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COMPLETELY MULTIPLICATIVE FUNCTIONS

TAKING VALUES IN {−1, 1}

PETER BORWEIN, STEPHEN K. K. CHOI, AND MICHAEL COONS

Abstract. Define the Liouville function for A, a subset of the primes P , by
λA(n) = (−1)ΩA(n), where ΩA(n) is the number of prime factors of n coming
from A counting multiplicity. For the traditional Liouville function, A is the
set of all primes. Denote

LA(x) :=
∑

n≤x

λA(n) and RA := lim
n→∞

LA(n)

n
.

It is known that for each α ∈ [0, 1] there is an A ⊂ P such that RA = α.
Given certain restrictions on the sifting density of A, asymptotic estimates for∑

n≤x λA(n) can be given. With further restrictions, more can be said. For

an odd prime p, define the character–like function λp as λp(pk + i) = (i/p)
for i = 1, . . . , p − 1 and k ≥ 0, and λp(p) = 1, where (i/p) is the Legendre
symbol (for example, λ3 is defined by λ3(3k+1) = 1, λ3(3k+2) = −1 (k ≥ 0)
and λ3(3) = 1). For the partial sums of character–like functions we give exact
values and asymptotics; in particular, we prove the following theorem.

Theorem. If p is an odd prime, then

max
n≤x

∣∣∣∣∣∣

∑

k≤n

λp(k)

∣∣∣∣∣∣
� log x.

This result is related to a question of Erdős concerning the existence of
bounds for number–theoretic functions. Within the course of discussion, the
ratio φ(n)/σ(n) is considered.

1. Introduction

Let Ω(n) be the number of distinct prime factors in n (with multiple factors
counted multiple times). The Liouville λ–function is defined by

λ(n) := (−1)Ω(n).

Therefore, λ(1) = λ(4) = λ(6) = λ(9) = λ(10) = 1 and λ(2) = λ(5) = λ(7) =
λ(8) = −1. In particular, λ(p) = −1 for any prime p. It is well known (e.g. see
§22.10 of [10]) that Ω is completely additive; i.e, Ω(mn) = Ω(m) + Ω(n) for any
m and n, and hence λ is completely multiplicative, i.e., λ(mn) = λ(m)λ(n) for all
m,n ∈ N. It is interesting to note that on the set of square-free positive integers
λ(n) = μ(n), where μ is the Möbius function. In this respect, the Liouville λ–
function can be thought of as an extension of the Möbius function.
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Similar to the Möbius function, many investigations surrounding the λ–function
concern the summatory function of initial values of λ; that is, the sum

L(x) :=
∑

n≤x

λ(n).

Historically, this function has been studied by many mathematicians, including
Liouville, Landau, Pólya, and Turán. Recent attention to the summatory function
of the Möbius function has been given by Ng [16, 17]. Larger classes of completely
multiplicative functions have been studied by Granville and Soundararajan [7, 8, 9].

One of the most important questions is that of the asymptotic order of L(x).
More formally, the question is to determine the smallest value of ϑ for which

lim
x→∞

L(x)

xϑ
= 0.

It is known that the value of ϑ = 1 is equivalent to the prime number theorem
[14, 15] and that ϑ = 1

2 + ε for any arbitrarily small positive constant ε is equiv-

alent to the Riemann hypothesis [3]. (The value of 1
2 + ε is best possible, as

lim supx→∞ L(x)/
√
x > .061867; see Borwein, Ferguson, and Mossinghoff [4].) In-

deed, any result asserting a fixed ϑ ∈
(
1
2 , 1

)
would give an expansion of the zero-free

region of the Riemann zeta function, ζ(s), to �(s) ≥ ϑ.
Unfortunately, a closed form for determining L(x) is unknown. This brings us

to the motivating question behind this investigation: are there functions similar to
λ so that the corresponding summatory function does yield a closed form?

Throughout this investigation P will denote the set of all primes. As an analogue
to the traditional λ and Ω, define the Liouville function for A ⊂ P by

λA(n) = (−1)ΩA(n),

where ΩA(n) is the number of prime factors of n coming from A counting multi-
plicity. Alternatively, one can define λA as the completely multiplicative function
with λA(p) = −1 for each prime p ∈ A and λA(p) = 1 for all p /∈ A. Every com-
pletely multiplicative function taking only ±1 values is built this way. The class of
functions from N to {−1, 1} is denoted F({−1, 1}) (as in [8]). Also, define

LA :=
∑

n≤x

λA(n) and RA := lim
n→∞

LA(n)

n
.

In this paper, we first consider questions regarding the properties of the function
λA by studying the function RA. The rest of this paper considers an extended
investigation of those functions in F({−1, 1}) which are character–like in nature
(meaning that they agree with a real Dirichlet character χ at non-zero values).
While these functions are not really direct analogues of λ, much can be said about
them. Indeed, we can give exact formulae and sharp bounds for their partial sums.
Within the course of discussion, the ratio φ(n)/σ(n) is considered.

2. Properties of LA(x)

Define the generalized Liouville sequence as

LA := {λA(1), λA(2), . . .}.

Theorem 1. The sequence LA is not eventually periodic.
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Proof. Towards a contradiction, suppose that LA is eventually periodic; say the
sequence is periodic after the M–th term and has period k. Now there is an N ∈ N

such that for all n ≥ N , we have nk > M . Since A �= ∅, pick p ∈ A. Then

λA(pnk) = λA(p) · λA(nk) = −λA(nk).

But pnk ≡ nk(mod k), a contradiction to the eventual k–periodicity of LA. �
Corollary 1. If A ⊂ P is non-empty, then λA is not a Dirichlet character.

Proof. This is a direct consequence of the non–periodicity of LA. �
To get more acquainted with the sequence LA, we study the partial sums LA(x)

of LA, and to study these, we consider the Dirichlet series with coefficients λA(n).
Starting with singleton sets {p} of the primes, a nice relation becomes apparent;

for �(s) > 1

(1)
(1− p−s)

(1 + p−s)
ζ(s) =

∞∑

n=1

λ{p}(n)

ns
,

and for sets {p, q},

(2)
(1− p−s)(1− q−s)

(1 + p−s)(1 + q−s)
ζ(s) =

∞∑

n=1

λ{p,q}(n)

ns
.

For any subset A of primes, since λA is completely multiplicative, for �(s) > 1
we have

LA(s) :=
∞∑

n=1

λA(n)

ns
=

∏

p

( ∞∑

l=0

λA(p
l)

pls

)

=
∏

p∈A

( ∞∑

l=0

(−1)l

pls

)
∏

p�∈A

( ∞∑

l=0

1

pls

)
=

∏

p∈A

(
1

1 + 1
ps

)
∏

p�∈A

(
1

1− 1
ps

)

= ζ(s)
∏

p∈A

(
1− p−s

1 + p−s

)
.(3)

This relation leads us to our next theorem, but first let us recall a vital piece of
notation from the Introduction.

Definition 1. For A ⊂ P denote

RA := lim
n→∞

λA(1) + λA(2) + . . .+ λA(n)

n
.

The existence of the limit RA is guaranteed by Wirsing’s Theorem. In fact,
Wirsing in [20] showed more generally that every real multiplicative function f
with |f(n)| ≤ 1 has a mean value; i.e., the limit

lim
x→∞

1

x

∑

n≤x

f(n)

exists. Furthermore, in [19] Wintner showed that

lim
x→∞

1

x

∑

n≤x

f(n) =
∏

p

(
1 +

f(p)

p
+

f(p2)

p2
+ . . .

)(
1− 1

p

)
�= 0

if and only if
∑

p |1 − f(p)|/p converges; otherwise the mean value is zero. This
gives the following theorem.
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Theorem 2. For the completely multiplicative function λA(n), the limit RA exists
and

(4) RA =

{∏
p∈A

p−1
p+1 if

∑
p∈A p−1 < ∞,

0 otherwise.

Example 1. For any prime p, R{p} = p−1
p+1 .

To be a little more descriptive, let us make some notational comments. Denote
by P(P ) the power set of the set of primes. Note that

p− 1

p+ 1
= 1− 2

p+ 1
.

Recall from above that R : P(P ) → R is defined by

RA :=
∏

p∈A

(
1− 2

p+ 1

)
.

It is immediate that R is bounded above by 1 and below by 0, so that we need only
consider that R : P(P ) → [0, 1]. It is also immediate that R∅ = 1 and RP = 0.

Remark 1. For an example of a subset of primes with mean value in (0, 1), consider
the set K of primes defined by

K :=

{
pn ∈ P : pn = min

q>n3
{q ∈ P} for n ∈ N

}
.

Since there is always a prime in the interval (x, x + x5/8] (see Ingham [12]), these
primes are well defined; that is, pn+1 > pn for all n ∈ N. The first few values give

K = {11, 29, 67, 127, 223, 347, 521, 733, 1009, 1361, . . .}.
Note that

pn − 1

pn + 1
>

n3 − 1

n3 + 1
,

so that

RK =
∏

p∈K

(
p− 1

p+ 1

)
>

∞∏

n=2

(
n3 − 1

n3 + 1

)
=

2

3
.

Also RK < (11− 1)/(11 + 1) = 5/6, so that

2

3
< RK <

5

6

and RK ∈ (0, 1).

There are some very interesting and important examples of sets of primes A for
which RA = 0. Indeed, results of von Mangoldt [18] and Landau [14, 15] give the
following equivalence.

Theorem 3. The prime number theorem is equivalent to RP = 0.

We may be a bit more specific regarding the values of RA for A ∈ P(P ). For
each α ∈ (0, 1), there is a set of primes A such that

RA =
∏

p∈A

(
p− 1

p+ 1

)
= α.

This result is a special case of some general theorems of Granville and Soundarara-
jan [8].
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Theorem 4 (Granville and Soundararajan [8]). The function R : P(P ) → [0, 1] is
surjective. That is, for each α ∈ [0, 1] there is a set of primes A such that RA = α.

Proof. This follows from Corollary 2 and Theorem 4 (ii) of [8] with S = {−1, 1}. �

In fact, let S denote a subset of the unit disk and let F(S) be the class of
totally multiplicative functions such that f(p) ∈ S for all primes p. Granville and
Soundararajan [8] prove very general results concerning both the Euler product
spectrum Γθ(S) and the spectrum Γ(S) of the class F(S).

The following theorem gives asymptotic formulas for the mean value of λA if a
certain condition on the sifting density of A in P is assumed.

Theorem 5. Suppose A is a subset of primes with sifting density 1−κ
2 , where

−1 ≤ κ ≤ 1. More precisely,
∑

p≤x
p∈A

log p

p
=

1− κ

2
log x+O(1)

and −1 ≤ κ ≤ 1.
If 0 < κ ≤ 1, then

∑

n≤x

λA(n) = (1 + o(1))cκκx(log x)
κ−1,

where cκ = 1
Γ(κ+1)

∏
p

(
1− 1

p

)κ (
1− λA(p)

p

)−1

; in particular,

RA = lim
x→∞

1

x

∑

n≤x

λA(n) =

{
c1 =

∏
p∈A

(
p−1
p+1

)
if κ = 1,

0 if 0 < κ < 1.

If −1 ≤ κ ≤ 0, then

RA = lim
x→∞

1

x

∑

n≤x

λA(n) = 0.

Proof. This theorem follows from Wirsing’s Theorem (Theorem 1.1 on page 27 of
[13]) and a generalization of the Wiener–Ikehara Theorem (Theorem 7.7 of [2]). �

Recall that Theorem 4 tells us that any α ∈ [0, 1] is a mean value of a function
in F({−1, 1}). The functions in F({−1, 1}) can be put into two natural classes:
those with mean value 0 and those with positive mean value.

Asymptotically, those functions with mean value zero are more interesting, and it
is in this class that the Liouville λ–function resides, and in that which concerns the
prime number theorem and the Riemann hypothesis. We consider as an extended
example a special class of functions with mean value 0 in Section 4. Before this
consideration, we ask some questions about those functions f ∈ F({−1, 1, }) with
positive mean value.

3. One question twice

It is obvious that if α /∈ Q, then RA �= α for any finite set A ⊂ P . We also know
that if A ⊂ P is finite, then RA ∈ Q.

Question 1. Is there a converse to this; that is, for α ∈ Q is there a finite subset
A of P , such that RA = α?
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The above question can be posed in a more interesting fashion. Indeed, note
that for any finite set of primes A we have that

RA =
∏

p∈A

p− 1

p+ 1
=

∏

p∈A

φ(p)

σ(p)
=

φ(z)

σ(z)
,

where z =
∏

p∈A p, φ is Euler’s totient function and σ is the sum-of-divisors func-
tion. Alternatively, we may view the finite set of primes A as determined by the
square–free integer z. In fact, the function f from the set of square–free integers to
the set of finite subsets of primes, defined by

f(z) = f(p1p2 · · · pr) = {p1, p2, . . . , pr}, (z = p1p2 · · · pr),
is bijective, giving a one–to–one correspondence between these two sets.

In this terminology, we ask the question as:

Question 2. Is the image of φ(z)/σ(z) : {square–free integers} → Q ∩ (0, 1) a
surjection?

That is, for every rational q ∈ (0, 1), is there a square–free integer z such that
φ(z)
σ(z) = q ? As a start, Theorem 4 gives a nice corollary.

Corollary 2. If S is the set of square–free integers, then
⎧
⎨

⎩x ∈ R : x = lim
k→∞
(nk)⊂S

φ(nk)

σ(nk)

⎫
⎬

⎭ = [0, 1];

that is, the set {φ(s)/σ(s) : s ∈ S} is dense in [0, 1].

Proof. Let α ∈ [0, 1] and A be a subset of primes for which RA = α. If A is finite
we are done, so suppose A is infinite. Write

A = {a1, a2, a3, . . .},

where ai < ai+1 for i = 1, 2, 3, . . . , and define nk =
∏k

i=1 ai. The sequence (nk)
satisfies the needed limit. �

4. The functions λp(n)

We now turn our attention to a class of those functions in F({−1, 1}) with
mean value 0. In particular, we wish to examine functions for which a sort of

Riemann hypothesis holds: functions for which LA(s) =
∑

n∈N

λA(n)
ns has a large

zero–free region; that is, functions for which
∑

n≤x λA(n) grows slowly. Indeed,
the functions we consider in the following sections have partial sums which grow
extremely slow, in fact, logarithmically. Because of this slow growth, they give rise
to Dirichlet series which converge in the entire right half–plane �(s) > 0. Thus our
investigation diverges significantly from functions which are very similar to λ, but
focuses on those that yield some very interesting results.

To this end, let p be a prime number. Recall that the Legendre symbol modulo
p is defined as

(
q

p

)
=

⎧
⎪⎨

⎪⎩

1 if q is a quadratic residue modulo p,

−1 if q is a quadratic non-residue modulo p,

0 if q ≡ 0 (mod p).
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Here q is a quadratic residue modulo p provided q ≡ x2 (mod p) for some x �≡ 0
(mod p).

Define the function Ωp(n) to be the number of prime factors, q, of n with
(

q
p

)
=

−1; that is,

Ωp(n) = #
{
q : q is a prime, q|n, and

(
q
p

)
= −1

}
.

Definition 2. The modified Liouville function for quadratic non-residues modulo
p is defined as

λp(n) := (−1)Ωp(n).

Analogous to Ω(n), since Ωp(n) counts primes with multiplicities, Ωp(n) is com-
pletely additive, and so λp(n) is completely multiplicative. This being the case, we
may define λp(n) uniquely by its values at primes.

Lemma 1. The function λp(n) is the unique completely multiplicative function
defined by λp(p) = 1, and for primes q �= p by

λp(q) =

(
q

p

)
.

Proof. Let q be a prime with q|n. Now Ωp(q) = 0 or 1 depending on whether(
q
p

)
= 1 or −1, respectively. If

(
q
p

)
= 1, then Ωp(q) = 0, and so λp(q) = 1.

On the other hand, if
(

q
p

)
= −1, then Ωp(q) = 1, and so λp(q) = −1. In either

case, we have1

λp(q) =

(
q

p

)
.

�
Hence if n = pkm with p � m, then we have

(5) λp(p
km) =

(
m

p

)
.

Similarly, we may define the function Ω′
p(n) to be the number of prime factors q

of n with
(

q
p

)
= 1; that is,

Ω′
p(n) = #

{
q : q is a prime, q|n, and

(
q
p

)
= 1

}
.

Analogous to Lemma 1 we have the following lemma for λ′
p(n) and theorem

relating these two functions to the traditional Liouville λ-function.

Lemma 2. The function λ′
p(n) is the unique completely multiplicative function

defined by λ′
p(p) = 1 and for primes q �= p as

λ′
p(q) = −

(
q

p

)
.

Theorem 6. If λ(n) is the standard Liouville λ–function, then

λ(n) = (−1)k · λp(n) · λ′
p(n),

where pk‖n, i.e., pk|n and pk+1
� n.

1Note that by using the given definition λp(p) =
(

p
p

)
= 1.
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Proof. It is clear that the theorem is true for n = 1. Since all functions involved are
completely multiplicative, it suffices to show the equivalence for all primes. Note
that λ(q) = −1 for any prime q. Now if n = p, then k = 1 and

(−1)1 · λp(p) · λ′
p(p) = (−1) · (1) · (1) = −1 = λ(p).

If n = q �= p, then

(−1)0 · λp(q) · λ′
p(q) =

(
q

p

)
·
(
−
(
q

p

))
= −

(
q2

p

)
= −1 = λ(q),

and so the theorem is proved. �

To mirror the relationship between L and λ, denote by Lp(n) the summatory
function of λp(n); that is, define

Lp(n) :=

n∑

k=1

λp(k).

It is quite immediate that Lp(n) is not positive
2 for all n and p. To find an example

we need only look at the first few primes. For p = 5 and n = 3, we have

L5(3) = λ5(1) + λ5(2) + λ5(3) = 1− 1− 1 = −1 < 0.

Indeed, the next few theorems are sufficient to show that there is a positive pro-
portion (at least 1/2) of the primes for which Lp(n) < 0 for some n ∈ N.

Theorem 7. Let

n = a0 + a1p+ a2p
2 + . . .+ akp

k

be the base p expansion of n, where aj ∈ {0, 1, 2, . . . , p− 1}. Then we have

(6) Lp(n) :=
n∑

l=1

λp(l) =

a0∑

l=1

λp(l) +

a1∑

l=1

λp(l) + . . .+

ak∑

l=1

λp(l).

Here the sum over l is regarded as empty if aj = 0.

Instead of giving a proof of Theorem 7 in this specific form, we will prove a more
general result for which Theorem 7 is a direct corollary. To this end, let χ be a
non-principal Dirichlet character modulo p and for any prime q let

(7) f(q) :=

{
1 if p = q,

χ(q) if p �= q.

We extend f to be a completely multiplicative function and get

(8) f(plm) = χ(m)

for l ≥ 0 and p � m.

Theorem 8. Let N(n, l) be the number of digits l in the base p expansion of n.
Then

n∑

j=1

f(j) =

p−1∑

l=0

N(n, l)

⎛

⎝
∑

m≤l

χ(m)

⎞

⎠ .

2For the traditional L(n), it was conjectured by Pólya that L(n) ≥ 0 for all n, though this was
proven to be a non-trivial statement and ultimately false (see Haselgrove [11]).
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Proof. We write the base p expansion of n as

(9) n = a0 + a1p+ a2p
2 + . . .+ akp

k,

where 0 ≤ aj ≤ p− 1. We then observe that, by writing j = plm with p � m,

n∑

j=1

f(j) =

k∑

l=0

n∑

j=1
pl‖j

f(j) =

k∑

l=0

∑

m≤n/pl

(m,p)=1

f(plm).

For simplicity, we write

A := a0 + a1p+ . . .+ alp
l and B := al+1 + al+2p+ . . .+ akp

k−l−1

so that n = A+Bpl+1 in (9). It now follows from (8) and (9) that

n∑

j=1

f(j) =

k∑

l=0

∑

m≤n/pl

(m,p)=1

χ(m) =

k∑

l=0

∑

m≤A/pl+Bp

χ(m) =

k∑

l=0

∑

m≤A/pl

χ(m)

because χ(p) = 0 and
∑a+p

m=a+1 χ(m) = 0 for any a. Now since

al ≤ A/pl = (a0 + a1p+ . . .+ alp
l)/pl < al + 1

we have
n∑

j=1

f(j) =

k∑

l=0

∑

m≤al

χ(m) =

p−1∑

l=0

N(n, l)

⎛

⎝
∑

m≤l

χ(m)

⎞

⎠ .

This proves the theorem. �
In this language, Theorem 7 can be stated as follows.

Corollary 3. If N(n, l) is the number of digits l in the base p expansion of n, then

(10) Lp(n) =
n∑

j=1

λp(j) =

p−1∑

l=0

N(n, l)

⎛

⎝
∑

m≤l

(
m

p

)⎞

⎠ .

As an application of this theorem consider p = 3.

Application 1. The value of L3(n) is equal to the number of 1’s in the base 3
expansion of n.

Proof. Since
(
1
3

)
= 1 and

(
1
3

)
+

(
2
3

)
= 0, if n = a0 + a13 + a23

2 + . . . + ak3
k

is the base 3 expansion of n, then the right-hand side of (6) (or equivalently, the
right-hand side of (10)) is equal to N(n, 1). The result then follows from Theorem
7 (or equivalently Corollary 3). �

Note that L3(n) = k for the first time when n = 30 + 31 + 32 + . . . + 3k and is
never negative. This is in stark contrast to the traditional L(n), which is negative
more often than not. Indeed, we may classify all p for which Lp(n) ≥ 0 for all
n ∈ N.

Theorem 9. The function Lp(n) ≥ 0 for all n exactly for those odd primes p for
which (

1

p

)
+

(
2

p

)
+ . . .+

(
k

p

)
≥ 0

for all 1 ≤ k ≤ p.
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Proof. We first observe from (5) that if 0 ≤ r < p, then

r∑

l=1

λp(l) =
r∑

l=1

(
l

p

)
.

From Theorem 7,

n∑

l=1

λp(l) =

a0∑

l=1

λp(l) +

a1∑

l=1

λp(l) + . . .+

ak∑

l=1

λp(l)

=

a0∑

l=1

(
l

p

)
+

a1∑

l=1

(
l

p

)
+ . . .+

ak∑

l=1

(
l

p

)
,

because all aj are between 0 and p− 1. The result then follows. �

Corollary 4. For n ∈ N, we have

0 ≤ L3(n) ≤ [log3 n] + 1.

Proof. This follows from Theorem 9, Application 1, and the fact that the number
of 1’s in the base three expansion of n is ≤ [log3 n] + 1. �

As a further example, let p = 5.

Corollary 5. The value of L5(n) is equal to the number of 1’s in the base 5 ex-
pansion of n minus the number of 3’s in the base 5 expansion of n. Also for n ≥ 1,

|L5(n)| ≤ [log5 n] + 1.

Recall from above that L3(n) is always non-negative but L5(n) isn’t. Also,
L5(n) = k for the first time when n = 50 + 51 + 52 + . . .+ 5k, and L5(n) = −k for
the first time when n = 3 · 50 + 3 · 51 + 3 · 52 + . . .+ 3 · 5k.

Remark 2. The reason for specific p values in the preceding two corollaries is that,
in general, it’s not always the case that |Lp(n)| ≤ [logp n] + 1.

We now return to our classification of primes for which Lp(n) ≥ 0 for all n ≥ 1.

Definition 3. Denote by L+ the set of primes p for which Lp(n) ≥ 0 for all n ∈ N.

We have found, by computation, that the first few values in L+ are

L+ = {3, 7, 11, 23, 31, 47, 59, 71, 79, 83, 103, 131, 151, 167, 191, 199, 239, 251, . . .}.
By inspection, L+ doesn’t seem to contain any primes p, with p ≡ 1 (mod 4). This
is not a coincidence, as demonstrated by the following theorem.

Theorem 10. If p ∈ L+, then p ≡ 3 (mod 4).

Proof. Note that if p ≡ 1 (mod 4), then
(
a

p

)
=

(
−a

p

)

for all 1 ≤ a ≤ p− 1, so that
p−1
2∑

a=1

(
a

p

)
= 0.
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Consider the case that
(

(p−1)/2
p

)
= 1. Then

p−1
2∑

a=1

(
a

p

)
=

p−1
2 −1∑

a=1

(
a

p

)
+

(
(p− 1)/2

p

)
=

p−1
2 −1∑

a=1

(
a

p

)
+ 1,

so that
p−1
2 −1∑

a=1

(
a

p

)
= −1 < 0.

On the other hand, if
(

(p−1)/2
p

)
= −1, then since

(
(p−1)/2

p

)
=

(
(p−1)/2+1

p

)
, we

have
p−1
2∑

a=1

(
a

p

)
=

p−1
2 +1∑

a=1

(
a

p

)
−
(
(p− 1)/2 + 1

p

)
=

p−1
2 +1∑

a=1

(
a

p

)
+ 1,

so that
p−1
2 +1∑

a=1

(
a

p

)
= −1 < 0. �

5. A bound for |Lp(n)|
Above we were able to give exact bounds on the function |Lp(n)|. As explained

in Remark 2, this is not always possible, though an asymptotic bound is easily
attained with a few preliminary results.

Lemma 3. For all r, n ∈ N we have Lp(p
rn) = Lp(n).

Proof. For i = 1, . . . , p−1 and k ∈ N, λp(kp+i) = λp(i). This relation immediately
gives for k ∈ N that Lp(p(k + 1)− 1)− Lp(pk) = 0, since Lp(p− 1) = 0. Thus

Lp(p
rn) =

prn∑

k=1

λp(k) =

pr−1n∑

k=1

λp(pk) =

pr−1n∑

k=1

λp(p)λp(k) =

pr−1n∑

k=1

λp(k) = Lp(p
r−1n).

The lemma follows immediately. �

Theorem 11. The maximum value of |Lp(n)| for n < pi occurs at n = k · σ(pi−1)
with value

max
n<pi

|Lp(n)| = i ·max
n<p

|Lp(n)|,

where σ(n) is the sum of the divisors of n.

Proof. This follows directly from Lemma 3. �

Corollary 6. If p is an odd prime, then |Lp(n)| � log n; furthermore,

max
n≤x

|Lp(n)| � log x.
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6. Concluding remarks

Throughout this paper, we were interested in estimates concerning the partial
sums of multiplicative functions in F({−1, 1}). An important question is: what can

be said about the growth of
∣∣∣
∑

n≤x f(n)
∣∣∣ for any function f ∈ F({−1, 1})? This

question goes back to Erdős. Indeed, Erdős [5] states: Finally, I would like to
mention an old conjecture of mine: let f(n) = ±1 be an arbitrary number–theoretic
function [not necessarily multiplicative]. Is it true that to every c there is a d and
an m so that ∣∣∣∣∣

m∑

k=1

f(kd)

∣∣∣∣∣ > c?

I have made no progress with this conjecture.
Concerning this conjecture, he adds in [6] that the best we could hope for is that

max
md≤n

∣∣∣∣∣

m∑

k=1

f(kd)

∣∣∣∣∣ > c log n.

We remark that these questions can also be asked for functions f(n) which take kth
roots of unity as values rather than just ±1. However, very little is yet known for
this case.

If we restrict Erdős’ question to the class of completely multiplicative functions,
it may be possible to provide an answer. This would be interesting. Recall that for
p an odd prime and λp a character–like function, we have

max
N≤x

∣∣∣∣∣∣

∑

n≤N

λp(n)

∣∣∣∣∣∣
� log x,

so that the class of character–like functions satisfies Erdős’ conjecture.
These functions are part of a larger class of functions called automatic functions

(see [1]). Let T = (t(n))n≥1 be a sequence with values from a finite set. Define the
k–kernel of T as the set

T(k) = {(t(kln+ r))n≥0 : l ≥ 0 and 0 ≤ r < kl}.
Given k ≥ 2, we say a sequence T is k–automatic if and only if the k–kernel of T
is finite.

As a generalization of our result concerning character–like functions, we ask the
following question.

Question 3. Let f ∈ F({−1, 1}) be k–automatic for some k ≥ 2, and suppose

that
∑

n≤x f(n) = o(x). Then is it true that maxN≤x

∣∣∣
∑

n≤N f(n)
∣∣∣ � log x?
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