma. Let x; y; z 2 Zbe a primitive solution to x

8

+ y

3

= z

2

. Then there is a

C = C

i

from Table 4.6 with P 2 C(Q) and t 2 Q such that x = t

3

Y (P ).
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C

1

: Y

2

= (X

2

� 3)(X

4

+ 18X

2

+ 9)

C

2

: Y

2

= �(X

2

� 3)(X

4

+ 18X

2

+ 9)

C

3

: Y

2

= 6X(X

4

+ 12)

C

4

: Y

2

= 6X(3X

4

+ 4)

C

5

: Y

2

= X

6

+ 40X

3

� 32

C

6

: Y

2

= �X

6

� 40X

3

+ 32

C

7

: Y

2

= X

6

+ 6X

5

� 15X

4

+ 20X

3

+ 15X

2

+ 30X � 17

C

8

: Y

2

= �X

6

� 6X

5

+ 15X

4

� 20X

3

� 15X

2

� 30X + 17

C

9

: Y

2

= X

6

� 6X

5

+ 45X

4

� 180X

3

+ 135X

2

+ 162X � 405

C

10

: Y

2

= �X

6

+ 6X

5

� 45X

4

+ 180X

3

� 135X

2

� 162X + 405

Table 4.6: Parametrising curves for x

8

+ y

3

= z

2

Proof: Let x; y; z be such a solution. Then, by Lemma 3.2.7, we have some homogeneous

F 2Z[S; T ] of degree 6 as in Table 3.2 and s; t 2 Q such that �x

2

= F (s; t) This leads to

a point P = (s=t; x=t

3

) on �Y

2

= F (X; 1). These curves are given in Table 4.6. Note that,

for the curves C

3

and C

4

, we can control the sign of F (s; t) with the sign of t. Therefore,

we only need one of �Y

2

= F (X; 1). The curves C

9

and C

10

have undergone a small

transformation to make F (X; 1) monic. �

For most of these curves, arguments using elliptic curves over Q su�ce. For C

5

, C

7

and C

9

we need Section 4.5. The following lemma establishes the elliptic covers we need

to consider. The models given in the lemma follow naturally from the models of the C

i

,

whereas the models given in Table 4.9 are in twisted Weierstrass form and therefore are

more suitable for computational purposes.

4.7.2. Lemma. The Q-rational points on C

5

, C

7

and C

9

correspond to L-rational points G

on the genus 1 covers ' = X : E

j

! P

1

with '(G) 2 P

1

(Q). The following choices for E

j

and L su�ce:

C

j

L E

j

C

5

Q(�) E

5

: Y

2

= X

4

� 2�X

3

+ 6�

2

X

2

+ 8X + 8�

C

7

Q(�) E

7

: Y

2

= (X

2

+ [2;�2;�2; 0; 0;�4; 0; 0; 2; 2; 0; 0]X+ [�1; 0; 0; 0; 0; 2; 0; 0; 0; 0; 0; 0])�

(X

2

+ [2; 0; 0;�1; 1; 3; 1; 0;�2; 0;�1;�3]X+ [�1; 0; 4; 3; 5;�1; 1; 2; 0; 0;�1;�1])

C

9

Q(�) E

9

: Y

2

= (X

2

+ [�2; 2; 2; 0; 0; 0; 0; 0;�2;�2; 0; 0]X+ [3; 0; 0; 0; 0; 6; 0; 0; 0; 0; 0; 0])�

(X

2

+ [�2;�2; 0;�1;�1; 1;�3;�2; 0; 2;�3; 1]X+ [3; 12; 6; 3; 3;�9; 9; 0; 0; 0;�3; 3])

These covers are birational to the ones given in Table 4.9 with given maps '.

Proof: Let C : Y

2

= F (X) be a hyperelliptic model of the genus 2 curve we consider. Let

L be an extension of Q such that F = R �Q with R;Q 2 L[X]. If (x; y) 2 C(Q), then there

are �; y

1

; y

2

2 L such that R(x) = �y

2

1

and Q(x) = �y

2

2

. Without loss of generality, we can

take � square-free S-unit, where S contains the places dividing 2disc(F ). We then see for

which of those � there exist x 2 Q such that �R(x) and �Q(x) are squares simultaneously,

everywhere locally. As it turns out, in all three cases, this only happens for � = 1. Note

that for C

7

and C

9

, we can also �nd R and Q over Q(�) but the resulting elliptic curves turn

out to have rank 3, which means that the described methods cannot be applied. Checking
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�

3

� 2 = 0 ; �

12

+ 6�

10

+ 39�

8

+ 64�

6

+ 15�

4

� 6�

2

� 3 = 0

L Zbasis of O

L

disc(O

L

=Z) O

�

L

reg(O

�

L

) h(O

L

)

Q(�) 1; �; �

2

�108 h�1; 1� �i 1:3474 1

Q(�) b

1

; : : : ; b

12

�2

26

3

13

h�1; �

1

; : : : ; �

6

i 321:19 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

b

1

b

2

b

3

b

4

b

5

b

6

b

7

b

8

b

9

b

10

b

11

b

12

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

T

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

�

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

�

10

�

11

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

T

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 �1 0 �7 0 49 0 33 0 �1641 0

0 0 1 0 1 8 �28 �38 66 �88 613 1496

0 0 �1 �4 5 17 24 47 �270 �692 379 1290

0 1 0 0 0 �27 0 96 0 455 0 �4742

0 0 0 �1 8 1 �38 30 �88 �158 1496 �273

0 0 0 0 �7 �8 33 38 64 88 �1226 �1496

0 0 0 3 0 �8 0 �55 0 446 0 �67

0 0 0 �4 0 �2 0 150 0 �564 0 �2276

0 0 1 1 �1 �16 �30 41 158 310 273 �2449

0 0 1 �1 �1 16 �30 �41 158 �310 273 2449

0 0 0 1 0 �12 0 35 0 198 0 �1797

0 0 0 �3 0 24 0 �21 0 �622 0 3059

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�1

Elements of Q(�) are given with respect to the basis b

1

; : : : ; b

12

.

�

1

= [0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0] �

2

= [0; 1; 0; 0; 0; 0; 1; 0;�1; 0; 0; 0]

�

3

= [0; 0; 1; 0; 1; 0; 0; 0; 0; 0;�1; 0] �

4

= [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0]

�

5

= [0;�1;�1; 0; 0; 0; 0; 1; 1; 0; 1;�1] �

6

= [0; 1;�1; 0; 0; 0; 1;�1; 0; 0; 0; 0]

L p p de�ning relation F

p

-basis of O=p

Q(�) 2 p

2

p

2

= �O ; 2O = p

3

2

3 p

3

p

3

= (1 + �)O ; 3O = p

3

3

5 p

5;1

� + 2mod p

5;1

= 0 1

p

5;2

�

2

� 2� � 1mod p

5;2

= 0 1; �

Q(�) 2 p

2

p

2

= [0; 1; 0; 0; 1; 0; 1; 0; 0; 0; 0; 0]O ; 2O = p

12

2

3 p

3

p

3

= [1; 0; 1; 0; 0; 0; 0; 0; 0; 0;�1; 0]O

q

3

q

3

= [1; 0; 0; 0; 0;�1; 0; 0; 1; 1; 0; 0]O ; 3O = p

6

3

q

3

3

31 p

31;1

�� 5mod p

31;1

= 0 1

p

31;2

�+ 12modp

31;2

= 0 1

p

31;3

�+ 5mod p

31;3

= 0 1

p

31;4

�� 12modp

31;4

= 0 1

p

31;5

�

2

� 5�+ 13mod p

31;5

= 0 1; b

2

Table 4.7: Data regarding number �elds
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j G

i

5 (�2; 1)

((�4� 2� � �

2

)=6; (1+ �

2

)=6)

(1; 0)

(0; 0)

7 ([0;�1; 6;�4; 0;�1;�2; 0;�4; 0;�1; 4]; [8;�2; 23;�12;�2; 0;�6; 7;�18; 0;�6; 14])

([�1;�1; 0; 0; 0; 1;�1; 1; 0; 0; 0;�1]; [0; 0; 0; 1; 1;�1; 1; 0; 0; 0;�1;�1])

([1; 0; 0;�1; 0; 0; 1;�1;�1; 1; 0;�1]; [0; 0; 0; 2; 0; 2; 0; 0; 0;�4; 0;�2])

([�11;�1;�7;�2;�3;�10; 0;�1; 5; 3; 3; 2]=12;�[4;�5; 5; 0; 3; 6;�10; 4;�2; 1;�5; 1]=12)

(0; 0)

9 ([1;�2;�4;�1; 0; 2;�1; 1; 1; 1; 2;�3]=3; [�4;�2; 0; 0; 0; 2; 4;�2;�4; 2; 0; 4]=3)

([�7; 1;�12; 2;�2; 2; 2;�5; 2; 2; 5;�6]=3; [28;�6; 16; 36;�2;�6; 2; 26; 30;�12;�12; 2]=3)

([�1; 2; 0; 0;�1;�2; 1;�1;�1; 1; 0; 1]; [0;�4;�2;�1;�5; 1;�5; 2; 4;�2; 5;�1])

([1; 5;�3;�2;�1;�4; 0;�7;�3; 7;�5; 6]=4; [5; 2;�4; 0; 0; 1; 6; 2; 3;�6; 5;�5]=4])

(0; 0)

Table 4.8: Mordell-Weil pseudo-generators

that the covers in Table 4.9 are indeed birational to the ones mentioned in the lemma is

tedious and straightforward. �

We examine the Mordell-Weil groups of the curves in Table 4.9.

4.7.3. Lemma. Let E

5

be the elliptic curve described in Table 4.9 and the let the G

i

be as

in Table 4.8. We have E

tor

5

(L) = hG

3

; G

4

i. The group hG

1

; : : : ; G

4

i is a subgroup of odd

�nite index in E

5

(L) prime to 5. The group hG

1

; : : : ; G

4

imod p

5;k

spans E

5

(L)mod p

5;k

for k = 1; 2.

Proof: Proof as that of Lemma 4.3.2. Let E = E

5

and p

11

j 11 such that � = 7mod p.

#(Emod p

11

)(O=p

11

) = 12; #(hG

1

; : : : ; G

4

imod p

5;i

) = 8; 16

G

0

2

= (�2� 2�; (4 + 2� + 4�

2

)=3); G

2

=  

0

(G

0

2

)

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

3

; G

4

i

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

0

2

; (2 + �; ?)i (latter does not lift to L(S; 2))

hG

1

; : : : ; G

4

i \ E

(1)

(L

p

5;1

) \ E

(1)

(L

p

5;2

) = h2G

1

+G

4

; 4G

2

i

See Table 4.10 for values of Z. �

4.7.4. Lemma. Let E

7

be the elliptic curve described in Table 4.9 and the G

i

as in

Table 4.8. We have E

tor

7

(L) = hG

5

i. The group hG

1

; : : : ; G

5

i is a subgroup of odd �nite

index in E

7

(L) prime to 31. The group hG

1

; : : : ; G

5

imod p

31;k

spans E

7

(L)mod p

31;k

for

k = 1; : : : ; 5.
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j E

j

c

5 �6Y

2

= X

3

�X

�

� �6� �

2 0 �1

�

7 [0; 0; 0;�1;�1; 0;�1; 0; 0; 0; 1; 0]Y

2

= X

3

+ 2X

2

+ 2X C

7

9 [0; 0; 0; 1; 1;�1; 1; 1; 0;�1; 1;�1]Y

2

= X

3

+ 2X

2

+ 2X C

9

C

7

=

�

[4;�4;�4;�2; 0; 6;�2; 8; 4;�6; 10;�8] �12 [2; 1; 2; 5; 2;�2; 1; 0; 1;�3;�1;�3]

[0; 4; 0; 4; 0; 0; 0;�4; 4; 0; 0; 4] 0 [4;�3; 0; 5; 2;�8;�1;�4; 3; 5;�5; 5]

�

C

9

=

�

[0; 2; 6; 0;�6; 10;�10; 6;�2;�10; 2; 2] �12 [0; 7; 2; 1;�2; 2;�3; 2; 1;�7; 3;�1]

[�4; 0; 0; 0;�4; 0; 0; 0; 0;�4; 4; 4] 0 [0; 3; 2;�1; 0; 2;�1; 0;�1;�3; 1;�1]

�

'(X; Y ) =

c

11

X + c

12

Y + c

13

c

21

X + c

22

Y + c

23

Table 4.9: Weierstrass models of covers

Proof: Proof is as that of Lemma 4.3.2. Let E = E

7

and p

43

j 43 such that � = 6mod p

43

.

#((Emod p

43

)(O=p

43

)) = 38

#(hG

1

; : : : ; G

5

imod p

31;i

) = 32; 32; 32; 32; 1024

G

0

4

= ([1;�1;�1; 0; 1;�2; 0; 1; 1; 1;�1; 0]; [0;�2; 0; 0; 0; 0;�4; 0; 0; 2;�2; 2])

G

4

=  

0

(G

0

4

)

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

2

; G

3

; G

5

; ([0; 0;�7;�1; 8; 8;�4;�2; 5; 1; 4; 2]; ?);

([1; 1;�5; 0; 3; 6; 2;�5; 5; 3;�3; 2]; ?); ([�7; 2;�4; 5;�2; 2; 13;�7;�5;�3; 2;�5]; ?);

([11; 12; 4; 3;�6;�6; 9;�5; 1;�7; 6; 5]; ?); ([3;�4; 6; 5; 0; 6; 1; 7;�7;�1; 4;�5]; ?);

([�15; 8;�6;�5;�6; 2;�15; 7; 5; 1;�4;�3]; ?)i

E

0

(L

p

2

)= (E(L

p

2

)) = hG

0

4

; (0; 0);

([18;�58;�48;�14; 20;�28;�86;�20;�56; 56;�2; 54]; ?);

([�78;�74;�8;�54;�28;�8; 90; 56;�28; 48; 6; 26]; ?)i

E(L

q

3

)= 

0

(E

0

(L

q

3

)) = hG

2

i; E

0

(L

q

3

)= (E(L

q

3

)) = hG

0

4

i

E

0

(R)= (E(R)) = h(0; 0)i; E(R)= 

0

(E

0

(R)) = f1g (for both real primes)

T

5

i=1

hG

1

; : : : ; G

4

i \ E

(1)

(L

p

31;i

) = h16G

1

+ 8G

4

+G

5

; 16G

2

+ 8G

4

; 32G

3

; 16G

4

i

See Table 4.10 for values of Z. �

4.7.5. Lemma. Let E

9

be the elliptic curve described in Table 4.9 and the G

i

as in

Table 4.8. We have E

tor

9

(L) = hG

5

i. The group hG

1

; : : : ; G

5

i is a subgroup of odd �nite

index in E

9

(L) prime to 31. The group hG

1

; : : : ; G

5

imod p

31;k

spans E

9

(L)mod p

31;k

for

k = 1; : : : ; 5.
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j p M Z(B)=pmod p

5 5

�

2 0 0 1

0 4 0 0

� �

4 4

4 1 + 4�

�

7 31

0

B

B

@

16 0 0 8 1

0 16 0 8 0

0 0 32 0 0

0 0 0 16 0

1

C

C

A

0

B

B

B

B

@

23 21 1 19

12 30 28 21

21 11 4 20

26 27 25 30

23�+ 7 11 + � 22�+ 1 19�+ 8

1

C

C

C

C

A

9 31

0

B

B

@

4 4 368 88 0

0 32 320 16 0

0 0 480 0 0

0 0 0 240 0

1

C

C

A

0

B

B

B

B

@

25 4 17 29

27 4 28 29

12 23 26 0

7 15 17 13

11�+ 13 21 + 8� 17�+ 23 19�+ 25

1

C

C

C

C

A

For E

7

and E

9

, only

T

5

k=1

(E(L) \E

(1)

(L

p

31;k

)) is considered.

Table 4.10: kernels of reduction

Proof: Proof is as that of Lemma 4.3.2. Let E = E

7

and p

43

j 43 such that � = 6mod p

43

.

#((Emod p

43

)(O=p

43

)) = 50

#(hG

1

; : : : ; G

5

imod p

31;i

) = 32; 32; 32; 16; 900

G

0

4

= ([2;�2; 0; 0; 0; 2;�2; 2; 0; 0; 0;�2]; [�2; 0;�4; 2;�4; 0;�2; 2; 4;�4; 4;�2])

G

4

= 2G

1

+ 2G

2

�  

0

(G

0

4

)

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

2

; G

3

; G

5

; ([�6; 6; 6;�1;�3;�7; 5;�6; 4; 4; 5;�1]; ?);

([3;�1; 5; 0;�5;�4;�6; 7; 7; 1;�3;�2]; ?); ([1;�15; 2; 0;�6; 4; 16; 7;�4; 0; 7; 0]; ?);

([3;�7; 6;�4; 0; 6; 6;�7;�6; 8;�1; 4]; ?); ([1; 1;�2; 6;�6; 8;�6;�3; 8; 6; 3;�4]; ?);

([�1;�13; 4; 6; 0;�4;�6; 3; 6;�4; 5; 8]; ?)i

E

0

(L

p

2

)= (E(L

p

2

)) = hG

0

4

; (0; 0);

([50; 46;�32; 22; 36; 20; 110;�32;�60;�4;�38;�46]; ?);

([�114;�30; 40; 10; 48;�12; 2; 16; 16; 52;�6;�22]; ?)

E(L

p

3

)= 

0

(E

0

(L

p

3

)) = h(1=[1; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0]; ?)i

E

0

(L

p

3

)= (E(L

p

3

)) = hG

0

4

i

E

0

(R)= (E(R)) = h(0; 0)i; E(R)= 

0

(E

0

(R)) = f1g (for both real primes)

T

5

i=1

hG

1

; : : : ; G

4

i \ E

(1)

(L

p

31;i

) = h4G

1

+ 4G

2

+ 368G

3

+ 88G

4

;

32G

2

+ 320G

3

+ 16G

4

; 480G

3

; 240G

4

i

See Table 4.10 for values of Z. �

4.7.6. Proposition. C

1

(Q) = f1

+

;1

�

g.

Proof: The curve is a double cover of an elliptic curve by the map X 7! X

2

. The elliptic

curve Y

2

= (X � 3)(X

2

+ 18X + 9) is of rank 0 and has 2 rational points: 1 and (3; 0).

The �rst is covered by 1

+

and 1

�

, which are indeed rational points of C

1

. The second is

covered by (�

p

3; 0), which are quadratic conjugate points. �
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4.7.7. Proposition. C

2

(Q) = ;.

Proof: The curve is a double cover of an elliptic curve by the map X 7! 1=X

2

. The elliptic

curve Y

2

= (3X � 1)(9X

2

+18X + 1) is of rank 0 and has 2 rational points: (1=3; 0) and

1. Neither of these points lifts to rational points. �

4.7.8. Proposition. C

3

(Q) = f1; (0; 0)g.

Proof: We see that for solutions with X 6= 0;1, we have X

4

+ 12 = � Y

2

1

with � in the

set f�1;�2;�3;�6g. It is clear that � � 0 from real considerations and that 2 - � from

considerations locally at 2. Both X

4

+ 12 = Y

2

1

and X

4

+ 12 = 3Y

2

1

are genus 1 curves of

rank 0 with only 2 rational points: the two branches at in�nity and the two points with

X = 0 respectively. �

4.7.9. Proposition. C

4

(Q) = f1; (0; 0)g.

Proof: We see that for solutions with X 6= 0;1, we have 3X

4

+ 4 = � Y

2

1

with � in the

set f�1;�2;�3;�6g. It is clear that � � 0 from real considerations and that 2 - � from

considerations locally at 2. Both 3X

4

+ 4 = 3Y

2

1

and 3X

4

+ 4 = Y

2

1

are genus 1 curves

of rank 0 with only 2 rational points: the two branches at in�nity and the two points with

X = 0 respectively. �

4.7.10. Proposition. C

5

(Q) = f1

+

;1

�

; (1; 3); (1;�3)g

Proof: Similar to Proposition 4.5.3, we �nd '

5

(E

5

(L))\P

1

(Q) = f1; 0; 1g. By Lemma 4.7.2

this bounds C

5

(Q). See Table 4.11 for relevant data. It is easy to check that X = 0 does

not lead to a rational point. �

4.7.11. Proposition. C

6

(Q) = ;

Proof: It is easy to check that C

6

(Q

3

) = ;. �

4.7.12. Proposition. C

7

(Q) = f1

�

; (1=2;�15=8)g.

Proof: Similar to Proposition 4.5.3, we �nd '

7

(E

7

(L)) \ P

1

(Q) = f1;

1

2

g. See Table 4.11

for relevant data. By Lemma 4.7.2 this bounds C

7

(Q). �

4.7.13. Proposition. C

8

(Q) = ;

Proof: It is easy to check that C

8

(Q

2

) = ;. �

4.7.14. Proposition. C

9

(Q) = f1

�

; (9=2;�387=8g.

Proof: Similar to Proposition 4.5.3, we �nd '

9

(E

9

(L)) \ P

1

(Q) = f1;

9

2

g. See Table 4.11

for relevant data. By Lemma 4.7.2 this bounds C

9

(Q). �

4.7.15. Proposition. C

10

(Q) = ;

Proof: It is easy to check that C

10

(Q

3

) = ;. �

Proof of Theorem 1.3.3 We now complete our proof by checking to which solutions

the rational points on C

1

; : : : ; C

10

correspond. Since at least one of the forms for x; y; z in

Lemma 3.2.7, corresponding to C

1

; : : : ; C

6

, is divisible by s and t, points with X = 0;1
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j G '(G) �

G

(n

1

; : : : ; n

r

)

5 1 1 5

�

2n

1

+ 2n

2

2n

1

+ 3n

2

�

mod5

2

G

3

� G

1

0 5

�

3n

1

+ 2n

2

4n

1

+ 4n

2

�

mod5

2

G

2

1 5

�

4n

1

+ 0n

2

n

1

+ n

2

�

mod5

2

7 1 1 31

0

B

B

B

B

@

13 0 0 24

4 4 4 21

13 19 23 24

20 16 11 1

30 15 18 28

1

C

C

C

C

A

0

B

B

@

n

1

n

2

n

3

n

4

1

C

C

A

mod31

2

G

4

1

2

31

0

B

B

B

B

@

30 20 29 26

24 15 18 13

21 18 1 18

27 26 4 3

6 0 21 17

1

C

C

C

C

A

0

B

B

@

n

1

n

2

n

3

n

4

1

C

C

A

mod31

2

9 1 1 31

0

B

B

B

B

@

16 24 16 19

26 24 4 9

29 4 28 26

26 5 13 23

4 23 11 15

1

C

C

C

C

A

0

B

B

@

n

1

n

2

n

3

n

4

1

C

C

A

mod31

2

�G

4

9

2

31

0

B

B

B

B

@

28 14 19 24

18 19 29 11

0 18 19 25

15 29 17 6

30 28 24 9

1

C

C

C

C

A

0

B

B

@

n

1

n

2

n

3

n

4

1

C

C

A

mod31

2

Table 4.11: Fibres of rational points
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correspond to solutions with xyz = 0. This only leaves (1;�3) on C

5

. The corresponding

solutions are (x; y; z) = (�3; 2

3

� 3

2

� 5;�3

3

� 11 � 23). Being a remarkable relation in itself,

it does not satisfy the condition that (x; y; z) = 1. Furthermore, it cannot be transformed

into such a solution using a weighted multiplication (x; y; z) 7! (�

3

x; �

8

y; �

12

z) either.

On C

7

, the points1

�

correspond to (�1; 2;�3) and the points (1=2;�15=8) correspond

(after clearing denominators) to (�3 � 5; 2 � 3

2

� 29 � 37;�3

3

� 99431). On C

9

, 1

�

correspond

to (�3;�2 � 3

2

;�3

3

) and (9=2;�387=8) (after clearing denominators) to (�43; 2 � 3 � 7 � 29 �

79;�109 � 275623). We conclude that the list stated in the theorem is complete. �

4.8 The equations x

2

� y

4

= z

5

In this section we determine the primitive solutions to x

2

+ y

4

= z

5

and x

2

� y

4

= z

5

. We

use the same methods as in the previous sections. Lemmas 3.2.4 and 3.2.5 show that we

have to determine f2; 5g-primitive solutions to equations of the form y

2

= F (s; t), where

F is a homogeneous form of degree 5. According to Theorem 3.1.1, solutions to such

equations are parametrised by the rational points on genus 5 curves. As it turns out, these

curves cover elliptic curves. See Section 5.2 for a systematic approach to this. The next

two lemmas determine these elliptic curves including the induced cover of the projective

line.

4.8.1. Lemma.The f2; 5g-primitive solutions to y

2

= s(s

4

�10s

2

t

2

+5t

4

) have s=t = '(P ),

where ' : E

P

! P

1

is a double cover of genus 1 over a �eld L and P 2 E

P

(L). It su�ces

to take E

1

; : : : ; E

4

as described in Table 4.12.

Proof: Let �

4

� 5�

2

+ 5 = 0. The �eld Q(�) is Galois and

X

4

� 10X

2

+ 5X = (X + 2� � �

3

)(X � 2� + �

3

)(X � 4� + �

3

)(X + 4� � �

3

):

Put � = �

3

� 2�. Using Lemma 3.1.2, it follows that with S = f2; 5g, we have

s = N(�)a

2

4

s� �t = �(a

0

+ a

1

� + a

2

�

2

+ a

3

�

3

)

2

where � 2 L(S; 2). It follows that (s=t)

4

� 10(s=t)

2

+ 5 = N(�)(y=(a

4

t

2

))

2

as well. As

is easily checked, the curve X

4

� 10X

2

+ 5 = D Y

2

has no Q-rational points for D =

2; 10;�2;�5;�10. For D = 1; 5, the curves are mentioned in the lemma. For D = �1,

however, we get an elliptic curve of rank 1, which is not usable if we want a �nite bound on

the number of solutions. Therefore, we examine the case where �N(�) is a square in more

detail. As it turns out, all units in O have positive norm. Generators of the prime ideal

p

2

j 2, for instance 1+���

2

, have norm �4. Since 5O = p

4

5

, we can take � to be 1+���

2

times a square-free unit. This gives 16 possibilities. For each �, we write out the 5 equations

for s; t with respect to the basis 1; : : : ; �

3

and we eliminate s; t from them. This leaves

us with 3 quadratic forms in a

0

; : : : ; a

4

. By homogeneity, if they have a common rational

zero, then there also is a solution (a

0

; : : : ; a

4

) 2 Z

5

with gcd(a

0

; : : : ; a

4

) = 1. Thus, there
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j E

j

'

j

(X; Y ) L

1 Y

2

=X

4

� 10X

2

+ 5 X Q

2 5Y

2

=X

4

� 10X

2

+ 5 X Q

3 (8� � 2�

3

� 6)Y

2

=�

3

X

3

+ (4�

2

� 5)X

2

+ (�

3

� 4�)X � 1 1=X Q(�)

4 (2�

3

� 8� � 6)Y

2

=�

3

X

3

+ (4�

2

� 5)X

2

+ (�

3

� 4�)X � 1 1=X Q(�)

5 5Y

2

=X

4

+X

3

+X

2

+X + 1 X Q

6 2(� � �

2

� 1)Y

2

=X

4

� �X

3

+ �

2

X

2

� �

3

X + �

4

X Q(�)

7 2(1� � + �

2

)Y

2

=X

4

� �X

3

+ �

2

X

2

� �

3

X + �

4

X Q(�)

8 Y

2

=X

4

+ �

3

X

3

+ 2�X

2

+ 2�

4

X + 4�

2

X Q(�)

9 (�

3

+ �

2

� 1)Y

2

=X

4

+ �

3

X

3

+ 2�X

2

+ 2�

4

X + 4�

2

X Q(�)

L Z-basis of O

L

disc(O

L

=Z) O

�

L

reg(O

�

L

) h(O

L

)

Q(�) 1; �; �

2

; �

3

2000 h�1; �

1

; �

2

; �

3

i 1:8528 1

Q(�) 1; �; �

2

; �

3

125 h�; 1� �i 0:9624 1

Q(�) 1; �; �

2

; �

3

; �

4

50000 h�1; 1� �; �

4

� �

3

+ �

2

� 1i 4:8349 1

�

4

� 5�

2

+ 5 = 0 �

1

= 2� �

2

�

4

� �

3

+ �

2

� � + 1 = 0 �

2

= 2 + � � �

2

�

5

� 2 = 0 �

3

= �3 + 3� + �

2

� �

3

L p de�ning relation

Q(�) 41 �=3mod p

p;1

�=18mod p

p;2

�=23mod p

p;3

�=38mod p

p;4

2 2O

L

= (1 + � � �

2

)O

2

L

= p

2

2

5 5O

L

= �O

5

L

= p

4

5

Q(�) 31 �=15mod p

p;1

�=23mod p

p;2

�=27mod p

p;3

�=29mod p

p;4

L p de�ning relation

Q(�) 2 2O

L

= p

2

5 5O

L

= (1 + � + �

2

+ �

3

)O

4

L

= p

4

5

Q(�) 151 �=22mod p

p;1

�=25mod p

p;2

�=49mod p

p;3

�=90mod p

p;4

�=116mod p

p;5

2 2O

L

=�O

5

L

= p

5

2

5 5O

L

= (�+ 1)O

5

L

= p

5

5

Table 4.12: Parametrising curves and their �elds of de�nition

should exist a solution (a

0

; : : : ; a

4

) 2Z

5

p

with (a

0

; : : : ; a

4

) 6= (0; : : : ; 0)mod p for any prime

p as well. See Appendix A.2 for an algorithm to check for local solutions. If we test this for

both p = 2 and p = 5, we see that only for � = 3�

3

+6�

2

� 4�� 9;�3�

3

+6�

2

+4�� 9 do

we have solutions locally. If we combine this with our original relations on s; t and choose

appropriate representatives of L(S; 2), we get that for some y

1

2 Q(�) and x = s=t, we

have

x(x

4

� 10x

2

+ 5)=(x+ �

3

� 4�) = 6 � 2�(�

2

� 4)y

2

1

:

This leads to the remaining two curves. �
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E

j

: 

j

Y

2

= X

3

� 5X

2

+ 5X



3

= 1 + � � �

2

'

3

(X; Y ) =

(6� � 2�

3

)X + 3�

3

� 10�

5



6

= 2(�

2

� �)

'

6

(X; Y ) =

X � 2�

2

+ � � 2

X + �

3

+ �

2

� � � 1



7

= �2(�

2

� �)

'

7

(X; Y ) =

X � 2�

2

+ � � 2

X + �

3

+ �

2

� � � 1



8

= 1

'

8

(X; Y ) =

��

3

X + 2�

3

Y

4X � 5



9

= �

3

+ �

2

� 1

'

9

(X; Y ) =

2(6�

4

� 4�

3

+ 5�

2

+ 11�� 13)X + 12Y � 10(3�

4

� �

3

+ 4�� 6)

(�4�

3

+ 2�

2

+ 2�+ 2)X � 12Y � 5(3�

4

� 3�

3

+ �

2

� 4)

Table 4.13: Description of covers with respect to models E

j

4.8.2. Lemma. The f2; 5g-primitive solutions to 2y

2

= s

5

� t

5

have s=t = '(P ), where

' : E

P

! P

1

is a double cover of genus 1 over a �eld L and P 2 E

P

(L). It su�ces to take

E

5

; E

6

; E

7

as in Table 4.12.

Proof: Let �

4

� �

3

+ �

2

� � + 1 = 0. Then

X

5

� 1 = (X � 1)(X + �)(X � �

2

)(X + �

3

)(X � �

4

):

Put � = ��. It follows that

s� t = 2N(�)a

2

4

s+ �t = �(a

0

+ a

1

� + a

2

�

2

+ a

3

�

3

)

2

where � 2 L(S; 2). It follows that (s=t)

4

+ (s=t)

3

+ (s=t)

2

+ (s=t) + 1 = (y=a

4

t

2

))

2

=N(�) as

well. As is easily checked, the curve X

4

+X

3

+X

2

+X + 1 = DY

2

has Q-rational points

for D = 1; 5 only. For D = 5, the curve is mentioned in the lemma. For D = 1 we �nd a

curve of positive rank, so we examine the case where N(�) is a square in more detail. We

can take � to be a multiplicative combination of f2; �

3

+ � � 1; �g. Filtering at 2 and 5

gives that, without loss of generality, � = �

3

� 1; 1� �

3

. It follows that for some y

1

2 Q(�)

and x = s=t, we have

(x

5

� 1)=(x + �) = 2N(�)=�y

2

1

:

This leads to the remaining two curves. �

4.8.3. Lemma. The f2; 5g-primitive solutions to y

2

= s

5

� 8t

5

have s=t = '(P ), where

' : E

P

! P

1

is a double cover of genus 1 over a �eld L and P 2 E

P

(L). It su�ces to take

E

8

; E

9

as in Table 4.12.
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j G

i

p M

t

Z(B)=p

3

(10 + 5� � 2�

2

� �

3

; 20+ 15� � 5�

2

� 4�

3

)

(�

3

; 0)

(0; 0)

41

0

@

110

0

0

1

A

0

B

B

@

21

35

2

18

1

C

C

A

6

(1� 3�

2

+ 3�

3

; 1 + 3� � 2�

2

+ �

3

)

(1� 1�

2

+ �

3

; �

3

)

(2� �

2

+ �

3

; 0)

(0; 0)

31

0

B

B

@

4 0

8 16

0 0

0 0

1

C

C

A

0

B

B

@

3 3

12 29

12 15

0 17

1

C

C

A

7

(2 + �

2

� �

3

; 1� � � �

3

)

(�1 + 3�

2

� 3�

3

; 1� 7� + 8�

2

� 4�

3

)

(2� �

2

+ �

3

; 0)

(0; 0)

31

0

B

B

@

8 0

4 8

0 0

0 0

1

C

C

A

0

B

B

@

21 8

2 2

0 15

22 27

1

C

C

A

8

(1� 2�+ �

3

; 3� 2�

2

� 2�

3

+ �

4

)

(4; 2)

(0; 0)

151

0

@

80 0

0 20

0 1

1

A

0

B

B

B

B

@

51 �1

43 �1

146 �1

127 �1

92 �1

1

C

C

C

C

A

9

(1 + �+ �

2

� �

3

+ �

4

; 1� 5�+ 6�

2

� 4�

3

+ 2�

4

)

(3 + 5�+ 4�

2

+ 2�

3

; 9 + 13�+ 7�

2

+ 5�

3

+ 2�

4

)

(0; 0)

151

0

@

120 0

120 720

0 0

1

A

0

B

B

B

B

@

49 64

78 22

47 145

57 135

94 60

1

C

C

C

C

A

Table 4.14: Curves E

j

and data on the Mordell-Weil groups

Proof: Let �

5

� 2 = 0. Then

X

5

� 8 = (X � �

3

)(X

4

+ �

3

X

3

+ 2�X

2

+ 2�

4

X + 4�

2

):

It follows that

s� �

3

t = �(a

0

+ a

1

� + a

2

�

2

+ a

3

�

3

+ a

4

�

4

)

2

y

2

= N(�)N(a

0

+ a

1

�+ a

2

�

2

+ a

3

�

3

+ a

4

�

4

)

2

where � 2 L(S; 2). From the second equation, it follows that � is of square norm. Since 2

and 5 completely ramify, this leaves � 2 f1; �� 1; 1 + �+ �

3

; �

4

� �

3

+ �

2

� 1g. Filtering

at 2 only leaves � = 1; �

4

� �

3

+ �

2

� 1. For x = s=t and some y

1

2 Q(�) we have

(x

5

� 8)=(x � �

3

) = N(�)=�y

2

1

:

This leads to the curves in the lemma. �
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4.8.4. Lemma. The covers E

3

; E

6

; : : : ; E

9

in Table 4.12 are birational to the covers E

j

:

Y

2

= X

3

� 5X

2

+ 5X described in Table 4.13.

Proof: It is straightforward to check this. �

Having established elliptic covers that parametrise f2; 5g-primitive solutions in some

way, we now determine their Mordell-Weil groups (up to �nite index).

4.8.5. Lemma. Let E

3

be the elliptic curve described in Table 4.14 and L = Q(�). We

have E

tor

3

(L) = hG

2

; G

3

i. The group hG

1

; G

2

; G

3

i is a subgroup of odd �nite index in E

3

(L),

prime to 41. The group hG

1

; G

2

; G

3

imod p

41;i

spans E

3

(L)mod p

41;i

.

Proof: The proof follows the same lines as that of Lemma 4.3.2. Let E = E

3

. The following

data give the necessary ingredients.

#(hG

1

; G

2

; G

3

imod p

41;i

= 44; 44; 20; 20

G

0

3

= (5� 4�

3

; 0); G

3

=  

0

(G

0

3

)

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

2

; (2� � + �

2

+ �

3

; ?);

(�4 + 6� � 6�

2

+ 6�

3

; ?); (6� 2� + 2�

2

; ?)i

E

0

(L

p

2

)= (E(L

p

2

)) = hG

0

3

i

E(L

p

5

= 

0

(E

0

(L

p

5

)) = hG

1

i; E

0

(L

p

5

)= (E(L

p

5

)) = h(2�

2

� 2�

3

; ?)i

E(R)= 

0

(E

0

(R)) = f1g; E

0

(R)= (E(R)) = h(�2sign(); ?)i (for all real primes)

T

4

i=1

(hG

1

; G

2

; G

3

i \ E

(1)

(L

p

41;i

)) = h110G

1

i

See Table 4.14 for values of Z. �

4.8.6. Lemma. Let E

6

be the elliptic curve described in Table 4.14 and L = Q(�). We

have E

tor

6

(L) = hG

3

; G

4

i. The group hG

1

; : : : ; G

4

i is a subgroup of odd �nite index in

E

6

(L), prime to 31. The group hG

1

; : : : ; G

4

imod p

31;i

spans E

6

(L)mod p

31;i

.

Proof: The proof follows the same lines as that of Lemma 4.3.2. Let E = E

6

and p

41

j 41

with � = 4mod 41. The following data give the necessary ingredients.

#(hG

1

; : : : ; G

4

imod p

31;i

= 32; 32; 32; 32

#(Emod p

41

)(O=p

41

) = 44

G

0

4

= (�3 + 4�

2

� 4�

3

; 0); G

4

=  

0

(G

0

4

)

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

2

; G

3

; (4� 2�; ?); (4 � 2�

2

; ?)i

E

0

(L

p

2

)= (E(L

p

2

)) = hG

0

4

i

E(L

p

5

= 

0

(E

0

(L

p

5

)) = hG

4

i; E

0

(L

p

5

)= (E(L

p

5

)) = h(4� 12�

2

+ 12�

3

; ?)i

T

4

i=1

(hG

1

; : : : ; G

4

i \ E

(1)

(L

p

31;i

)) = h4G

1

+ 8G

2

; 16G

2

i

See Table 4.14 for values of Z. �

4.8.7. Lemma. Let E

7

be the elliptic curve described in Table 4.14 and L = Q(�). We

have E

tor

7

(L) = hG

3

; G

4

i. The group hG

1

; : : : ; G

4

i is a subgroup of odd �nite index in

E

7

(L), prime to 31. The group hG

1

; : : : ; G

4

imod p

31;i

spans E

7

(L)mod p

31;i

.
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Proof: The proof follows the same lines as that of Lemma 4.3.2. Let E = E

7

and p

41

j 41

with � = 4mod 41. The following data give the necessary ingredients.

#(hG

1

; : : : ; G

4

imod p

31;i

= 32; 32; 32; 32

#(Emodp

41

)(O=p

41

) = 44

G

0

4

= (�3 + 4�

2

� 4�

3

; 0); G

4

=  

0

(G

0

4

)

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

2

; G

3

; (4 + 10� + 8�

2

+ 8�

3

; ?); (�4 + 2�

2

+ 8�

3

; ?)i

E

0

(L

p

2

)= (E(L

p

2

)) = hG

0

4

i

E(L

p

5

= 

0

(E

0

(L

p

5

)) = hG

2

i; E

0

(L

p

5

)= (E(L

p

5

)) = h(�4 + 12�

2

� 12�

3

; ?)i

T

4

i=1

(hG

1

; : : : ; G

4

i \ E

(1)

(L

p

31;i

)) = h8G

1

+ 4G

2

; 8G

2

i

See Table 4.14 for values of Z. �

4.8.8. Lemma. Let E

8

be the elliptic curve described in Table 4.14 and L = Q(�). We

have E

tor

8

(L) = hG

3

i. The group hG

1

; G

2

; G

3

i is a subgroup of odd �nite index in E

8

(L),

prime to 151. We have hG

1

; G

2

; G

3

imod p

151;i

= E

8

(L)mod p

151;i

.

Proof: The proof follows the same lines as that of Lemma 4.3.2. Let E = E

8

and p

3

j 3

with � = 2mod p

3

. The following data give the necessary ingredients.

#(hG

1

; G

2

; G

3

imod p

151;i

= 80; 80; 40; 80; 40

#(Emodp

3

)(O=p

3

) = 6

G

0

2

= (5;�20); G

2

=  

0

(G

0

2

)

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

3

; (4 + 4� + 12�

2

+ 9�

4

; ?); (4 + 8�

2

+ 18�

3

+ 12�

4

)i

E

0

(L

p

2

)= (E(L

p

2

)) = hG

0

2

; (3; ?); (9 + 8�

2

� 22�

3

+ 12�

4

)i

E(L

p

5

= 

0

(E

0

(L

p

5

)) = hG

3

i; E

0

(L

p

5

)= (E(L

p

5

)) = hG

0

2

i

T

5

i=1

(hG

1

; G

2

; G

3

i \ E

(1)

(L

p

151;i

)) = h80G

1

; 20G

2

+G

3

i

See Table 4.14 for values of Z. �

4.8.9. Lemma. Let E

9

be the elliptic curve described in Table 4.14 and L = Q(�). We

have E

tor

9

(L) = hG

3

i. The group hG

1

; G

2

; G

3

i is a subgroup of odd �nite index in E

9

(L),

prime to 151. We have hG

1

; G

2

; G

3

imod p

151;i

= E

9

(L)mod p

151;i

.

Proof: The proof follows the same lines as that of Lemma 4.3.2. Let E = E

9

and p

3

j 3

with � = 2mod p

3

. The following data give the necessary ingredients.

#(hG

1

; G

2

; G

3

imod p

151;i

= 144; 72; 80; 40; 80

#(Emod p

3

)(O=p

3

) = 2

G

0

2

= (1 + 8�� 4�

3

; 8�

4

� 8�

3

� 4�

2

� 4�+ 20); G

2

=  

0

(G

0

2

)�G

1

E(L

p

2

)= 

0

(E

0

(L

p

2

)) = hG

1

; G

3

; (6 � 3�

2

+ 3�

4

; ?); (5 + 3�+ 5�

2

+ 7�

3

+ 6�

4

; ?)i

E

0

(L

p

2

)= (E(L

p

2

)) = hG

0

2

; (0; 0); (13 + 10� + 2�

2

� �

3

+ 3�

4

)i

E(L

p

5

= 

0

(E

0

(L

p

5

)) = hG

3

i; E

0

(L

p

5

)= (E(L

p

5

)) = h(0; 0)i

T

5

i=1

(hG

1

; G

2

; G

3

i \ E

(1)

(L

p

151;i

)) = h120G

1

+ 120G

2

; 720G

2

i

See Table 4.14 for values of Z. �
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Having established knowledge of the appropriate Mordell-Weil groups, we can proceed

and apply the method described in Section 4.5.

4.8.10. Proposition. E

1

(Q) = f1

+

;1

�

g.

Proof: Obviously, the points mentioned are rational. It is straightforward to show that

this curve is birational to the elliptic curve 400D1 in [Cre92]. This elliptic curve has only

2 rational points, which shows that the list is complete. �

4.8.11. Proposition. E

2

(Q) = f(0; 1); (0;�1)g.

Proof: Obviously, the points mentioned are rational. It is straightforward to show that

this curve is birational to the elliptic curve 400F1 in [Cre92]. This elliptic curve has only

2 rational points, which shows that the list is complete. �

4.8.12. Proposition. The points P 2 E

3

(Q(�)) with X(P ) 2 P

1

(Q) have X(P ) = 0.

Proof: Similar to Proposition 4.5.3. Note that ' : E

3

! P

1

and X : E

3

! P

1

represent the

same cover. See Table 4.15 for relevant data. �

4.8.13. Proposition. The points P 2 E

4

(Q(�)) with X(P ) 2 P

1

(Q) have X(P ) = 0.

Proof: The map (X;Y; �) 7! (�X;Y;��) gives a map between the covers '

4

: E

4

! P

1

and '

3

: E

3

! P

1

. This reduces the proposition to Proposition 4.8.12. �

4.8.14. Proposition. E

5

(Q) = f1

+

;1

�

g.

Proof: Obviously, the points mentioned are rational. It is straightforward to show that

this curve is birational to the elliptic curve 200D1 in [Cre92]. This elliptic curve has only

2 rational points, which shows that the list is complete. � The next propositions are

completely analogous to Proposition 4.5.3. See Table 4.15 for relevant data.

4.8.15. Proposition. The points P 2 E

6

(Q(�)) with X(P ) 2 P

1

(Q) have X(P ) = �1.

4.8.16. Proposition. The points P 2 E

7

(Q(�)) with X(P ) 2 P

1

(Q) have X(P ) 2

f1;

1

3

; 3g.

4.8.17. Proposition. The points P 2 E

8

(Q(�)) with X(P ) 2 P

1

(Q) have X(P ) 2

f1; 0;�2g.

4.8.18. Proposition. The points P 2 E

9

(Q(�)) with X(P ) 2 P

1

(Q) have X(P ) 2 f1g.

Proof of Theorem 1.3.4: Consider x

2

+y

4

= z

5

. Lemma 3.2.4 together with Lemma 4.8.1

show that the curves E

1

; : : : ; E

4

from Table 4.12 parametrise the primitive solutions and

in what way the parameter values s=t can be recovered from the points P 2 E

i

(L) with

'

i

(P ) 2 P

1

(Q). Propositions 4.8.10 through 4.8.13 give those points. We see all points

must have s=t = 0;1, so we have that either s = 0 or t = 0 which leads to y = 0 or x = 0.

Proof of Theorem 1.3.5: Consider x

2

� y

4

= z

5

. Lemmas 3.2.5, 4.8.2 and 4.8.3 show

that E

5

; : : : ; E

9

determine all possible solutions. Propositions 4.8.14 through 4.8.18 give

the possible candidates and the values of s=t belonging to them. The values s=t =1; 1;�1
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in Lemma 4.8.2 lead to solutions with z = 0, y = 0 or x = 0. The values s=t = 3;

1

3

lead to

x = �122; y = �11; z = 3.

The points on E

8

(L) lead to s=t = 1;1;�2. These correspond to (x; y; z) = (0;�1;�1)

and (�16;�4; 0). While (�2; 2(� � �

2

� �

3

)) is a genuine point on E

8

(L), we have that

�(2 + �

3

) is not a square in L for any � 2 Q

�

. We therefore see that no rational s; t

with s=t = �2 exist that satisfy Lemma 4.8.3. The point on E

9

(L) leads to (x; y; z) =

(�7;�3;�2).
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j G '(G) �

G

(n

1

; : : : ; n

r

)

3 1 1 41

2

0

@

23n

2

1

n

2

1

36n

2

1

1

A

mod41

3

6 1 1 31

2

0

@

n

2

1

+ 8n

1

n

2

+ 19n

2

2

27n

2

1

+ 17n

1

n

2

2

+ 28n

2

2

8n

2

1

+ 16n

1

n

2

+ 16n

2

2

1

A

mod31

3

G

1

+G

3

+G

4

�1 31

0

@

9n

1

+ 22n

2

11n

1

+ 22n

2

29n

1

1

A

mod 31

2

7 1 1 31

2

0

@

10n

1

n

2

+ n

2

2

11n

2

1

+ n

1

n

2

+ 23n

2

2

2n

2

1

+ 24n

1

n

2

+ 24n

2

2

1

A

mod 31

3

G

1

+G

2

+G

4

1

3

31

0

@

26n

1

+ 22n

2

16n

1

+ 18n

2

5n

1

+ 14n

2

1

A

mod 31

2

G

1

�G

2

+G

4

3 31

0

@

30n

1

+ 5n

2

7n

1

+ 10n

2

12n

1

+ 29n

2

1

A

mod 31

2

8 1 1 151

0

B

B

@

77n

1

+ 10n

2

4n

1

+ 46n

2

17n

1

+ 85n

2

134n

1

+ 14n

2

1

C

C

A

mod 151

2

G

2

0 151

0

B

B

@

103n

1

+ 139n

2

2n

1

+ 35n

2

119n

1

+ 90n

2

109n

1

+ 13n

2

1

C

C

A

mod 151

2

�2G

1

�2 151

0

B

B

@

78n

1

+ 29n

2

79n

1

+ 3n

2

44n

1

+ 45n

2

28n

1

+ 2n

2

1

C

C

A

mod151

2

9 1 �1 151

0

B

B

@

147n

1

+ 57n

2

31n

1

+ 84n

2

16n

1

+ 42n

2

24n

1

+ 119n

2

1

C

C

A

mod 151

2

Table 4.15: Fibres of rational points
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Chapter 5

Chabauty methods

In this chapter we place the constructions used in Sections 4.6, 4.7 and 4.8 in a wider,

geometric context. We use the notion of the jacobian variety of a curve (see [Mil86b] or

[CF96] for a more explicit treatment of the genus 2 case). In fact, we only need that it

is an abelian variety (a complete, connected, non-singular variety with a geometric group

law, see [Mil86a]) of dimension equal to the genus of the curve and with the same �eld of

de�nition as the curve. If a curve has a point over its �eld of de�nition, then the curve

can be embedded (using the Abel-Jacobi map) in its jacobian over the �eld of de�nition.

5.1 General idea

Let C be an algebraic curve over a number �eld K with a K-rational point and let J

denote its jacobian Jac(C). Let p be a �nite prime of O

K

. In [Cha41], C. Chabauty proved

Theorem 2.3.3 for curves that have rk(Jac(C)(K)) < genus(C). The proof is based on the

fact that the p-adic topological closure of a �nitely generated subgroup (J (K) in our case)

of rank r in J (K

p

) has dimension � r. We write J (K) for the topological closure of J (K)

in J (K

p

). If we consider C (via the Abel-Jacobi embedding) as a subvariety of J , then

we have C(K) � C(K

p

) \ J (K). Thus, if rk(J (K)) < genus(C) then we see that C(K) is

contained in the intersection of a p-adic subvariety of dimension 1 and one of codimension

� 1. Since C(K

p

) generates J (K

p

) as a group, it cannot be contained in a subgroup. Using

vanishing properties of di�erentials of the �rst kind, Chabauty proceeds to proving that

C(K

p

) cannot have an analytic component in J (K). It follows that the intersection is a

0-dimensional p-adic analytic subvariety of J (K

p

). Since J (K

p

) is compact, it follows that

C(K

p

) \ J (K) is �nite and thus that C(K) is �nite.

The result itself is superseded by the proof of Faltings, who proved �niteness inde-

pendent of rk(J (K)). However, no e�ective proof is known for Theorem 2.3.3 while in-

tersections of p-adic varieties can be approximated e�ectively. This means that, if we can

e�ectively compute on J (both as a group and as a p-adic variety), determine the subgroup

J (K), �nd a point P 2 C(K) and have rk(J (K)) < genus(C), then we can carry out the

procedure described by Chabauty explicitly. This gives both an upper bound for #C(K)

and p-adic approximations for all elements of C(K).

Methods based on this idea are quite commonly referred to as e�ective Chabauty meth-

ods. For curves of genus 1 this idea is trivial, since rk(J (K)) < genus(C) implies that

59
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J (K) is �nite itself. For genus 2, there are some examples where this method has been

successful. See for instance [Col85], [FPS97], [Fly97] and [Bru97].

If rk(J (K)) is high, then a di�erent method is needed. If we have a �nite number

of covers D

�

! C over K such that the images of D

�

(K) cover C(K), then we can try

to determine D

�

(K) through the same process. In general, genus(D

�

) > genus(C) and

rk(Jac(D

�

)(K)) � rk(Jac(C)(K)). Therefore, it is possible Chabauty methods are appli-

cable to the D

�

. This idea is worked out in [Wet97] for bi-elliptic curves of genus 2 and

applied to a curve of rank 2.

In the rest of this chapter, we show how the methods described in preceding chapters

can be interpreted in terms of these ideas.

5.2 Subcovers for F (x; y) = Dz

2

Consider the situation of Section 3.1 with m = 2. In principle, Theorem 3.1.1 guaran-

tees that primitive solutions of the equation F (x; y) = Dz

2

over a number �eld K are

parametrised by a �nite number of curves C

P

over K. If the genus of those curves is > 1,

in which case deg(F ) � 5, then it may be possible to determine C

P

(K) for each of them

using an e�ective Chabauty-method. Since the genus of C

P

may be quite high, this would

involve computations on high dimensional abelian varieties. We follow another approach.

We use the notation of Section 3.1 and we will put n = 2 and we write � : C

P

! P

1

for the map previously denoted by ' �  

�1

. Recall that � is Galois with Galois group

h�

1

; : : : ; �

n

i. Furthermore, note that H := h�

1

� �

2

; �

2

� �

3

; �

5

; : : : ; �

n

i is a normal subgroup

of Gal(C

�

=P

1

) of index 2. Consequently, � : C

P

! P

1

splits in C

P

! E

P

'

! P

1

, induced

by the map Hn: : C

�

! E

�

. Note that this ' is di�erent from the one in Section 3.1 and

agrees with the maps ' in Sections 4.6 through 4.8. In general, dividing out a variety by

a group of automorphisms gives a variety again. See [Sil86, Exercise 3.13] or [Mum70, x7].

This is quite a deep result. In this special case, observe that Hn: is induced by the map

(Y

1

: : : : : Y

n

) 7! (Y

2

1

Y

4

: Y

2

2

Y

4

: Y

1

Y

2

Y

3

: Y

3

4

), which can be seen from the fact that it is

invariant under H and induces a map of degree 2

n�1

on C

�

. The curve E

�

is the image of C

�

under this map. That the image gives a smooth model is not important for our purposes

and is left to the reader.

This construction is nicely summarised in the following commutative diagram.

C

�

C

P

E

�

E

P

P

1

�

��

Hn:

4

4

4

4

4

46

h

h

h

h

h

hk

�

u

 

[

[]

 

�1

H n:

�











�

A

A

A

A

A

AD

'

From degree and rami�cation behaviour, it follows that ' : E

P

! P

1

is a double cover,

which is rami�ed exactly above �

1

; : : : ; �

4

. Therefore it is of genus 1 and has a model of
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the form

E

P

: Y

2

= (X � �

1

)(X � �

2

)(X � �

3

)(X � �

4

) = R(X);

where ' = X. This model is not smooth at 1. We denote the branches at in�nity by1

+

and 1

�

, classi�ed by Y=X

2

. It does have good reduction at primes outside S [ f2g in the

sense that the locally regular charts (X;Y ) and (1=X; Y=X

2

) in reduction cover the curve

with locally regular charts again.

Let K(R) denote the �eld of de�nition of R(X). If �(P ) = X(�(P )) 2 P

1

(K), then

Y (�(P ))

2

2 K(R), the �eld of de�nition of R. Therefore, it su�ces to consider only 

that are representatives of K(R)(S; 2). Note that the choices of � are absorbed in .

Now P 2 C

P

(K) leads to a point G = �(P ) 2 E

P

(K(R)) with '(G) = �(P ) 2 P

1

(K).

If E

P

has a K(R)-rational point, then we can make it into an elliptic curve. This places us

in the situation of Section 4.5.

Lemmas 4.8.1, 4.8.2 and 4.8.3 apply this procedure to some equations where deg(F ) = 5.

In those cases, genus(C

�

) = 5. For a more general treatment of curves of genus 5 admitting

maps to curves of genus 1, see [ACGH85, exercise section VI.F].

5.3 Multiplication-by-two cover on genus 2

We can apply the construction from Section 5.2 directly to the equation F (X;Y ) = DZ

2

with deg(F ) = 6. However, by writing F (X=Y; 1) = D(Z=Y

3

)

2

, we see that solutions are

in fact parametrised by a single genus 2 curve, instead of several genus 17 curves. This

approach is taken in [Bru97]. Note that the curves C

7

and C

9

in Section 4.7 turn out to have

Jacobians of rank 2 over Q, so a Chabauty-argument cannot be applied to them directly.

In this section, we examine what the relation is between such a genus 2 curve C and the

genus 17 curves D. It turns out that there is a beautiful geometric construction for it. The

curve D is a degree 16 unrami�ed cover of C. In [Wet97] Wetherell already constructed a

degree 4 unrami�ed cover of genus 2 curves that are a degree 2 cover of an elliptic curve

over the �eld of de�nition. This construction is a generalisation of that idea and applies

to any hyperelliptic curve but is only described for genus 2.

Let K be a number �eld and let C be a curve over K of genus 2, given by a model

C : Y

2

= F (X) = f

6

(X � t

1

)(X � t

2

) � � � (X � t

6

)

where F 2 O

K

[X] is a square-free polynomial of degree 5 or 6. If deg(F ) = 5 then we write

t

i

= 1 for one i. The map (X;Y ) 7! (X;�Y ) de�nes an involution on C and is denoted

by P 7!

^

P . The �xed points of this involution are exactly the T

i

= (t

i

; 0). If deg(F ) = 5,

then we have that one of the T

i

= 1. Otherwise, C has two points corresponding to the

singular point 1 of the model, denoted by 1

+

and 1

�

. These can be distinguished by

the value of Y=X

3

.

Let J denote the jacobian variety of C. We �x some notation for some morphisms J !

J as a variety. Since J is an abelian variety, we have that Zacts on J by multiplication.

We denote this with [n] : J ! J . Any D

0

2 J (

�

K) can be identi�ed with the translation

D 7! D +D

0

.
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We refer to [CF96] for an explanation of the arithmetic on J . We just recall that

points of J (

�

K) can be represented by formal �nite linear combinations

P

P2C(

�

K)

n

P

P with

n

P

2 Zand

P

n

P

= 0. We have that [�1](

P

n

P

P ) =

P

n

P

^

P . We see that the points

T

ij

= [T

i

� T

j

] are 2-torsion points. One further relation is that T

12

+ T

34

+ T

56

= 0. As a

consequence, J [2](

�

K) consists of 16 elements and the 15 non-zero elements give involutions

T

ij

: J ! J given by D 7! D + T

ij

.

Suppose we have P

0

2 C(K). Then we can embed C(K) in J (K) using the Abel-Jacobi

map P 7! [P � P

0

]. The image of this map constitutes the curve C

P

0

� J . Note that the

hyperelliptic involution on C

P

0

is induced by [

^

P

0

� P

0

] � [�1].

De�ne D

P

0

to be the inverse image of C

P

0

under the [2]-map. Thus, D

P

0

is an unrami�ed

degree 16 cover of a genus 2 curve which, by Theorem 2.3.2, is of genus 17. Note that

D

P

0

(K) need not cover the whole of C

P

0

(K), since �bres of rational points might consist of

conjugate points. However, D

P

0

(K) certainly does cover P

0

. For another point P

1

2 C(K),

we have that C

P

1

is isomorphic to C

P

0

over K by the translation [P

0

�P

1

]. Similarly,D

P

1

is

isomorphic to D

P

0

over

�

K via the translation over some point D such that 2D = [P

0

�P

1

].

Thus, we see that D

P

1

is a twist of D

P

0

, classi�ed by the class of [P

0

�P

1

] in J (K)=2J (K).

Since, by the Mordell-Weil theorem, J (K) is �nitely generated, we only need a �nite

number of twists of D

P

0

to cover all rational points of C(K) (this is a special case of

[Wet97, Theorem 2.3.3]). Thus, the problem of determining the rational points of a genus

2 curve is transformed to �nding the rational points on several curves of genus 17. This

would not be progress if we did not have some additional structure.

The involution [

^

P

0

�P

0

]�[�1] can be pulled back under [2] to �

T

i

= [�1]+[T

i

�P

0

]. Note

that D

P

0

comes equipped with a degree 32 cover of P

1

, namely X � [2]. This P

1

corresponds

to hJ [2]; �

T

6

inD

P

0

. By factoring out subgroups of involutions, we get intermediate covers.

For instance, take H

T

56

= hT

12

; T

13

; T

14

; �

T

6

i. It is straightforward to check that �

T

5

is also

in this group and that T

15

62 H

T

56

. Put E

P

0

= E

P

0

;T

56

= H

T

56

nD

P

0

. It follows that T

15

induces a non-trivial involution on E

P

0

and that the quotient is ĥ:inC. This gives a double

cover ' : E

P

0

! P

1

.

D

P

0

E

P

0

;T

56

Q

P

0

;T

56

C

P

0

P

1















�

J [2]n:

[2]

u

H

0

T

56

n:

A

A

A

A

A

A

AD

H

T

56

n:

�













�

'

hT

15

in:

u

'

0

hT

15

in:

A

A

A

A

A

A

A

AD

X

h[�1]+[

^

P

0

�P

0

]in:

To determine the genus of E

P

0

, we look at the rami�cation of this double cover. It

can only be rami�ed above the t

i

's. We have that '

�1

(ft

i

g) = H

T

56

n(X � [2])

�1

(ft

i

g).

If 2D = [T

i

� P

0

], then �

T

6

(D) = D + T

i6

. So, for i = 1; 2; 3; 4 we see that H

T

56

works

transitively on the �bre. Therefore, ' is rami�ed above t

1

; : : : t

4

. By Theorem 2.3.2, E

P

0

is

of genus 1.
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Note that we can only guarantee that E

P

0

is de�ned over L = K(T

56

) and that

�(D

P

0

(K)) � E

P

0

(L). However, since ' comes from factoring X � [2], which is de�ned

over K, we know that such points map to K-rational points under '. Thus, we are inter-

ested in determining the set P

1

(K)\'(E

P

0

(L)). Taking X

�1

of this set gives a superset of

C

P

0

(K) \ [2](D

P

0

(K)).

In order to make this procedure e�ective, we have to determine which twists of E

P

0

we

need. The rami�cation information of ' completely determines the geometry of E

P

0

. A

double cover of the projective line, rami�ed above t

1

; t

2

; t

3

; t

4

is of the form

E

�

: �Y

2

1

= R

T

56

(X) = (X � t

1

)(X � t

2

)(X � t

3

)(X � t

4

):

where � = �

P

0

represents an element of L

�

=(L

�

)

2

, depending on P

0

. We can identify

X : E

�

! P

1

with '.

If we repeat this procedure with H

0

T

56

= hT

12

; T

13

; T

14

; �

T

1

i, we get a double cover of P

1

that is rami�ed above t

5

; t

6

. By Theorem 2.3.2, it is of genus 0 and has a model of the

form

Q

�

0

: �

0

Y

2

2

= Q

T

56

(X) = f

6

(X � t

5

)(X � t

6

):

Again, X : Q

�

0

! P

1

is the double cover of P

1

induced by X � [2] on D

P

0

.

Note that F (X) = Q

T

56

(X)R

T

56

(X), so for a point P 2 C(K) covered by D

P

0

(K)

we have a � = �

P

0

and a pair of points (X(P ); Y

1

) 2 E

�

(L) and (X(P ); Y

2

) 2 Q

�

0

(L)

with Y (P )

2

= ��

0

Y

2

1

Y

2

2

. It follows that if D

P

0

(K) is non-empty, then �

0

should represent

the same class as �

P

0

. So without loss of generality, we can put �

0

= �

P

0

and we have

Y (P ) = ��Y

1

Y

2

.

The point P

0

is certainly covered by D

P

0

(K). Therefore, �

P

0

should represent the

quadratic class of R

T

56

(X(P

0

)). For X(P

0

) 2 ft

1

; : : : ; t

4

g, we can determine �

P

0

by noticing

that �

P

0

should also represent the quadratic class of Q

T

56

(X(P

0

)). It follows that �

P

0

will

be a square locally at primes where disc(F ) is a unit. Therefore �

P

0

is a representative of

the �nite set L(S; 2), where S is the set of primes dividing disc(F ).

Twists of E

�

that have points that correspond to K-rational points of C are called

productive. To narrow down the number of E

�

that might be productive, we can proceed

in the following manner. We let � run through a set of representatives of L(S; 2), choose

a prime p of K together with a prime p j p of L and see whether there exist X 2 K

p

such

that R

T

56

(X); Q

T

56

(X) 2 � � (L

�

p

)

2

[ f0g. If representatives of J (K)=2J (K) are available,

then they can give information that helps to reduce the number of candidates for � as well.

Now we are again in the situation where we have a �nite number of degree 2 elliptic

covers ' : E ! P

1

over a number �eld L such that for any point P 2 C(K) there is one

such cover and a point G 2 E(L) such that '(G) = X(P ). We are thus led to determine

the L-rational points of E with K-rational image under '. This is discussed in Section 4.5.

5.4 Weil restriction

In both Sections 5.2 and 5.3 we get a cover � : C ! P

1

over a number �eld K that splits as

C

�

! E

'

! P

1

over an extension L. In Section 4.5 we deal with the problem of determining
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C(K) in the following way. We observe that �(C(K)) = '(E(L))\P

1

(K) and we determine

the latter. We refer to this method as a Chabauty-style argument. In this section we briey

sketch why this is justi�ed.

Let E be an elliptic curve over a number �eld L and let K be a sub�eld. We need the

Weil restriction of E from L to K. For a�ne objects, one obtains the Weil restriction by

writing out the equations and variables with respect to a K-basis of L. See [BLR90, x7.6]

for a proper de�nition. LetA denote the Weil-restriction of E from L to K. Then, [BLR90,

Proposition 7.6.5] assures that A is a smooth complete variety such that A(K)

�

=

E(L)

as sets. The group law on E induces a group law on A (over K), which implies that

A(K)

�

=

E(L) as groups. For A to be an abelian variety, it should be geometrically

connected. This follows from the fact that, as varieties over

�

L, A is covered by E� � � � �E

([L : K] times). The latter is connected since it is connected over C .

The map � : C ! E induces a map C ! A over K (also denoted by �). This is the

situation of a Chabauty argument. If p is a prime of O

K

, and �(C(K

p

)) and the p-adic

closure of A(K) do not share a component of dimension 1, then �(C(K

p

))\A(K) is �nite

(because A(K

p

) is compact).

When constructing the power series � in Section 4.5, we do in fact write out C

�

! E

'

! P

1

with respect to a K-basis of L locally. It is just convenient to do most computations on E

over L instead of on A over K, since with the current state of computational machinery,

simple geometry over a �eld with complicated arithmetic is to be preferred over complicated

geometry over a �eld with simple arithmetic.

That we work with ' : E ! P

1

instead of � : C ! E is just because deg(') = 2 and

we have a fairly complete description of such covers in Section 4.4. In other situations,

it may be preferable to work with � : C ! E. In that case, one is interested in those

G 2 E(L) such that �

�1

(fGg) hits C(K). One may proceed in the following way. Choose

a P

0

2 C(K

p

) and a local map z 7! P (z) that parametrises the p-adic neighbourhood of

P

0

(i.e. P (pO

p

) is the part of C(K

p

) that reduces to P

0

mod p). Then �(P (z))� �(P

0

) 2

E

(1)

(L

p

) for all p j p and z 2 pO

p

. Given that E(L) \ E

(1)

(L

p

) = hB

1

; : : : ; B

r

i and

�(P

0

) 2 E(L), it follows that if �(P (z)) 2 E(L), then there are n

1

; : : : ; n

r

2 Zsuch that

Log

p

(�(P (z))� �(P

0

))� n

1

Log

p

(B

1

) � � � � � n

r

Log

p

(B

r

) = 0 for all p j p. The number of

such z; n

1

; : : : ; n

r

can be bounded using the same techniques as in Lemma 4.5.2.
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Algorithms

A.1 Computations in local �elds

In this text, we frequently used that if a variety has a point over a number �eld K, then

it also has points over localisations K

p

. Whether a variety has a point over a local �eld

is a question which is easier to answer. In this chapter we describe how. Note that if p is

an in�nite prime, then K

p

= R or K

p

= C . Since C is algebraically closed, any non-trivial

variety will have points over C . For R, it is also quite easy to �nd points, or show that

there are none. We will not deal with these cases here, so we assume that p j p for some

prime p of Z.

Suppose that K = Q(�), where � is a zero of a given monic irreducible polynomial

F (X) 2 Z[X]. Let the prime p be given as an ideal of O

K

. Note that for any x 2 K

�

p

, we

have x=u

�

p

(x)

p

2 O

�

p

. Therefore, we can approximate elements in K

�

p

by elements

(v; ~x) 2Z� (O

p

=(pO

p

)

e

)

�

=Z� (O=p

e

)

�

such that x = u

e

p

~xmod p

v+e

. Representation of 0 is not very di�cult either.

Since (O=p

e

)

�

is a �nite abelian group, it is isomorphic to a product of cyclic groups,

of sizes m

1

; : : : ;m

t

, say. The map

�

p

e

: (O=p

e

)

�

~�!Z=m

1

Z� � � � �Z=m

t

Z

is e�ectively computable. It is available as EltRayResidueRingRep in KASH (see [DFK

+

97])

and as IdealLog in PARI-GP (see [BBB

+

]).

The map ��

p

e

de�ned by taking every component of �

p

e

modulo gcd(2;m

i

) clearly has

((O

e

p

)

�

)

2

as kernel. Let c denote the number of m

i

that are divisible by 2. To determine if

x 2 K is a p-adic square, it is su�cient to test if v = �

p

(x) = 0mod 2 and if ��

p

�

p

(4)+1

(x) = 0.

Thus

K

�

p

=(K

�

p

)

2

! F

2

� (F

2

)

c

x 7!

�

(�

p

(x)mod2; ��

p

�

p

(4)+1

�

x=u

�

p

(x)

p

��

is a group isomorphism. Note that if x 2 O

�

p

, e > �

p

(4), then by Newton approximation,

we have that x 2 (O

�

p

)

2

if and only if xmodp

e

= y

2

mod p

e

for some y 2 O

�

p

.
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A.2 Proving local unsolvability

Let I = (F

1

; : : : ; F

m

) � O

K

[X

0

; : : : ;X

n

] be a homogeneously generated ideal, let p be a

prime of O and let R be a set of representatives of O=p in O. In this section we present a

little algorithm that tests if the variety determined by I has no points over K

p

.

Test(p; I; (y

0

; : : : ; y

n

); e;B):

1. If F

i

(y

0

; : : : ; y

n

)mod p

e

6= 0 for any i 2 f1; : : : ;mg then return(true).

2. else if e � B then return( false).

3. else for all (x

0

; : : : ; x

n

) 2 R � � � � �R do

4. if Test(p; I; (y

0

+ u

e

p

x

0

; : : : ; y

n

+ u

e

p

x

n

); e+ 1; B) = false then return( false)

5. if done with for then return(true).

HasNoLocalPoint(p; I; B):

1. for all (y

0

; : : : ; y

n

) 2 f1g �R � � � � �R [ � � � [ f(0; : : : ; 0; 1)g do

2. if Test(p; I; (y

0

; : : : ; y

n

); 1; B) = false then return(unknown)

3. if done with for then return(true)

If HasNoLocalPoint returns true for some value of B, then the variety described by I

does not have points over K

p

since P

n

(O

p

) = P

n

(K

p

). By Hensel's lemma, there is a value

for B, e�ectively computable from I, such that, if unknown is returned for that value, then

in fact I does have a point over K

p

. For hyperelliptic curves, we can use this idea to make

a more e�cient algorithm. Let F 2 O

K

[X] be a square free polynomial (not necessarily

monic). Consider the curve C : Y

2

= F (X). If deg(F ) is odd or F has a zero over K

p

,

then C certainly has a point over K

p

, so we assume this is not the case. Note that, if C has

a K

p

-valued point, then one of Y

2

= F (X) and Y

2

= X

deg(F )

F (1=X) has a solution with

X 2 O

p

. Therefore, it is enough to consider only points with integral X.

HasLocalPointWithIntX(p; F; x

0

; e):

1. v := �

p

(F (x

0

)).

2. if v < e and vmod2 6= 0 then return( false)

3. else if v < e and ��

p

e�v
(F (x

0

)=u

v

p

) 6= 0 then return( false)

4. else if e� v > �

p

(4) then return(x

0

)

5. else for all x

1

2 R do

6. t := HasLocalPointWithIntX(p; F; x

0

+ u

e

p

x

1

; e+ 1)

7. if t 6= false then return(t)

8. if done with for then return( false)

If HasLocalPointWithIntX(p; F (X); 0; 0) returns false, then C has no K

p

with X 2 O

p

,

otherwise it returns an x 2 O for which F (x) is a square in K

p

. To search for non-integral

X it su�ces to call HasLocalPointWithIntX(p;X

deg(F )

F (1=X); 0; 1).
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In line 3 we use that xmodp

e

determines the value of F (x)modp

e

. For speci�c F we

can do better. For instance, for descents as described in Section 4.3 we often need to search

for local points on Y

2

= F (X) = f

0

X

4

+ f

2

X

2

+ f

4

. As is easily checked, for x

0

; x

1

2 O

p

we have

�

p

(F (x

0

)� F (x

0

+ u

e

p

x

1

)) � e+minf�

p

(4f

0

); �

p

(6f

0

) + e; �

p

(f

0

) + 3e; �

p

(2f

2

); �

p

(f

2

) + eg

which is better if p j 2, especially if it is highly rami�ed.

Furthermore, in Section 5.2, we want to test if there are local solutions to Y

2

= F (X)

with rational X. Let p be the prime ofZbelow p. Instead of taking R to be representatives

of O=p, we take R to represent Z=p. In line 6, we can replace e+ 1 by e+ �

p

(p).

A.3 Sieving for rational points

In Section 4.3 we described how to bound the rank of an elliptic curve over a number �eld,

but we did not say how generators may be found. There is no e�cient solution for this

and especially if we want generators of a curve over a number �eld of high degree, then

searching for points can be a di�cult task. In this section we present an algorithm which

does not improve theoretically on brute force searching, but is very e�cient to implement.

Let K be a number �eld of degree n over Q and let b

1

; : : : ; b

n

be a Z-basis of O

K

.

Consider a hyperelliptic curve C : Y

2

= F (X), with F 2 O

K

[X]. We present an algorithm

that searches for rational points with integral X-coordinate. To search for points with non-

integral X with prescribed denominator, just rewrite the model of C. We select N primes

p

1

; : : : ; p

N

of O

K

above rational primes p

1

; : : : ; p

N

unequal to 2 such that O=p

i

= F

p

i

. We

use the property that if x; y 2 O

K

such that y

2

= F (x), then F (x)modp

i

is a square in

F

p

i

.

Sieve(F; b

1

; : : : ; b

n

; p

1

; : : : ;p

N

; B):

1. for i = 1; : : : ; N do

2. F

i

:= F mod p

i

2 F

p

i

[X]

3. for all x 2 F

p

i

do

4. if

p

F

i

(x) 2 F

p

i

then V

i

[x] = true else V

i

[x] = false

5. for j = 1; : : : ; n do b

(i)

j

:= b

j

mod p

i

2 F

p

i

6. for all (c

1

; : : : ; c

n

) 2 f�B; : : : ; Bg � � � � � f�B; : : : ; Bg do

7. f := true

8. for i = 1; : : : ; N do

9. if V

i

h

P

n

j=1

c

j

b

(i)

j

i

= false then f := false; goto 10

10. if f = true then report(c

1

b

1

+ � � �+ c

n

b

n

)

Note that, ifN is large, i.e. 2

N

> (2B+1)

n

, then it is likely that a reported x-coordinate

does indeed belong to a rational point, which may be checked by factoring Y

2

�F (x) over
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O

K

. It is clearly a good idea to �rst test at primes p

i

for which it is unlikely that F

i

(x) is

a square. Thus, the p

i

should be ordered such that #fx 2 F

p

i

: V

i

[x] = trueg=p

i

increases

with i. Furthermore, each time line 9 is executed, we need to compute n multiplications

and n � 1 additions in F

p

i

to determine the index in V

p

i

. This can be quite expensive.

Note that indices belonging to consecutive vectors (c

1

; : : : ; c

n

) have a di�erence of b

(i)

1

or

b

(i)

j+1

� 2Bb

(i)

j

. It is a great time saver to precompute these di�erences for small i (i < C,

say) and update

P

n

j=1

c

j

b

(i)

j

for every candidate. This will cost (apart from a lookup of

the appropriate increment) only one addition in F

p

i

. This cost will be made for every

candidate though, regardless of whether the candidate was already shown not to be the

X of a rational point due to other primes. Heuristically, the i-th prime will be used once

every 2

i�1

candidates. The optimal value of C depends on n and the relative cost of

multiplication.

A.4 Electronic veri�cation

Many of the proofs in Chapter 4 require computations that are extensive to represent on

paper. To facilitate the veri�cation of those calculations (and to help people who want

to do this kind of calculations themselves), the author developed a computer package

that automates these computations to a considerable degree. The �les are packaged as

\thesis.sh" and can be found in the preprint archive of the Mathematical Institute of

Leiden University as \W99-14.sh", accompanying [Bru99]. Alternatively, the reader can

consult the home-page of the author (no permanent address can be given) or contact the

author directly.

The package is written for use with KASH 2.0, a freely available shell for the KANT

library (see [DFK

+

97]). Any future user should make sure that KASH is available to him

or her. The package consists of the following �les

index.txt a �le describing the contents of the package

matalg.g linear algebra extension to the standard functions

array.g arbitrary dimensional arrays

domain.g functions facilitating writing generic code

latcalc.g functions to work with sublattices of Z

r

loccalc.g �nite precision arithmetic in localisations of number �elds

ellcalc.g basic arithmetic of elliptic curves over number �elds as well as Chabauty method

as described in Section 4.5

isogdesc.g 2-isogeny descent on elliptic curve over number �eld as described in Section 4.3

eq283E2.g computations for 4.3.2 and 4.5.3
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eq283E4.g computations for 4.6.7 and 4.6.10

eq283E7.g computations for 4.6.8 and 4.6.11

eq238E5.g computations for 4.7.3 and 4.7.10

eq238E7.g computations for 4.7.4 and 4.7.12

eq238E9.g computations for 4.7.5 and 4.7.14

eq245E3.g computations for 4.8.5 and 4.8.12

eq245E6.g computations for 4.8.6 and 4.8.15

eq245E7.g computations for 4.8.7 and 4.8.16

eq245E8.g computations for 4.8.8 and 4.8.17

eq245E9.g computations for 4.8.9 and 4.8.18

powseries.mpl Maple V script for computing the approximations given in Section 4.4

sieve.c C source of a program called from the Sieve implementation in loccalc.g.

The algorithms HasLocalPointWithIntX (also with the modi�cation for rational integer X)

and Sieve are implemented in loccalc.g. Therefore, the proofs of lemmas like Lemma 4.6.4

can be checked quite easily using these routines. The proof of for instance Lemma 4.8.4

is a straightforward exercise in algebra. A particularly convenient description of the con-

struction used for obtaining a Weierstrass model from a quartic model can be found in

[Cas91].
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Samenvatting

Chabauty-methoden en overdekkingstechnieken

toegepast op gegeneraliseerde Fermat-vergelijkingen

Al in de klassieke oudheid werden bijzondere eigenschappen van getallen bestudeerd. De

Pythagoree�ers (ong. 400 v.C.) kenden al oneindig veel oplossingen van x

2

+ y

2

= z

2

in

gehele getallen, in de vorm van rechthoekige driehoeken waarvan alle zijden een gehele

lengte hebben. Een van de meest invloedrijke werken in de getaltheorie is Arithmetica

van Diophantus (ong. 250 n.C.). In dit boek worden vragen behandeld over vergelijkingen

in positieve gebroken getallen. E�en van de vragen die hij beschouwt, is of een gegeven

kwadraat te schrijven is als de som van twee andere kwadraten. Hij slaagt erin om dit

voor een voorbeeld te doen. Het is bij deze vraag dat Pierre de Fermat (1601-1665) een

kanttekening maakte over de vraag of de som van twee hogere machten weer eenzelfde

macht kan zijn. Vertaald in moderne notatie, beschouwde hij de vraag of er voor n � 3

oplossingen zijn van

x

n

+ y

n

= z

n

; x; y; z 2Z

>0

:

Hij beweerde dat er geen oplossingen zijn, maar gaf daar geen bewijs voor. Het heeft tot

1995 geduurd totdat Wiles met hulp van Taylor bewees dat Fermat gelijk had.

De grote hoeveelheid wiskundige literatuur die ge��nspireerd is door Fermat's bewering

en de opzienbarende strukturen die daarin zijn blootgelegd, geven aan dat dit soort vergeli-

jkingen raken aan het wezen van de gehele getallen. Het ligt dan ook voor de hand om een

meer algemene vergelijking te beschouwen, de gegeneraliseerde Fermat-vergelijking

x

r

+ y

s

= z

t

; r; s; t 2Z

>1

; x; y; z 2Z

>0

; ggd(x; y; z) = 1:

Speci�eke gevallen zijn al veel vroeger beschouwd.

Het blijkt dat de struktuur van de oplossingsverzameling van deze vergelijking voor

gegeven r; s; t voornamelijk wordt geregeerd door de grootheid � = 1=r + 1=s + 1=t. Als

� > 1, dan zijn er oneindig veel oplossingen. In al deze gevallen, behalve x

2

+ y

3

= z

5

,

beschikkenwe over een bevredigende beschrijving van de oplossingsverzameling, dankzij het

werk van Darmon en Granville en Beukers en Zagier. Deze resultaten worden in hoofdstuk

3 van dit proefschrift beschreven.

Voor � = 1 blijken er helemaal geen oplossingen te zijn. Voor � < 1 hebben Darmon

en Granville bewezen dat er maar eindig veel oplossingen zijn. Wiskundigen vermoeden

zelfs dat alle oplossingsverzamelingen voor deze gevallen samengenomen slechts een eindige
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verzameling vormen. We weten echter wel dat dit geen lege verzameling is. We kennen

(dankzij Beukers en Zagier) de volgende oplossingen:

1

r

+ 2

3

= 3

2

(r > 6)

13

2

+ 7

3

= 2

9

2

7

+ 17

3

= 71

2

2

5

+ 7

2

= 3

4

3

5

+ 11

4

= 122

2

17

7

+ 76271

3

= 21063928

2

1414

3

+ 2213459

2

= 65

7

33

8

+ 1549034

2

= 15613

3

43

8

+ 96222

3

= 30042907

2

9262

3

+ 15312283

2

= 113

7

:

Het is interessant om te weten of er nog meer voorbeelden aan de lijst kunnen worden

toegevoegd. Als deelprobleem kan men zich afvragen of er nog meer voorbeelden zijn voor

de gegeven waarden (r; s; t) die in de tabel voorkomen. In Hoofdstuk 4 van dit proefschrift

wordt bewezen dat de vergelijkingen x

2

� y

8

= z

3

, x

2

� y

4

= z

5

en x

2

� y

4

= �z

6

geen

primitieve oplossingen hebben buiten de oplossingen die in de bovenstaande lijst staan.

De oplossingsmethode bestaat uit het concreet maken van de abstracte methode die

Darmon en Granville gebruiken om eindigheid van het aantal oplossingen vast te stellen.

Zij bewijzen dat oplossingen in correspondentie staan met zogenaamde rationale punten op

algebra��sche krommen. Eerst bewijzen ze dat er maar eindig veel van dat soort krommen

nodig zijn en vervolgens laten ze zien dat die krommen van een bijzonder type zijn: ze zijn

van geslacht � 2. Zulke krommen hebben, zoals Faltings in 1984 bewees, slechts eindig

veel rationale punten.

De eerste stap is de krommen expliciet te bepalen. Daartoe worden in Hoofdstuk 4

de technieken uit Hoofdstuk 3 toegepast. Hierbij dient wel opgemerkt te worden dat deze

niet in alle gevallen werken (bijvoorbeeld voor x

2

+ y

3

= z

7

). Vervolgens moet voor ieder

van die krommen aangetoond worden dat daarop geen andere rationale punten liggen dan

welke corresponderen met bekende oplossingen. Voor x

2

� y

4

= z

6

blijkt dat relatief

eenvoudig te zijn. In andere gevallen is het echt nodig de stelling van Faltings concreet

te maken. Dat lukt niet via het bewijs dat Faltings zelf gaf, maar een eerdere constructie

van Chabauty uit 1941, waarmee hij een beperkte versie van Faltings' stelling bewees, is

wel bruikbaar. Sommige van de krommen voldoen echter niet aan de extra conditie die

Chabauty stelt. Voor deze krommen moet eerst via overdekkingstechnieken een aantal

andere krommen geconstrueerd worden die wel aan Chabauty's conditie voldoen, zodat de

rationale punten op de oorspronkelijke kromme corresponderen met de rationale punten

op de nieuwe krommen.

In hoofdstuk 5 wordt een meer algemeen kader voor deze methoden geschetst. Door

eerdere auteurs zijn voornamelijk krommen van geslacht 2 onderzocht op toepasbaarheid

van Chabauty-methoden. Coleman, Flynn, en anderen hebben dit voor krommen van ges-

lacht 2 gedaan. Wetherell heeft overdekkingstechnieken toegepast op speciale krommen van

geslacht 2, hetgeen hem bracht tot het bestuderen van Chabauty-methoden voor krommen

van geslacht 3. In dit proefschrift worden overdekkingstechnieken besproken die toepas-

baar zijn op hyperelliptische krommen in het algemeen (krommen van geslacht 2 zijn hy-

perelliptisch). Bovendien wordt aangetoond dat uitgebreide berekeningen op ingewikkelde

wiskundige strukturen in deze situaties kunnen worden vervangen door berekeningen op el-

liptische krommen over uitbreidingen van het grondlichaam. Dat is vanuit computationeel
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oogpunt een bijzonder aantrekkelijke optie. Deze mogelijkheid bestaat voor iedere kromme

die meetkundig een overdekking is van een elliptische kromme.
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