
comput. complex. Online First
DOI 10.1007/s00037-010-0294-0

c© Springer Basel AG 2010

computational complexity

INTERPOLATION OF

SHIFTED-LACUNARY POLYNOMIALS

Mark Giesbrecht and Daniel S. Roche

Abstract. Given a “black box” function to evaluate an unknown ra-
tional polynomial f ∈ Q[x] at points modulo a prime p, we exhibit algo-
rithms to compute the representation of the polynomial in the sparsest
shifted power basis. That is, we determine the sparsity t ∈ Z>0, the
shift α ∈ Q, the exponents 0 ≤ e1 < e2 < · · · < et, and the coefficients
c1, . . . , ct ∈ Q \ {0} such that

f(x) = c1(x− α)e1 + c2(x− α)e2 + · · ·+ ct(x− α)et .

The computed sparsity t is absolutely minimal over any shifted power
basis. The novelty of our algorithm is that the complexity is polyno-
mial in the (sparse) representation size, which may be logarithmic in
the degree of f . Our method combines previous celebrated results on
sparse interpolation and computing sparsest shifts, and provides a way
to handle polynomials with extremely high degree which are, in some
sense, sparse in information.

Keywords. Sparse interpolation, sparsest shift, lacunary polynomials.

Subject classification. Primary 68W30; Secondary 12Y05.

1. Introduction

Interpolating an unknown polynomial from a set of evaluations is a problem
which has interested mathematicians for hundreds of years, and which is now
implemented as a standard function in most computer algebra systems. To
illustrate some different kinds of interpolation problems, consider the following
three representations for a polynomial f of degree n:

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ,(1.1)

f(x) = b0 + b1x
d1 + b2x

d2 + · · ·+ bsx
ds ,(1.2)

f(x) = c0 + c1(x− α)e1 + c2(x− α)e2 + · · ·+ ct(x− α)et .(1.3)

2 Giesbrecht & Roche comput. complex.

In (1.1) we see the dense representation of the polynomial, where all coefficients
(even zeroes) are represented. Newton and Waring discovered methods to in-
terpolate f in time proportional to the size of this representation in the 18th

century. The sparse or lacunary representation is shown in (1.2), wherein only
the terms with non-zero coefficients are written (with the possible exception
of the constant coefficient b0). Here we say that f is s-sparse because it has
exactly s non-zero and non-constant terms; the constant coefficient requires
special treatment in our algorithms regardless of whether or not it is zero, and
so we do not count it towards the total number of terms. Ben-Or & Tiwari
(1988) discovered a method to interpolate in time polynomial in the size of this
representation. Kaltofen & Lee (2003) present and analyze very efficient algo-
rithms for this problem, in theory and practice. The Ben-Or & Tiwari method
has also been examined in the context of approximate (floating point) polyno-
mials by Giesbrecht et al. (2006), where the similarity to the 1795 method of de
Prony is also pointed out. Bläser et al. (2009) consider the more basic problem
of identity testing of sparse polynomials over Q, and present a deterministic
polynomial-time algorithm.

In (1.3), f is written in the shifted power basis 1, (x−α), (x−α)2, . . ., and
we say that α is a t-sparse shift of f because the representation has exactly t
non-zero and non-constant terms in this basis. When α is chosen so that t is
absolutely minimal in (1.3), we call this the sparsest shift of f . We present new
algorithms to interpolate f ∈ Q[x], given a black box for evaluation, in time
proportional to the size of the shifted-lacunary representation corresponding
to (1.3). It is easy to see that t could be exponentially smaller than both n
and s, for example when f = (x+ 1)n, demonstrating that our algorithms are
providing a significant improvement in complexity over those previously known,
whose running times are polynomial in n and s.

The main applications of all these methods for polynomial interpolation
are signal processing and reducing intermediate expression swell. Dense and
sparse interpolation have been applied successfully to both these ends, and
our new algorithms effectively extend the class of polynomials for which such
applications can be made.

The most significant challenge here is computing the sparsest shift α ∈ Q.
Computing this value from a set of evaluation points was stated as an open
problem by Borodin & Tiwari (1991). An algorithm for a generalization of
our problem in the dense representation was given by Grigoriev & Karpinski
(1993), though its cost is exponential in the size of the output; they admit that
the dependency on the degree of the polynomial is probably not optimal. Our
algorithm achieves deterministic polynomial-time complexity for polynomials
over the rational numbers. We are always careful to count the bit complexity –

Interpolation of shifted-lacunary polynomials 3

the number of fixed-precision machine operations – and hence account for any
coefficient growth in the solution or intermediate expressions.

The black box model we use is slightly modified from the traditional one:

p ∈ N, θ ∈ Zp
� � f(θ) mod p .

f(x) ∈ Q[x]

Given a prime p and an element θ in Zp, the black box computes the value of
the unknown polynomial evaluated at θ over the field Zp. (An error is produced
exactly in those unfortunate circumstances that p divides the denominator of
f(θ).) We generally refer to this as a modular black box. To account for the
reasonable possibility that the cost of black box calls depends on the size of p,
we define κf to be an upper bound on the number of field operations in Zp

used in black box evaluation, for a given polynomial f ∈ Q[x].
Some kind of extension to the standard black box, such as the modular

black box proposed here, is in fact necessary, since the value of a polynomial
of degree n at any point other than 0,±1 will typically have n bits or more.
Thus, any algorithm whose complexity is proportional to log n cannot perform
such an evaluation over Q or Z. Other possibilities might include allowing
for evaluations on the unit circle in some representation of a subfield of C, or
returning only a limited number of bits of precision for an evaluation.

To be precise about our notion of size, first define size(q) for q ∈ Q to be
the number of bits needed to represent q. So if we write q = a

b
with a ∈ Z,

b ∈ N, and gcd(a, b) = 1, then size(q) = �log2(|a|+ 1)�+ �log2(b+ 1)�+ 1. For
a rational polynomial f as in (1.3), define:

(1.4) size(f) = size(α) +
t∑

i=0

size(ci) +
t∑

i=1

size(ei) .

We will often employ the following upper bound for simplicity:

(1.5) size(f) ≤ size(α) + t
(
H(f) + log2 n

)
,

where H(f) is defined as max0≤i≤t size(ci).
Our algorithms will have polynomial complexity in the smallest possible

size(f). For the complexity analysis, we use the normal notion of a “mul-
tiplication time” function M(n), which is the number of field operations re-
quired to compute the product of polynomials with degrees less than n, or
integers with sizes at most n. We always assume that M(n) ∈ Ω(n) and

4 Giesbrecht & Roche comput. complex.

M(n) ∈ O(n2). Using the results from Cantor & Kaltofen (1991), we can
write M(n) ∈ O(n log n log log n).

The remainder of the paper is structured as follows. In Section 2 we show
how to find the sparsest shift from evaluation points in Zp, where p is a prime
with some special properties provided by some “oracle”. In Section 3 we show
how to perform sparse interpolation given a modular black box for a poly-
nomial. In Section 4 we show how to generate primes such that a sufficient
number satisfy the conditions of our oracle. Section 5 provides the complexity
analysis of our algorithms. We conclude in Section 6, and introduce some open
questions.

2. Computing the Sparsest Shift

For a polynomial f ∈ Q[x], we first focus on computing the sparsest shift α ∈ Q

so that f(x + α) has a minimal number of non-zero and non-constant terms.
This information will later be used to recover a representation of the unknown
polynomial.

2.1. The polynomial f (p). Here, and for the remainder of this paper, for
a prime p and f ∈ Q[x], define f (p) ∈ Zp[x] to be the unique polynomial
with degree less than p which is equivalent to f modulo xp − x and with all
coefficients reduced modulo p. From Fermat’s Little Theorem, we then see
immediately that f (p)(α) ≡ f(α) mod p for all α ∈ Zp. Hence f (p) can be
found by evaluating f at each point 0, 1, . . . , p − 1 modulo p and using dense
interpolation over Zp[x].

Notice that, over Zp[x], (x− α)p ≡ x− α mod xp − x, and therefore (x−
α)ei ≡ (x− α)k for any k �= 0 such that ei ≡ k mod (p− 1). The smallest such
k is in the range {1, 2, . . . , p}; we now define this with some more notation.
For a ∈ Z and positive integer m, define a rem1 m to be the unique integer in
the range {1, 2, . . . ,m} which is congruent to a modulo m. As usual, a remm
denotes the unique congruent integer in the range {0, 1, . . . ,m− 1}.

If f is as in (1.3), then by reducing term-by-term we can write

(2.1) f (p)(x) = (c0 rem p) +
t∑

i=1

(ci rem p)(x− αp)
ei rem1(p−1),

where αp is defined as α rem p. Hence, for some k ≤ t, αp is a k-sparse shift
for f (p). That is, the polynomial f (p)(x+αp) over Zp[x] has at most t non-zero
and non-constant terms.

Interpolation of shifted-lacunary polynomials 5

Computing f (p) from a modular black box for f is straightforward. First,
use p black-box calls to determine f(i) rem p for i = 0, 1, . . . , p − 1. Recalling
that κf is the number of field operations in Zp for each black-box call, the cost
of this step is O(pκfM(log p)) bit operations. Second, we use the well-known
divide-and-conquer method to interpolate f (p) into the dense representation
(see, e.g., Borodin & Munro (1975, Section 4.5)). Since deg f (p) < p, this step
has bit complexity O(M(p)M(log p) log p).

Furthermore, for any α ∈ Zp, the dense representation of f (p)(x+α) can be
computed in exactly the same way as the second step above, simply by shifting
the indices of the already-evaluated points by α. This immediately gives a
näıve algorithm for computing the sparsest shift of f (p): compute f (p)(x+γ) for
γ = 0, 1, . . . , p−1, and return the γ that minimizes the number of non-zero, non-
constant terms. The bit complexity of this approach is O(p log pM(p)M(log p)),
which for our applications will often be less costly than the more sophisticated
approaches of, e.g., Lakshman & Saunders (1996) or Giesbrecht et al. (2003),
precisely because p will not be very much larger than deg f (p).

2.2. Overview of Approach. We will make repeated use of the following
fundamental theorem from Lakshman & Saunders (1996):

Fact 2.2. Let F be an arbitrary field and f ∈ F[x], and suppose α ∈ F is such
that f(x+ α) has t non-zero and non-constant terms. If deg f ≥ 2t+ 1 then α
is the unique sparsest shift of f .

From this we can see that, if α is the unique sparsest shift of f , then
αp = α rem p is the unique sparsest shift of f (p) provided that deg f (p) ≥ 2t+1.
This observation provides the basis for our algorithm.

The input to the algorithms will be a modular black box for evaluating a
rational polynomial, as described above, and bounds on the maximal size of
the unknown polynomial. Note that such bounds are a necessity in any type
of black-box interpolation algorithm, since otherwise we could never be sure
that the computed polynomial is really equal to the black-box function at every
point. Specifically, we require BA, BT , BH , BN ∈ N such that

size(α) ≤ BA,

t ≤ BT ,

size(ci) ≤ BH , for 0 ≤ i ≤ t,

log2 n ≤ BN .

6 Giesbrecht & Roche comput. complex.

By considering the following polynomial:

c(x− α)n + (x− α)n−1 + · · ·+ (x− α)n−t+1,

we see that these bounds are independent – that is, none is polynomially-
bounded by the others – and therefore are all necessary.

We are now ready to present the algorithm for computing the sparsest shift
α almost in its entirety. The only part of the algorithm left unspecified is
an oracle which, based on the values of the bounds, produces primes to use.
We want primes p such that deg f (p) ≥ 2t + 1, which allows us to recover one
modular image of the sparsest shift α. But since we do not know the exact value
of t or the degree n of f over Q[x], we define some prime p to be a good prime
for sparsest shift computation if and only if deg f (p) ≥ min{2BT +1, n}. For the
remainder of this section, “good prime” means “good prime for sparsest shift
computation.” Our oracle indicates when enough primes have been produced
so that at least one of them is guaranteed to have been a good prime, which is
necessary for the procedure to terminate. The details of how to construct such
an oracle will be considered in Section 4.

Algorithm 2.3. Computing the sparsest shift.

Input: ◦ A modular black box for an unknown polynomial f ∈ Q[x]

◦ Bounds BA, BT , BH , BN ∈ N as described above

◦ An oracle which produces primes and indicates when at least one
good prime must have been produced

Output: A sparsest shift α of f .

1. P ← 1, G ← ∅
2. While log2 P < 2BA + 1 do 3–14
3. p ← new prime from the oracle
4. Evaluate f(i) rem p for i = 0, 1, . . . , p− 1
5. Use dense interpolation to compute f (p)

6. If deg f (p) ≥ 2BT + 1 then
7. Use dense interpolation to compute f (p)(x+γ) for γ = 1, 2, . . . , p−1
8. αp ← the unique sparsest shift of f (p)

9. P ← P · p, G ← G
⋃
{p}

10. Else if P = 1 and oracle indicates ≥ 1 good prime has been produced
then

11. q ← least prime such that log2 q > 2BTBA+BH (computed directly)
12. Evaluate f(i) rem q for i = 0, 1, . . . , 2BT

13. Compute f ∈ Q[x] with deg f ≤ 2BT by dense interpolation in Zq[x]
followed by rational reconstruction on the coefficients

Interpolation of shifted-lacunary polynomials 7

14. Return A sparsest shift α computed by a univariate algorithm from
Giesbrecht et al. (2003) on input f

15. Return The unique α = a/b ∈ Q such that |a|, b ≤ 2BA and a ≡ bαp mod p
for each p ∈ G, using Chinese remaindering and rational reconstruction

Theorem 2.4. With inputs as specified, Algorithm 2.3 correctly returns a
sparsest shift α of f .

Proof. Let f,BA, BT , BH , BN be the inputs to the algorithm, and suppose
t, α are as specified in (1.3).

First, consider the degenerate case where n ≤ 2BT , i.e., the bound on the
sparsity of the sparsest shift is at least half the actual degree of f . Then,
since each f (p) can have degree at most n (regardless of the choice of p), the
condition of Step 6 will never be true. Hence Steps 10–14 will eventually be
executed. The size of coefficients over the standard power basis is bounded by
2BTBA + BH since deg f ≤ 2BT , and therefore f will be correctly computed
on Step 5. In this case, Fact 2.2 may not apply, i.e. the sparsest shift may not
be unique, but the algorithms from Giesbrecht et al. (2003) will still produce
a sparsest shift of f .

Now suppose instead that n ≥ 2BT + 1. The oracle eventually produces a
good prime p, so that deg f (p) ≥ 2BT + 1. Since t ≤ BT and f (p) has at most t
non-zero and non-constant terms in the (α rem p)-shifted power basis, the value
computed as αp on Step 8 is exactly α rem p, by Fact 2.2. The value of P will
also be set to p > 1 here, and can only increase. So the condition of Step 10
is never true. Since the numerator and denominator of α are both bounded
above by 2BA , we can use rational reconstruction to compute α once we have
the image modulo P for P ≥ 22BA+1. Therefore, when we reach Step 15, we
have enough images αp to recover and return the correct value of α. �

We still need to specify which algorithm to use to compute the sparsest
shift of a densely-represented f ∈ Q[x] on Step 14. To make Algorithm 2.3
completely deterministic, we should use the univariate symbolic algorithm from
Giesbrecht et al. (2003, Section 3.1), although this will have very high complex-
ity. Using a probabilistic algorithm instead gives the following, which follows
directly from the referenced work.

Theorem 2.5. If the “two projections” algorithm of Giesbrecht et al. (2003,
Section 3.3) is used on Step 14, then Steps 10–14 of Algorithm 2.3 can be per-
formed with O(B2

TM(B4
TBA +B3

TBH)) bit operations, plus O(κfBTM(BTBA +
BH)) bit operations for the black-box evaluations.

8 Giesbrecht & Roche comput. complex.

The precise complexity analysis proving that the entire Algorithm 2.3 has
bit complexity polynomial in the bounds given depends heavily on the size and
number of primes p that are used, and so must be postponed until Section 5.1,
after our discussion on choosing primes.

Example 2.6. Suppose we are given a modular black box for the following
unknown polynomial:

f(x) = x15 − 45x14 + 945x13 − 12285x12 + 110565x11 − 729729x10

+ 3648645x9 − 14073345x8 + 42220035x7 − 98513415x6

+ 177324145x5 − 241805625x4 + 241805475x3 − 167403375x2

+ 71743725x− 14348421,

along with the bounds BA = 4, BT = 2, BH = 4, and BN = 4. One may easily
confirm that f(x) = (x− 3)15 − 2(x− 3)5, and hence these bounds are actually
tight.

Now suppose the oracle produces p = 7 in Step 3. We use the black box to
find f(0), f(1), . . . , f(6) in Z7, and dense interpolation to compute

f (7)(x) = 5x5 + 2x4 + 3x3 + 6x2 + x+ 4.

Since deg f (7) = 5 ≥ 2BT + 1, we move on to Step 8 and compute each
f (7)(x + γ) with γ = 1, 2, . . . , 6. Examining these, we see that f (7)(x + 3) =
5x5 + x3 has the fewest non-zero and non-constant terms, and so set α7 to 3
on Step 8. This means the sparsest shift must be congruent to 3 modulo 7.
This provides a single modular image for use in Chinese remaindering and ra-
tional reconstruction on Step 15, after enough successful iterations for different
primes p. ♦

2.3. Conditions for Success. We have seen that, provided deg f > 2BT , a
good prime p is one such that deg f (p) > 2BT . The following theorem provides
(quite loose) sufficient conditions on p to satisfy this requirement.

Theorem 2.7. Let f ∈ Q[x] as in (1.3) and BT ∈ N such that t ≤ BT . Then,
for some prime p, the degree of f (p) is greater than 2BT whenever the following
hold:

◦ ct �≡ 0 mod p;

◦ ∀i ∈ {1, 2, . . . , t− 1}, et �≡ ei mod (p− 1);

◦ ∀i ∈ {1, . . . , 2BT}, et �≡ i mod (p− 1).

Interpolation of shifted-lacunary polynomials 9

Proof. The first condition guarantees that the last term of f (p)(x) as in
(2.1) does not vanish. We also know that there is no other term with the same
degree from the second condition. Finally, the third condition tells us that the
degree of the last term will be greater than 2BT . Hence the degree of f (p) is
greater than 2BT . �

For purposes of computation it will be convenient to simplify the above
conditions to two non-divisibility requirements, on p and p− 1 respectively:

Corollary 2.8. Let f,BT , BH , BN be as in the input to Algorithm 2.3 with
deg f > 2BT . Then there exist C1, C2 ∈ N with log2 C1 ≤ 2BH and log2 C2 ≤
BN(3BT − 1) such that deg f (p) > 2BT whenever p � C1 and (p− 1) � C2.

Proof. Write f as in (1.3). We will use the sufficient conditions given in
Theorem 2.7. Write |ct| = a/b for a, b ∈ N relatively prime. In order for ct rem p
to be well-defined and not zero, neither a nor b can vanish modulo p. This is
true whenever p � ab. Set C1 = ab. Since a, b ≤ 2BH , log2 C1 = log2(ab) ≤ 2BH .

Now write

C2 =
t−1∏

i=1

(et − ei) ·
2BT∏

i=1

(et − i).

We can see that the second and third conditions of Theorem 2.7 are satisfied
whenever (p−1) � C2. Now, since each integer ei is distinct and positive, and et
is the greatest of these, each (et−ei) is a positive integer less than et. Similarly,
since et = deg f > 2BT , each (et − i) in the second product is also a positive
integer less than et. Therefore, using the fact that t ≤ BT , we see C2 ≤ e3BT−1

t .
Furthermore, et ≤ 2BN , so we know that log2 C2 ≤ BN(3BT − 1). �

A similar criteria for success is required in Bläser et al. (2009), and they
employ Linnik’s theorem to obtain a polynomial-time algorithm for polynomial
identity testing. Linnik’s theorem was also employed in Giesbrecht & Roche
(2007) to yield a much more expensive deterministic polynomial-time algorithm
for finding sparse shifts than the one presented here.

3. Interpolation

Once we know the value of the sparsest shift α of f , we can trivially construct
a modular black box for the t-sparse polynomial f(x + α) using the modular
black box for f . Therefore, for the purposes of interpolation, we can assume
α = 0, and focus only on interpolating a t-sparse polynomial f ∈ Q[x] given a
modular black box for its evaluation. The basic techniques of this section are,

10 Giesbrecht & Roche comput. complex.

for the most part, known in the literature. However, a unified presentation in
terms of bit complexity for our model of modular black boxes will be helpful.

For convenience, we restate the notation for f and f (p), given a prime p:

f = c0 + c1x
e1 + c2x

e2 + · · ·+ ctx
et ,(3.1)

f (p) = (c0 rem p) + (c1 rem p)xe1 rem1(p−1) + · · ·+ (ct rem p)xet rem1(p−1) .(3.2)

Again, we assume that we are given boundsBH ,BT , andBN on maxi size(ci),
t, and log2 deg f , respectively. We also introduce the notation τ(f), which is
defined to be the number of distinct non-zero, non-constant terms in the uni-
variate polynomial f .

This algorithm will again use the polynomials f (p) for primes p, but now
rather than a degree condition, we need f (p) to have the maximal number of
non-constant terms. So we define a prime p to be a good prime for interpolation
if and only if τ(f (p)) = t. Again, the term “good prime” refers to this kind of
prime for the remainder of this section.

Now suppose we have used modular evaluation and dense interpolation (as
in Algorithm 2.3) to recover the polynomials f (p) for k distinct good primes
p1, . . . , pk. We therefore have k images of each exponent ei modulo (p1 −
1), . . . , (pk − 1). Write each of these polynomials as:

(3.3) f (pi) = c
(i)
0 + c

(i)
1 xe

(i)
1 + · · ·+ c

(i)
t xe

(i)
t .

Note that it is not generally the case that e
(i)
j = ej rem1(pi − 1). Because we

don’t know how to associate the exponents in each polynomial f (pi) with their
pre-image in Z, a simple Chinese remaindering on the exponents will not work.
Possible approaches are provided by Kaltofen (1988), Kaltofen et al. (1990) or
Avendaño et al. (2006). However, the most suitable approach for our purposes
is the clever technique of Garg & Schost (2009), based on ideas of Grigoriev &
Karpinski (1987). We interpolate the polynomial

(3.4) g(z) = (z − e1)(z − e2) · · · (z − et) ,

whose coefficients are symmetric functions in the ei’s. Given f (pi), we have all
the values of e

(i)
j rem1(pi − 1) for j = 1, . . . , t; we just don’t know the order.

But since g is not dependent on the order, we can compute g mod (pi − 1) for
i = 1, . . . , k, and then find the roots of g ∈ Z[x] to determine the exponents
e1, . . . , et. Once we know the exponents, we recover the coefficients from their
images modulo each prime. The correct coefficient in each f (p) can be identified
because the residues of the exponents modulo p−1 are unique, for each chosen
prime p. This approach is made explicit in the following algorithm.

Interpolation of shifted-lacunary polynomials 11

Algorithm 3.5. Sparse Polynomial Interpolation over Q[x].

Input: ◦ A modular black box for unknown f ∈ Q[x]

◦ Bounds BH and BN as described above

◦ An oracle which produces primes and indicates when at least one
good prime must have been returned

Output: f ∈ Q[x] as in (3.1)

1. Q ← 1, P ← 1, k ← 1, t ← 0
2. While log2 P < 2BH + 1 or log2 Q < BN

or the oracle does not guarantee a good prime has been produced
do 3–8

3. pk ← new prime from the oracle
4. Compute f (pk) by black box calls and dense interpolation
5. If τ(f (pk)) > t then
6. Q ← pk − 1, P ← pk, t ← τ(f (pk)), p1 ← pk, f

(p1) ← f (pk), k ← 2
7. Else if τ(f (pk)) = t then
8. Q ← lcm(Q, pk − 1), P ← P · pk, k ← k + 1
9. For i ∈ {1, . . . , k − 1} do

10. g(pi) ←
∏

1≤j≤t(z − e
(i)
j) mod pi − 1

11. Construct g = a0+a1z+a2z
2+· · ·+atz

t ∈ Z[x] such that g ≡ g(pi) mod pi−1
for 1 ≤ i < k, by Chinese remaindering

12. Factor g as (z − e1)(z − e2) · · · (z − et) to determine e1, . . . , et ∈ Z

13. For 1 ≤ i ≤ t do
14. For 1 ≤ j ≤ k do
15. Find the exponent e

(j)
�j

of f (pj) such that e
(j)
�j

≡ ei mod pj − 1

16. Reconstruct ci∈Q by Chinese remaindering from residues c
(1)
�1
, . . . , c

(k)
�k

17. Reconstruct c0∈Q by Chinese remaindering from residues c
(1)
0 , . . . , c

(k)
0

The following theorem follows from the above discussion.

Theorem 3.6. Algorithm 3.5 works correctly as stated.

Again, this algorithm runs in polynomial time in the bounds given, but we
postpone the detailed complexity analysis until Section 5.2, after we discuss
how to choose primes from the “oracle”. Some small practical improvements
may be gained if we use Algorithm 3.5 to interpolate f(x + α) after running
Algorithm 2.3 to determine the sparsest shift α, since in this case we will have
a few previously-computed polynomials f (p). However, we do not explicitly

12 Giesbrecht & Roche comput. complex.

consider this savings in our analysis, as there is not necessarily any asymptotic
gain.

Now we just need to analyze the conditions for primes p to be good. This is
quite similar to the analysis of the sparsest shift algorithm above, so we omit
many of the details here.

Theorem 3.7. Let f,BT , BH , BN be as above. There exist C1, C2 ∈ N with
log2 C1 ≤ 2BHBT and log2 C2 ≤ 1

2
BNBT (BT − 1) such that τ(f (p)) is maximal

whenever p � C1 and (p− 1) � C2.

Proof. Let f be as in (3.1), write |ci| = ai/bi in lowest terms for i = 1, . . . , t,
and define

C1 =
t∏

i=1

aibi , C2 =
t∏

i=1

t∏

j=i+1

(ej − ei) .

Now suppose p is a prime such that p � C1 and (p − 1) � C2. From the
first condition, we see that each ci mod p is well-defined and nonzero, and so
none of the terms of f (p) vanish. Furthermore, from the second condition,
ei �≡ ek mod p − 1 for all i �= j, so that none of the terms of f (p) collide.
Therefore f (p) contains exactly t non-constant terms. The bounds on C1 and
C2 follow from the facts that each ai, bi ≤ 2BH and each difference of exponents
is at most 2BN . �

4. Generating primes

We now turn our attention to the problem of generating primes for the sparsest
shift and interpolation algorithms. In previous sections we assumed we had an
“oracle” for this, but now we present an explicit and analyzed algorithm.

The definition of a “good prime” is not the same for the algorithms in
Section 2 and Section 3. However, Corollary 2.8 and Theorem 3.7 provide a
unified presentation of sufficient conditions for primes being “good”. Here we
call a prime which satisfies those sufficient conditions a useful prime. So every
useful prime is good (with the bounds appropriately specified for the relevant
algorithm), but some good primes might not be useful.

We first describe a set P of primes such that the number and density of
useful primes within the set is sufficiently high. We will assume that there exist
numbers C1, C2, and useful primes p are those such that p � C1 and (p−1) � C2.
The numbers C1 and C2 will be unknown, but we will assume we are given
bounds β1, β2 such that log2 C1 ≤ β1 and log2 C2 ≤ β2. Suppose we want to

Interpolation of shifted-lacunary polynomials 13

find � useful primes. We construct P explicitly, of a size guaranteed to contain
enough useful primes, then enumerate it.

The following fact is immediate from Mikawa (2001), though it has been
somewhat simplified here, and the use of (unknown) constants is made more
explicit. This will be important in our computational methods.

For q ∈ Z, let S(q) be the smallest prime p such that q | (p− 1).

Fact 4.1 (Mikawa 2001). There exists a constant μ > 0, such that for all n >
μ, and for all integers q ∈ {n, . . . , 2n} with fewer than μn/ log2 n exceptions,
we have S(q) < q1.89.

Our algorithms for generating useful primes require explicit knowledge of
the value of the constant μ in order to run correctly. So we will assume that
we know μ in what follows. To get around the fact that we do not, we simply
start by assuming that μ = 1, and run any algorithm depending upon it. If
the algorithm fails we simply double our estimate for μ and repeat. At most a
constant number of doublings is required. We make no claim this is particularly
practical.

For convenience we define

Υ(x) =
3x

5 log x
− μx

log2 x
.

Theorem 4.2. Let log2 C1 ≤ β1, log2 C2 ≤ β2 and � be as above. Let n be
the smallest integer such that n > 21, n > μ and Υ(n) > β1 + β2 + �. Define

Q =
{
q prime : n ≤ q < 2n and S(q) < q1.89

}
, P =

{
S(q) : q ∈ Q

}
.

Then the number of primes in P is at least β1 + β2 + �, and the number of
useful primes in P , such that p � C1 and (p−1) � C2, is at least �. For all p ∈ P
we have p ∈ O((β1 + β2 + �)1.89 · log1.89(β1 + β2 + �)).

Proof. By Rosser & Schoenfeld (1962), the number of primes between n
and 2n is at least 3n/(5 log n) for n ≥ 21. Applying Fact 4.1, we see #Q ≥
3n/(5 log n) − μn/ log2 n when n ≥ max{μ, 21}. Now suppose S(q1) = S(q2)
for q1, q2 ∈ Q. If q1 < q2, then S(q1) > q21, a contradiction with the definition
of Q. So we must have q1 = q2, and hence

#P = #Q ≥ Υ(n) > β1 + β2 + � .

We know that there are at most log2 C1 ≤ β2 primes p ∈ P such that p |C1. We
also know that there are at most log2 C2 ≤ β2 primes q ∈ Q such that q |C2,

14 Giesbrecht & Roche comput. complex.

and hence at most log2 C2 primes p ∈ P such that p = S(q) and q | (p− 1) |C1.
Thus, by construction P contains at most β1 + β2 primes that are not useful
out of β1 + β2 + � total primes.

To analyze the size of the primes in P , we note that to make Υ(n) >
β1 + β2 + �, we have n ∈ Θ((β1 + β2 + �) · log(β1 + β2 + �)) and each q ∈ Q
satisfies q ∈ O(n). Elements of P will be of magnitude at most (2n)1.89 and
hence p ∈ O((β1 + β2 + �)1.89 log1.89(β1 + β2 + �)). �

Given β1, β2 and � as above (where log2 C1 ≤ β1 and log2 C2 ≤ β2 for
unknown C1 and C2), we generate the primes in P as follows.

Start by assuming that μ = 1, and compute n as the smallest integer such
that Υ(n) > β1 + β2 + �, n ≥ μ and n ≥ 21. List all primes between n
and 2n using a Sieve of Eratosthenes. For each prime q between n and 2n,
determine S(q), if it is less than q1.89, by simply checking if kq + 1 is prime for
k = 1, 2, . . . ,
q0.89�. If we find a prime p = S(q) < q1.89, add p to P . This
is repeated until P contains β1 + β2 + � primes. If we are unable to find this
number of primes, we have underestimated μ (since Theorem 4.2 guarantees
their existence), so we double μ and restart the process. Obviously in practice
we would not redo primality tests already performed for smaller μ, so really no
work need be wasted.

Theorem 4.3. For log2 C1 ≤ β1, log2 C2 ≤ β2, �, and n as in Theorem 4.2, we
can generate β1+β2+� elements of P with O((β1+β2+�)2 ·log7+o(1)(β1+β2+�))
bit operations. At least � of the primes in P will be useful.

Proof. The method and correctness follows from the above discussion. The
Sieve of Eratosthenes can be run with O(n log log log n) bit operations (see
Knuth (1981), Section 4.5.4), and returns O(n/ log n) primes q between n and
2n. Each primality test of kq + 1 can be done with (log n)6+o(1) bit operations
(Lenstra & Pomerance 2005), so the total cost is O(n2(log n)5+o(1)) bit oper-
ations. Since n ∈ O((β1 + β2 + �) · log(β1 + β2 + �)) the stated complexity
follows. �

The analysis of our methods will be significantly improved when more is
discovered about the behavior of the least prime congruent to one modulo
a given prime, which we have denoted S(q). An asymptotic lower bound of
S(q) ∈ Ω(q log2 q) is conjectured in Granville & Pomerance (1990), and we
have employed the upper bound from Mikawa (2001) of S(q) ∈ O(q1.89) (with
exceptions). From our own brief computational search we have evidence that
the conjectured lower bound may well be an upper bound: for all primes q ≤

Interpolation of shifted-lacunary polynomials 15

232, S(q) < 2q ln2 q. If something similar could be proven to hold asymptotically
(even with some exceptions), the complexity results of this and the next section
would be improved significantly. In any case, the actual cost of the algorithms
discussed will be a reflection of the true behavior of S(q), even before it is
completely understood by us.

Even more improvements might be possible if this rather complicated con-
struction is abandoned altogether, as useful primes would naturally seem to be
relatively plentiful. In particular, one would expect that if we randomly choose
primes p directly from a set which has, say, 4(β1 + β2 + �) primes, we might
expect that the probability that p |C1 or (p − 1) |C2 to less than, say, 1/4.
Proving this directly appears to be difficult. Perhaps most germane results
to this are lower bounds on the Carmichael Lambda function (which for the
product of distinct primes p1, . . . , pm is the LCM of p1− 1, . . . , pm− 1), which
are too weak for our purposes. See Erdös et al. (1991).

5. Complexity analysis

We are now ready to give a formal complexity analysis for the algorithms
presented in Section 2 and Section 3. For all algorithms, the complexity is
polynomial in the four bounds BA, BT , BH , and BN defined in Section 2.2,
and since these are each bounded above by size(f), our algorithms will have
polynomial complexity in the size of the output if these bounds are sufficiently
tight.

5.1. Complexity of sparsest shift computation. Algorithm 2.3 gives our
algorithm to compute the sparsest shift α of an unknown polynomial f ∈ Q[x]
given bounds BA, BT , BH , and BN and an oracle for choosing primes. The
details of this oracle are given in Section 4.

To choose primes, we set � = 2BA+1, and β1 = 2BH and β2 = BN(3BT −1)
(according to Corollary 2.8). For the sake of notational brevity, define BΣ =
BA +BH + BNBT so that β1 + β2 + � ∈ O(BΣ).

Theorem 5.1. Suppose f ∈ Q[x] is an unknown polynomial given by a black
box, with bounds BA,BT ,BH , and BN given as above. If deg f > 2BT , then
the sparsest shift α ∈ Q of f can be computed deterministically using

O
(
BAB

1.89
Σ · log2.89 BΣ ·M(B1.89

Σ log1.89 BΣ) ·M(logBΣ)
)

bit operations, plus O(κfB
2.89
Σ log1.89 BΣM(logBΣ)) bit operations for the black-

box evaluations.

16 Giesbrecht & Roche comput. complex.

Proof. Algorithm 2.3 will always terminate (by satisfying the conditions of
Step 2) after 2BA + 1 good primes have been produced by the oracle.

Using the oracle to choose primes, and because β1 + β2 + � ∈ O(BΣ),
O(B2

Σ log7+o(1) BΣ) bit operations are used to compute all the primes on Step 3,
by Theorem 4.3. And by Theorem 4.2, each chosen p is bounded by
O(B1.89

Σ log1.89 BΣ).
All black-box evaluations are performed on Step 4; there are p evaluations

at each iteration, and O(BΣ) iterations, for a total cost of O(κfBΣp ·M(log p))
bit operations. The stated complexity bound follows from the size of each
prime p.

Steps 10–14 are never executed when deg f > 2BT . Step 15 is only executed
once and never dominates the complexity.

Dense polynomial interpolation over Zp is performed at most O(BΣ) times
on Step 5 and O(p) times at each of O(BA) iterations through Step 7. Since
p � BΣ, the latter step dominates. Using asymptotically fast methods, each
interpolation of f (p)(x + γ) uses O(M(p) log p) field operations in Zp, each of
which costs O(M(log p)) bit operations. This gives a total cost over all iterations
of O(BAp · log p ·M(p) ·M(log p)) (a slight abuse of notation here since the value
of p varies). Again, using the fact that p ∈ O(B1.89

Σ log1.89 BΣ) gives the stated
result. �

To simplify the discussion somewhat, consider the case that we have only
a single bound on the size of the output polynomial, say Bf ≥ size(f). By
setting each of BT , BH , and BN equal to Bf , and by using the multiplication
algorithm from Cantor & Kaltofen (1991), we obtain the following comprehen-
sive result:

Corollary 5.2. The sparsest shift α of an unknown polynomial f ∈ Q[x],
whose shifted-lacunary size is bounded by Bf , can be computed using

O
(
B8.56

f · log6.78 Bf · (loglogBf)
2 · logloglogBf

)

bit operations, plus

O
(
κfB

5.78
f · log2.89 Bf · loglogBf · logloglogBf

)

bit operations for the black-box evaluations.

Proof. The stated complexities follow directly from Theorem 5.1 above,
using the fact that M(n) ∈ O(n log n loglog n) and BΣ ∈ O(B2

f). Using the
single bound Bf , we see that these costs always dominate the cost of Steps 10–
14 given in Theorem 2.5, and so we have the stated general result. �

Interpolation of shifted-lacunary polynomials 17

In fact, if we have no bounds at all a priori, we could start by setting Bf

to some small value (perhaps dependent on the size of the black box or κf),
running Algorithm 2.3, then doubling Bf and running the algorithm again,
and so forth until the same polynomial f is computed in successive iterations.
This can then be tested on random evaluations. Such an approach yields an
output-sensitive polynomial-time algorithm which should be correct on most
input, though it could certainly be fooled into early termination.

This is a significant improvement over the algorithms from our original pa-
per (Giesbrecht & Roche 2007), which had a dominating factor of B78

f in the
deterministic complexity. Also – and somewhat surprisingly – our algorithm is
competitive even with the best-known sparsest shift algorithms which require a
(dense) f ∈ Q[x] to be given explicitly as input. By carefully constructing the
modular black box from a given f ∈ Q[x], and being sure to set BT < (deg f)/2,
we can derive from Algorithm 2.3 a deterministic sparsest-shift algorithm with
bit complexity close to the fastest algorithms in Giesbrecht et al. (2003); the de-
pendence on degree n and sparsity t will be somewhat less, but the dependence
on the size of the coefficients log ‖f‖ is greater.

To understand the limits of our computational techniques (as opposed to
our current understanding of the least prime in arithmetic progressions) we
consider the cost of our algorithms under the optimistic assumption that S(q) ∈
O(q ln2 q), possibly with a small number of exceptions. In this case the sparsest
shift α of an unknown polynomial f ∈ Q[x], whose shifted-lacunary size is
bounded by Bf , can be computed using

O
(
B5

f · log6 Bf · (loglogBf)
2 · logloglogBf

)

bit operations. As noted in the previous section, we have verified computation-
ally that S(q) ≤ 2q ln2 q for q < 232. This would suggest the above complexity
for all sparsest-shift interpolation problems that we would expect to encounter.

5.2. Complexity of interpolation. The complexity analysis of the sparse
interpolation algorithm given in Algorithm 3.5 will be quite similar to that
of the sparsest shift algorithm above. Here, we need � = max{2BH + 1, BN}
good primes to satisfy the conditions of Step 2, and from Theorem 3.7, we set
β1 = 2BHBT and β2 = 1

2
BNBT (BT − 1). Hence for this subsection we set

BS = BT (BH +BNBT) so that β1 + β2 + � ∈ O(BS).

Theorem 5.3. Suppose f ∈ Q[x] is an unknown polynomial given by a mod-
ular black box, with bounds BT , BH , BN , and BS given as above. The sparse

18 Giesbrecht & Roche comput. complex.

representation of f as in (1.3) can be computed with

O
(
BS logBS ·M(B1.89

S log1.89 BS) ·M(logBS)

+B2
N ·M

(
(BN + logBT) log(BN + logBT)

))

bit operations, plus O(κfB
2.89
S log1.89 BSM(logBS)) bit operations for the black-

box evaluations.

Proof. As in the sparsest-shift computation, the cost of choosing primes
in Step 3 requires O(B2

S log
7+o(1) BS) bit operations, and each chosen prime pk

satisfies pk ∈ O(B1.89
S log1.89 BS). The total cost over all iterations of Step 4

is also similar to before, O(BS · M(pk) log pk · M(log pk)) bit operations, plus
O(κfBSpM(log pk)) for the black-box evaluations.

We can compute each g(pi) in Step 10 using O(M(t) log t) ring operations
modulo pi − 1. Note that k ∈ O(�), which is O(BH + BN), so the total cost
in bit operations for all iterations of this step is O((BH +BN) logBT ·M(BT) ·
M(logBS)).

Step 11 performs t Chinese Remainderings each of k modular images, and
the size of each resulting integer is bounded by 2BN , for a cost of O(BT logBN ·
M(BN)) bit operations.

To factor g in Step 12, we can use Algorithm 14.17 of von zur Gathen &
Gerhard (2003), which has a total cost in bit operations of

O
(
B2

T ·M(BN + logBT)

+ BN(BN + logBT) ·M
(
(BN + logBT) log(BN + logBT)

))

because the degree of g is t, g has t distinct roots, and each coefficient is
bounded by 2BN .

In Step 15, we must first compute the modular image of ei mod pj − 1 and
then look through all t exponents of f (pj) to find a match. This is repeated tk
times. We can use fast modular reduction to compute all the images of each
ei using O(M(BN) logBN) bit operations, so the total cost is O(BT (BHBT +
BNBT +M(BN) logBN)) bit operations.

Finally, we perform Chinese remaindering and rational reconstruction of
t + 1 rational numbers, each of whose size is bounded by BH , for a total cost
of O(BT ·M(BH) logBH).

Therefore we see that the complexity is dominated either by the dense
interpolation in Step 4 or the root-finding algorithm in Step 12, depending
essentially on whether BN dominates the other bounds. �

Interpolation of shifted-lacunary polynomials 19

Once again, by having only a single bound on the size of the output, the
complexity measures are greatly simplified.

Corollary 5.4. Given a modular black box for an unknown polynomial
f ∈ Q[x] and a bound Bf on the size of its lacunary represenation, that repre-
sentation can be interpolated using

O
(
B8.67

f log4.89 Bf (loglogBf)
2 logloglogBf

)

bit operations, plus

O
(
κfB

8.67
f log2.89 Bf loglogBf logloglogBf

)

bit operations for the black-box evaluations.

Similar improvements to those discussed at the end of Section Section 5.1
can be obtained under stronger (but unproven) number theoretic assumptions.

6. Conclusions and future work

Here we provide the first algorithm to interpolate an unknown univariate ratio-
nal polynomial into the sparsest shifted power basis in time polynomial in the
size of the output. The main tool we have introduced is mapping down modulo
small primes where the sparse shift is also mapped nicely. This technique could
be useful for other problems involving lacunary polynomials as well, although
it is not clear how it would apply in finite domains where there is no notion of
“size”.

There are many further avenues to consider, the first of which might be
multivariate polynomials with a shift in each variable (see, e.g., Grigoriev &
Lakshman (2000)). It would be easy to adapt our algorithms to this case
provided that the degree in each variable is more than twice the sparsity (this
is called a “very sparse” shift in Giesbrecht et al. (2003)). Finding multivariate
shifts in the general case seems more difficult. Even more challenging would be
allowing multiple shifts, for one or more variables – for example, finding sparse
g1, . . . , gk ∈ Q[x] and shifts α1, . . . , αk ∈ Q such that the unknown polynomial
f(x) equals g1(x − α1) + · · · + gk(x − αk). The most general problem of this
type, which we are very far from solving, might be to compute a minimal-length
formula or minimal-size algebraic circuit for an unknown function. We hope
that the small step taken here might provide some insight towards this ultimate
goal.

20 Giesbrecht & Roche comput. complex.

Acknowledgements

The authors would like to thank Igor Shparlinski for pointing out the paper
of Mikawa (2001), and for suggesting how to discard “exceptional” primes q.
This avoids the use of Linnik’s theorem, as employed in Giesbrecht & Roche
(2007), and improves the complexity considerably.

The authors would also like to thank Erich Kaltofen for discussions and
sharing of his early unpublished work on rational interpolation, and Éric Schost
for discussions and sharing a pre-print of Garg & Schost (2009).

Finally, the authors would like to thank the anonymous reviewers for their
careful readings and useful suggestions.

An extended abstract of a preliminary version of this work appeared at the
MACIS 2007 conference (Giesbrecht & Roche 2007).

References

M. Avendaño, T. Krick &A. Pacetti, Newton-hensel interpolation lifting. Foun-
dations of Computational Mathematics (2006), 81–120.

M. Ben-Or & P. Tiwari, A deterministic algorithm for sparse multivariate poly-
nomial interpolation. In STOC ’88: Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, New York, NY, USA, 1988, ACM Press, 301–
309.

M. Bläser, M. Hardt, R. J. Lipton & N. K. Vishnoi, Deterministically testing
sparse polynomial identities of unbounded degree. Inf. Process. Lett. 109(3) (2009),
187–192.

A. Borodin & I. Munro, The Computational Complexity of Algebraic and Numeric
Problems. American Elsevier Publishing Co., Inc., New York, London, Amsterdam,
1975. Elsevier Computer Science Library; Theory of Computation Series, No. 1.

A. Borodin & P. Tiwari, On the decidability of sparse univariate polynomial
interpolation. Comput. Complexity 1(1) (1991), 67–90.

D. Cantor & E. Kaltofen, Fast multiplication of polynomials over arbitrary
algebras. Acta Informatica 28 (1991), 693–701.

P. Erdös, C. Pomerance & E. Schmutz, Carmichael’s lambda function. Acta
Arithmetica 58 (1991), 363–385.

S. Garg & É. Schost, Interpolation of polynomials given by straight-line programs.
Theoretical Computer Science 410(27–29) (2009), 2659–2662.

Interpolation of shifted-lacunary polynomials 21

J. von zur Gathen & J. Gerhard, Modern Computer Algebra. Cambridge Uni-
versity Press, Cambridge, second edition, 2003.

M. Giesbrecht & D. Roche, Interpolation of shifted-lacunary polynomials. In
Proc. Mathematical Aspects of Computer and Information Sciences (MACIS’07),
Paris, France, 2007.

M. Giesbrecht, E. Kaltofen & Wen-shin Lee, Algorithms for computing spars-
est shifts of polynomials in power, Chebyshev and Pochhammer bases. J. Symbolic
Comput. 36(3–4) (2003), 401–424. International Symposium on Symbolic and Alge-
braic Computation (ISSAC’2002) (Lille).

M. Giesbrecht, G. Labahn & Wen-shin Lee, Symbolic-numeric sparse inter-
polation of multivariate polynomials. In Proc. ACM International Symposium on
Symbolic and Algebraic Computation (ISSAC), 2006, 116–123.

A. Granville & C. Pomerance, On the least prime in certain arithmetic progres-
sions. J. London Math. Soc. s2-41(2) (1990), 193–200.

D. Grigoriev & M. Karpinski, The matching problem for bipartite graphs with
polynomially bounded permanents is in NC. In Foundations of Computer Science
(FOCS), 1987, 166–172.

D. Grigoriev & M. Karpinski, A zero-test and an interpolation algorithm for
the shifted sparse polynomials. In Applied Algebra, Algebraic Algorithms and Error-
correcting Codes (San Juan, PR, 1993), vol. 673 of Lecture Notes in Comput. Sci.,
162–169. Springer, Berlin, 1993.

D. Grigoriev & Y. Lakshman, Algorithms for computing sparse shifts for multi-
variate polynomials. Appl. Algebra Engrg. Comm. Comput. 11(1) (2000), 43–67.

E. Kaltofen, Notes on polynomial and rational function interpolation. (1988).
Unpublished manuscript.

E. Kaltofen & Wen-shin Lee, Early termination in sparse interpolation algo-
rithms. J. Symbolic Comput. 36(3–4) (2003), 365–400. International Symposium on
Symbolic and Algebraic Computation (ISSAC’2002) (Lille).

E. Kaltofen, Y. N. Lakshman & J.-M. Wiley, Modular rational sparse mul-
tivariate polynomial interpolation. In ISSAC ’90: Proceedings of the International
Symposium on Symbolic and Algebraic Computation, New York, NY, USA, 1990,
ACM Press, 135–139.

D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algo-
rithms. Addison-Wesley, Reading MA, 2 edition, 1981.

22 Giesbrecht & Roche comput. complex.

Y. N. Lakshman & B. D. Saunders, Sparse shifts for univariate polynomials.
Appl. Algebra Engrg. Comm. Comput. 7(5) (1996), 351–364.

H. W. Lenstra, Jr. & C. Pomerance, Primality testing with Gaussian periods.
Preprint, 2005.

H. Mikawa, On primes in arithmetic progressions. Tsukuba journal of mathematics
25(1) (2001), 121–153.

J. Barkley Rosser & L. Schoenfeld, Approximate formulas for some functions
of prime numbers. Illinois J. Math. 6 (1962), 64–94.

Manuscript received 31 October 2008

Mark Giesbrecht

School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1, Canada
mwg@cs.uwaterloo.ca

http://www.cs.uwaterloo.ca/~mwg

Daniel S. Roche

School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1, Canada
droche@cs.uwaterloo.ca

http://www.cs.uwaterloo.ca/~droche

	INTERPOLATION OF SHIFTED-LACUNARY POLYNOMIALS
	Abstract
	1. Introduction
	2. Computing the Sparsest Shift
	2.1. The polynomial f(p).
	2.2. Overview of Approach.
	2.3. Conditions for Success.

	3. Interpolation
	4. Generating primes
	5. Complexity analysis
	5.1. Complexity of sparsest shift computation.
	5.2. Complexity of interpolation.

	6. Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00417
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

