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Abstract

Convex optimization is a branch of mathematics dealing with non-linear optimization prob-

lems with additional geometric structure. This area has been the focus of considerable

research due to the fact that convex optimization problems are scalable and can be effi-

ciently solved by interior-point methods. Additionally, convex optimization problems are

much more prevalent than previously thought as existing problems are constantly being

recast in a convex framework.

Over the last ten years or so, convex optimization has found applications in many new

areas including control theory, signal processing, communications and networks, circuit

design, data analysis and finance. As with any new problem, of key concern is visualization

of the problem space in order to help develop intuition. In this thesis we develop and

explore tools for the visualization of convex functions and related objects. We provide

symbolic functionality where possible and appropriate, and proceed numerically otherwise.

Of critical importance in convex optimization are the operations of Fenchel conjugation

and subdifferentiation of convex functions. The algorithms for solving convex optimization

problems are inherently numerical in nature, but often times closed-form symbolic solutions

exist or symbolic computations may be of aid. There exists a wealth of mathematics for

assisting the calculation of these operations in closed form, but very little in the way of com-

puter aided tools which take advantage of these techniques. Earlier research has developed

algorithms for the manipulation of these objects in one dimension, or many separable dimen-

sions. In this thesis these tools are extended to work in the non-separable many-dimensional

case.
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Chapter 1

Introduction and Preliminaries

In this chapter we explore the basics of convex analysis and develop the theory necessary

for a good understanding of the algorithms we will describe in later chapters. We build the

subject matter in much the same order as Rockafeller in his classic text [16], but with an

emphasis on geometric proofs of results, as in [13]. We also intersperse the fundamentals

with more modern results and examples from [4] and [5]. This chapter is intended as a

reasonably self-contained introduction to convex analysis up to and including basic results

on Fenchel duality.

1.1 Notation and Convention

We begin by discussing the basic geometric and analytic concepts referenced throughout

this work. The natural setting for any computer algebra system is Rn, by which we mean

an n-dimensional vector space over the reals R. However, wherever possible we will present

results using an arbitrary Euclidean space E (a finite dimensional vector space over the

reals R equipped with an inner product 〈·, ·〉), as an abstract coordinate-free representation

is often more accessible and elegant.

The norm of any point x ∈ E is defined as ‖x‖ =
√
〈x, x〉. The unit ball is the set

B = {x ∈ E : ‖x‖ ≤ 1}.

The fundamental operations of set addition and set subtraction for any two sets C, D ∈ E

1



2 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

are defined as

C + D = {x + y : x ∈ C, y ∈ D}, and

C −D = {x− y : x ∈ C, y ∈ D}.

Additionally, for a subset Λ ⊂ R we define set scalar multiplication as

ΛC = {λx : λ ∈ Λ, x ∈ C}.

We also represent the standard Cartesian product of two Euclidean spaces X and Y as

X × Y and define the inner product as 〈(e, x), (f, y)〉 = 〈e, f〉 + 〈x, y〉 for e, f ∈ X and

x, y ∈ Y.

We borrow heavily from the language and standard notation of topology. A point x is

said to lie in the interior of a set S ⊂ E, denoted by int S, if there is a real δ > 0 such

that N = x + δB ⊂ S. In this case we say that both N and S are neighborhoods of the

point x. As an example, the interior of the closed unit ball B is simply the open unit ball

{x ∈ E : ‖x‖ < 1}.
A point x ∈ E is the limit of a sequence of points {xi} = x1, x2, . . . in E, written xj → x

as j →∞ (or limj→∞ xj = x), if ‖xj − x‖ → 0. The closure S, denoted by cl S, is defined

as the set of all limits of all possible sequences in S. The boundary of a set S is defined as

cl S \ int S, and is denoted by bd S. A set S is labelled open if S = int S, and closed if

S = cl S. Basic exercises in set theory show that the complement of a set S, written Sc,

is open if S is closed (and vice-versa), and that arbitrary unions and finite intersections of

open sets remain open.

The interior of a set S may be visualized as the largest open set contained in S, while

the closure of a set S is simply the smallest closed set encapsulating S.

We adopt the usual definition and call a map A : E → Y linear if all points x, y ∈ E

and all λ, µ ∈ R satisfy the equation A(λx + µy) = λAx + µAy. The adjoint of this map,

A∗ : Y → E, is defined by the constraint

〈A∗y, x〉 = 〈y,Ax〉, ∀x ∈ E, ∀y ∈ Y.

We also adopt the notation A−1H to denote the inverse image of a set H under a mapping

A, defined as A−1H = {x ∈ E : Ax ∈ H}.
In convex analysis it is both natural and convenient to allow functions to take on the

value of +∞. For simplicity’s sake we introduce the extended real numbers, R = R∪{+∞}.
We further denote the non-negative reals by R+ and the positive reals by R++.
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In allowing functions to take on extended values we are lead to situations in which

arithmetic calculations involving +∞ and −∞ must be performed. In dealing with this we

adopt the following conventions, used in [4, 16]:

α +∞ = ∞+ α = ∞ for −∞ < α ≤ +∞,

α−∞ = −∞+ α = −∞ for −∞ ≤ α < +∞,

α∞ = ∞α = ∞, α(−∞) = (−∞)α = −∞ for 0 < α ≤ ∞,

α∞ = ∞α = −∞, α(−∞) = (−∞)α = ∞ for −∞ ≤ α < 0,

0∞ = ∞0 = 0(−∞) = (−∞)0 = 0,

−(−∞) = ∞, inf ∅ = +∞, and sup ∅ = −∞.

The troublesome case of +∞ − ∞ is generally avoided, but if encountered we use the

convention +∞−∞ = +∞, such that any two (possibly empty) sets C and D on R satisfy

the equation inf C + inf D = inf {C + D}.

1.2 Convex Sets and Functions

Of prime importance in convex optimization is the notion of convexity. We say a set C ⊂ E

is a convex set if all line segments between any two points x, y ∈ C are themselves contained

in the set. In other words, if (1− λ)x + λy ∈ C, for all x, y ∈ C and for all λ ∈ [0, 1].

Half-spaces are simple but important examples of convex sets. For any non-zero b ∈ Rn

and β ∈ R, the sets

{x : 〈x, b〉 ≤ β}, {x : 〈x, b〉 ≥ β}

are called closed half-spaces. Similarly, the sets

{x : 〈x, b〉 < β}, {x : 〈x, b〉 > β}

are called open half-spaces. All four such sets are plainly non-empty and convex.

We begin with a few basic results regarding set theoretic operations that preserve con-

vexity.

Theorem 1.1 (Intersection of convex sets) ([16], Theorem 2.1, page 10) The in-

tersection C =
⋂

Ci of an arbitrary collection of convex sets is itself convex.

Proof: Consider x, y ∈ C. For all i we see that x, y ∈ Ci, and trivially the line segment

joining them is as well. Hence C is by definition convex. ¥
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Theorem 1.2 (Linear images and pre-images of convex sets) ([16], Theorem 3.4,

page 19) Let A be a linear transform from Rn to Rm. Then AC is a convex set in Rm for

every convex set C in Rn, and A−1D is a convex set in Rn for every convex set D in Rm.

Proof: Suppose x, y ∈ C. Since C is convex we know that (1 − λ)x + λy ∈ C for all

λ ∈ [0, 1]. Due to the linearity of A we also see that A((1−λ)x)+A(λy) = (1−λ)Ax+λAy

is in AC for every Ax,Ay ∈ C. Hence AC is also convex. A similar argument can be used

to show that A−1D is convex. ¥

The notion of convexity may be extended to real-valued functions but we must first

introduce the epigraph. The epigraph of a real-valued function defined on a subset S ⊂ E

f : S → R is denoted by epi f and consists of all points in E×R that lie above the function:

epi f = {(x, λ) ∈ E× R : x ∈ S, λ ≥ f(x)}.

The definition for extended real-valued functions f : S ⊂ E → R is analogous.

A function f : E → R is said to be a convex function if epi f is a convex set in E× R.

A trivial example of a convex function is the indicator function of a convex set. Given a

convex set S ⊂ E, consider the following function δS : E → R:

δS(x) =

{
0, x ∈ S

+∞, x 6∈ S.

From the convexity of S in the space E it is apparent that epi δS = S × R+ is convex in

E× R.

Stepping outside the language of convex sets, this is equivalent to saying that if the

mean value of any two function values is greater than the function value of the mean, then

the function is convex. This notion is captured in the following result.

Theorem 1.3 (Interpolation characterization of convexity) ([16], Theorem 4.1,

page 25) Consider a function f defined on a set S ⊂ E, where f : S → R. It follows that f

is convex if and only if f((1−λ)a+λb) ≤ (1−λ)f(a)+λf(b), for all a, b ∈ S and λ ∈ [0, 1].

(In fact, for a proof of the convexity of f we need only show that the given relation holds

for any single fixed λ ∈ [0, 1].)
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epi f

f(b)
(1− λ)f(a) + λf(b)

f((1− λ)a + λb)

f(a)

Figure 1.1: Interpolation characterization of convexity

Proof: Suppose that f is convex. By the definition of convexity of a function this is

equivalent to saying that epi f is a convex set in E × R. Thus we trivially have that all

points (1− λ)f(a) + λf(b) are in epi f for any a, b ∈ S and λ ∈ [0, 1]. By the definition of

the epigraph, it follows that (1− λ)f(a) + λf(b) ≥ f((1− λ)a + λb).

Suppose f is not convex. Then there exists two points a, b ∈ epi f and some point in

between them c = (1 − λ)a + λb 6∈ epi f , for λ ∈ (0, 1). Since a in epi f then a = [xa, ra],

where ra ≥ f(xa), and similarly for b. Since c is outside of epi f then rc < f(xc). Thus we

see that (1− λ)f(xa) + λf(xb) = (1− λ)ra + λrb = rc < f(xc) = f((1− λ)xa + λxb). This

is a contradiction therefore f must be convex. ¥

Example 1.4 (Convexity of affine functions) Another example of a convex function is

any affine function f : Rn → R, given by f : x 7→ 〈a, x〉 + α. By linearity we have that

f((1− λ)x + λy) = (1− λ)f(x) + λf(y) and therefore f is convex by Theorem 1.3. ¤

This interpolation characterization of convexity is represented graphically in Figure 1.1,

and an example of its utility is demonstrated in Example 1.4. Note that this characterization

also brings rise to a stronger notion of convexity. A function is called strictly convex if the

relation of Theorem 1.3 holds with strict inequality.
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The definition of a convex function implies that the function is defined over a domain

S which itself must be a convex set. To simplify the issue somewhat we may extend all

functions to be defined over the whole space E by mapping them to the value +∞ where

they are not otherwise defined. This preserves the original structure of the function and

allows us to exclude the explicit domain of the function from our definitions of convexity.

This also allows us to recast problems like

inf {f(x) : x ∈ S}

to a simpler representation of inf {f(x) + δS}.
Having extended functions to be defined over the whole space E, we may sometimes

wish to recapture the original domain of the function. We do so by redefining the domain

of a function f : E → R as the set

dom f = {x ∈ E : f(x) < +∞}.

We say a function is proper if its domain is nonempty.

Convex functions naturally gives rise to other convex sets in various ways. One of the

most important of these introduces the concept of level sets.

Theorem 1.5 (Convex level sets) ([16], Theorem 4.6, page 28) For any convex

function f : E → R and any α ∈ R, the level sets {x : f(x) < α}, {x : f(x) ≤ α},
{x : f(x) > α} and {x : f(x) ≥ α} are convex.

Proof: The proof of this follows immediately from Theorems 1.1 and 1.2 by observing that

the level sets can by created by the intersection of the epigraph and the appropriate open

or closed half-space, projected down to E from E× R. ¥

1.3 Closures of Convex Functions

Many topological properties are implied directly by convexity. However, most of these

results are made more accessible by introducing a little extra structure to the problem. A

function f : E → R is called lower semi-continuous on a set S ⊂ E at a point x if

f(x) ≤ lim
i→∞

f(xi)
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for every sequence x1, x2, . . ., in S such that limxi = x, and the limit f(x1), f(x2), . . ., exists.

This condition may alternatively be expressed as

f(x) ≤ lim inf
y→x

f(y) = lim
ε↓0

inf {f(y) : ‖y − x‖ ≤ ε}.

Reversing the inequality leads to an equivalent definition for upper semi-continuity . Note

that when f is finite on a neighborhood of x, the combination of both lower and upper semi-

continuity at x implies continuity at x. The natural importance of lower semi-continuity is

apparent from the theory of Fenchel conjugates (Section 1.6), and the following result.

Theorem 1.6 ([16], Theorem 7.1, page 51) Consider a function f : E → R. Then the

following conditions are equivalent:

(a) f is lower semi-continuous on E;

(b) {x : f(x) ≤ α} is closed for every α ∈ R; and,

(c) the epigraph of f is a closed set.

Proof: Lower semi-continuity can be readily reexpressed as the condition that u ≥ f(x)

whenever u = limui and x = lim xi for sequences u1, u2, . . ., and x1, x2, . . ., such that

ui ≥ f(xi) for every i. Thus, any sequence of points (x1, u1), (x2, u2), . . ., in the epigraph

must have its limit in the epigraph, and we see that condition (a) is actually equivalent to

condition (c). By taking α = u = u1 = u2 = · · · we see that for any convergent sequence

x1, x2, . . . such that α ≥ f(xi) it follows that α ≥ f(x). In this manner, (a) implies (b).

Now suppose that (b) holds, and we have sequences xi converging to x and f(xi) converging

to u. For every real α > u, f(xi) must ultimately (for large enough i) be less than α, and

thus

x ∈ cl {y : f(y) ≤ α} = {y : f(y) ≤ α}.

Hence we see that f(x) ≤ u, and we see that (b) implies (a). ¥

Given any function f : E → R, we define the closure, denoted cl f , as the function

whose epigraph is itself the closure of epi f . A function is therefore said to be closed if

cl f = f . Note that as implied by Theorem 1.6, for a proper convex function being closed

is equivalent to being lower semi-continuous.
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1.4 Continuity of Convex Functions

One of the most surprising results about convex functions is that the global geometric

property of convexity can yield a local analytic property such as continuity. This result is

explored in greater detail in the following theorems.

Lemma 1.7 (Interior of epigraph) Let x be a point in int dom f for a convex function

f . Consider any point (x, ν) such that ν > f(x). Then (x, ν) ∈ int epi f .

Proof: We present a geometric argument. Since x ∈ int dom f there exists a δ > 0 such

that f takes finite values for all points in B = {y : ‖y−x‖ < δ}. Let µ = sup{f(y) : y ∈ B}.
By taking δ small enough, we can guarantee that µ is finite. By the definition of the epigraph,

it follows that C = {(y, µ) : y ∈ B} ∈ epi f . Additionally, by convexity, it follows that the

line segment from (x, f(x)) to any y ∈ C is also in epi f , thus the vertical cone rooted at

(x, f(x)) and extended to C is entirely within epi f . Similarly, the cylinder extended above

C is also entirely contained within epi f . Since (x, ν) lies along the central axis of this

structure, we can always find a ball around it contained completely within it, and therefore

completely within int epi f . ¥

Note that the above Lemma actually holds in both directions, and any interior point of

epi f can be used to find an interior point of int dom f . This stronger result can be found

in Luenberger [13].

Theorem 1.8 (Continuity of convex functions) Let f : E → R be a convex function.

Then f is continuous on int dom f .

Proof: If f is improper, then f is identically ∞, and trivially continuous. Thus we may

assume that f is proper and therefore finite on its non-empty int dom f .

In a proof parallel to that of Theorem 1.2 we can easily show that the upper level sets

of cl epi f are all closed and (by the same logic as Theorem 1.6) that equivalently cl f is

upper semi-continuous on int dom f . The combination of upper semi-continuity and lower

semi-continuity from Theorem 1.6 shows that cl f is in fact continuous on dom cl f . It

remains only to show that f = cl f on int dom f .

Consider x ∈ int dom f , and suppose cl f(x) 6= f(x). Without loss of generality, shift

our coordinates such that x is at the origin. Since epi f ⊂ cl epi f , then by the definition
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of the epigraph this means that cl f(0) < f(0). Let ν be a value arbitrarily close to but less

than f(0), such that (0, ν) is in cl epi f but not in epi f . Since (0, cl f(x)) ∈ cl epi f we can

construct a sequence ai = (xi, µi) such that lim ai = (x, cl f), limxi = 0, limµi = cl f(0) and

ai ∈ epi f . Consider the sequence of points bi = (−xi, 2ν−µi). The sequence bi approaches

the point b = (0, λ) where λ > f(x). By Lemma 1.7 it follows that b ∈ int epi f , thus for

large enough i the sequence bi is contained completely within epi f . Since (ai+bi)/2 = (0, ν),

then by convexity (0, ν) is in epi f , a contradiction. Hence it must be that cl f(x) = f(x)

for all x ∈ int dom f . Thus f is continuous on int dom f . ¥

As shown in the above theorem, convexity of a function f : E → R implies the continuity,

and hence the lower semi-continuity, on the interior of the effective domain of f . Thus, in

order for a function to be lower semi-continuous over the whole space E we need only

concern ourselves with the definition of the function along the boundary of the domain.

This suggests that lower semi-continuity is a natural form of normalization which makes

convex functions more regular and easier to manipulate. It is therefore natural to restrict

ourselves to the study to closed convex functions, incurring very little loss in generality. The

functions then gain the three important properties outlined in Theorem 1.6.

Note that although convexity of a function f implies the continuity of f over the interior

of its domain, it does not say anything about its differentiability. As an example, the one-

dimensional function f : x 7→ |x| is clearly convex, but it is not differentiable at the origin.

However, given a function that is continuously differentiable on the interior of its domain,

another characterization of convexity becomes useful. For simplicity we first examine the

one-dimensional case.

Theorem 1.9 (First derivative characterization of convexity in 1D) ([16], Theo-

rem 4.4, page 26) Consider a < b ∈ R and a function f : (a, b) → R that is continuously

differentiable on (a, b). Then f is convex if and only if f ′(x) is nondecreasing on (a, b).

Proof: Taking a < x < y < b, 0 < λ < 1 and z = (1− λ)x + λy, due to the nondecreasing

derivative we have that

f(z)− f(x) =
∫ z
x f ′(t)dt ≤ f(z)(z − x), and

f(y)− f(z) =
∫ y
z f ′(t)dt ≤ f(y)(y − z).
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Since z − x = λ(y − x) and y − z = (1− λ)(y − x) we have

f(z) = f(x) + λf ′(z)(y − x), and

f(z) = f(y)− (1− λ)f ′(y)(y − z).

Multiplying the two inequalities by (1 − λ) and λ respectively and adding them together

yields

f(z) = f((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y).

Thus, f is obviously convex.

Suppose f is not nondecreasing. Then by the continuity of f there exists some sub-

interval a < a′ < b′ < b over which f is strictly decreasing. By an argument parallel to the

above we can prove that f must be strictly concave over (a′, b′), and therefore not convex

on (a, b). ¥

The above result can alternatively be viewed as a convexity requirement on the second

derivative, shown in the following corollary.

Corollary 1.10 (Second derivative characterization of convexity in 1D) Consider

a < b ∈ R and a function f : (a, b) → R that is twice continuously differentiable on (a, b).

Then f is convex if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

The one-dimensional result can by extrapolated to n dimensions by taking one-dimensional

slices through a point in the direction of each basis vector of the higher space. If each slice

through every point is convex, then the entire function is itself convex. We first introduce

the notion of positive semidefinite and positive definite matrices.

Definition 1.11 (Positive Semidefinite) A matrix M ∈ Rn×n is said to be positive

semidefinite if 〈x,Mx〉 ≥ 0 for all x ∈ Rn. Similarly, M is positive definite if 〈x, Mx〉 > 0

for all x ∈ Rn.

Theorem 1.12 (Hessian characterization of convexity) ([16], Theorem 4.5, page

27) Consider a function f : E → R be a twice continuously differentiable function defined

on an open dom f . Then f is convex if and only if its Hessian matrix H(x) = ∇2f(x) is

positive semidefinite everywhere in dom f .
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Proof: The convexity of f on E is equivalent to the convexity of the restriction of f to each

line in E. This is the same as the convexity of the function g(t) = f(x + td) on R for each

x, d ∈ E. Vector calculus shows us that g′′(t) = 〈d,H(x + td)d〉. Thus, by Corollary 1.10,

g(t) is convex for each x, d ∈ E if and only if 〈d,H(y)d〉 ≥ 0 for every y, d ∈ E. ¥

It’s worth noting that the stronger condition of H(x) being positive definite actually

guarantees the strict convexity of f on a neighborhood of x. For more details, refer to [4].

1.5 Subgradients and the Subdifferential

The directional derivative of a function f : E → R at a point x in a direction d ∈ E is

defined as

f ′(x, d) = lim
t↓0

f(x + td)− f(x)
t

,

when this limit exists. If the directional limit f ′(x, d) is linear in d then there exists a

(necessarily unique) vector a ∈ E such that f ′(x, d) = 〈a, d〉. In this case we say that f is

(Gâteaux) differentiable at x with (Gâteaux) derivative ∇f(x) = a.

Standard calculus teaches us that a minimizer x̄ of an everywhere differentiable function

f is necessarily a critical point such that ∇f(x̄) = 0. However, many interesting convex

functions are not everywhere differentiable which leads us to pursue different methods for

representing derivative information. As an alternative to the derivative we instead consider

the subgradient . A vector x∗ is said to be a subgradient of a convex function f : E → R at

a point x ∈ E if

f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ E. (1.13)

At points where the subgradient is defined, this subgradient inequality has a simple

geometric interpretation: it says the affine function f(x) + 〈x∗, y − x〉 is a non-vertical

supporting hyperplane to the convex set epi f at the point (x, f(x)). In the condition where

f is differentiable at x it follows that the only such hyperplane is the one with slope defined

by the gradient of f at x, in which case the only subgradient to f at x is x∗ = ∇f(x). This

geometric interpretation is demonstrated in Figure 1.2.

At points of non-differentiability it follows that there are more than one subgradient.

This leads to the definition of the subdifferential of f at x as the set of all subgradients of
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Figure 1.2: Some convex subgradients

f at x:

∂f(x) := {x∗ : f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ E}.

The calculus-like relationship between subgradients and global minimizers is explored in the

following theorem.

Theorem 1.14 (Subgradients at global minimizers) For any proper convex function

f : E → R, the point x is a global minimizer of f if and only if the condition 0 ∈ ∂f(x)

holds.

Proof: This result follows immediately from the definition of a subgradient in Equation

1.13. A global minimizer x must satisfy the relation f(y) ≥ f(x), for all y ∈ E. This is

exactly the subgradient relationship for a point x with a vector x∗ = 0. ¥

Note the strong parallels between the theory of global minimizers for subdifferentials and

of local minimizers for differentials. Furthermore, note that the Theorem 1.14 reduces to

the classical and familiar calculus result when f is everywhere differentiable over int dom f .

The more subtle implication is that convex functions have a unique global minimum (but
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not necessarily a unique global minimizer); this is one of the properties that makes convex

functions so attractive and tractable as optimization problems.

It is natural to begin by asking questions about the existence and general behaviour

of directional derivatives on convex functions. Some key properties of these functions are

presented in the following theorem.

Theorem 1.15 (Existence of directional derivatives) ([16], Theorem 23.1, page

215) Let f be a convex function and let x be a point in int dom f . For each d, the difference

quotient in the definition of f ′(x, d) is a non-decreasing function of t > 0, so that f ′(x, d)

exists. Moreover, f ′(x, ·) is convex, f ′(x, 0) = 0 and −f ′(x,−d) ≤ f ′(x, d), for all d.

Proof: For simplicity let h(y) = f(x + y) − f(x) so that the difference quotient may be

compactly expressed as t−1h(td). The set epi h is simply the translate of epi f with (x, f(x))

moved to the origin, and is therefore also convex. On the other hand, we may also write

t−1h(td) = (ht−1)(d), where by definition ht−1 is the convex function whose epigraph is

t−1epi h. Since epi h contains the origin, the latter set increases, if anything, as t−1 increases.

In other words, for each d, the difference quotient (ht−1)(d) can only possibly decrease as t

decreases. Hence the limit in the directional derivative is bounded below and must exist.

Since f ′(x, ·) is defined as the limit of a sequence of convex functions, it too must

be convex. Moreover, by the definition of the directional derivative, we see trivially that

f ′(x, 0) = 0. Finally, by the convexity of f ′(x, ·) one has

1
2
f ′(x,−d) +

1
2
f ′(x, d) ≥ f ′

(
x,

1
2
(−d + d)

)
= f ′(x, 0) = 0,

and therefore −f ′(x,−d) ≤ f ′(x, d), for all d. ¥

It is clear that there is an intimate relationship between directional derivatives and

subgradients. This relationship is formalized in the following theorem, adapted from [16].

Theorem 1.16 (Directional derivatives and subgradients) Consider a convex func-

tion f : E → R. Then x∗ is a subgradient of f at x ∈ int dom f if and only if

f ′(x, d) ≥ 〈x∗, d〉, ∀d.

Proof: Suppose that x∗ is a subgradient of f at x. Setting y = x + td we can rewrite the

subgradient inequality (Equation 1.13) as

f(x + td)− f(x)
t

≥ 〈x∗, d〉, ∀t > 0, ∀d ∈ E.
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Since the difference quotient decreases to f ′(x, t) in the limit as t decreases to zero we are

left with the desired inequality from the theorem.

Suppose the directional limit inequality holds. By the convexity of f and the non-

decreasing nature of its directional derivatives from Theorem 1.15, we see that f(y) ≥
f(x) + f ′(x, y − x). A direct substitution yields that f(y) ≥ f(x) + 〈x∗, y − x〉, which is

exactly the subgradient inequality. ¥

In the one-dimensional case of the above theorem the subgradients are the slopes x∗ of the

non-vertical lines in R2 which pass through (x, f(x)) without meeting int epi f . These form

the closed interval of real numbers between f ′−(x) = −f ′(x,−1) and f ′+(x) = f ′(x,+1). We

will revisit and formalize this result a little later. We first solidify the relationship between

differentials and subgradients in the following theorem.

Theorem 1.17 (Differentiability of convex functions) ([16], Theorem 25.1, page

242) Consider the proper convex function f : E → R. Then the function f is Gâteaux

differentiable at a point x ∈ int dom f if and only if f has a unique subgradient x∗ at x (in

which case ∂f(x) = {x∗} = {∇f(x)}).

Proof: Suppose that f is differentiable at x. Then from the definition of differentiability

there exists a unique vector a such that f ′(x, d) = 〈a, d〉. Substituting this into Theorem

1.16 yields the inequality

〈a, d〉 ≥ 〈x∗, d〉, ∀d ∈ E.

The only way this can hold for all d is with equality when x∗ = a, thus a = ∇f(x) is the

only subgradient of f at x.

Suppose that f has a unique subgradient at x. For simplicity’s sake, we may consider

the translated scaled function g such that g(y) = f(x + y) − f(x) − 〈x∗, y〉. This function

will have the unique subgradient 0 at the origin, and we must show that

lim
y→0

g(y)
‖y‖ = 0.

Suppose that there exists a direction d such that g′(0, d) = µ 6= 0. Let m = µd/‖d‖2 such

that 〈m, d〉 = µ. It follows that g(td) ≥ 〈m, td〉. Similarly, by Theorem 1.15 we have that

g′(0,−d) ≤ −µ = 〈m,−d〉 thus g(−td) ≥ 〈m,−td〉. For any e perpendicular to d it follows

that 〈m, e〉 = 0, thus g(te) ≥ 〈m, te〉. By the convexity of g it follows that for any y,
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g(y) ≥ 〈m, y〉. However, this means that m is also a subgradient, a contradiction. It must

therefore be that g′(0, d) = 0 for all d.

Let hλ(u) = g(λu)/λ. Let {a1, . . . , an} be any finite collection of points whose convex

hull contains the ball B. Each u ∈ B may be expressed as u = λ1a1 + · · · + λnan, and it

follows that

0 ≤ hλ(u) ≤
n∑

i=1

λihλ(ai)

≤ max{hλ(ai) : i = 1, . . . , n}.

Since hλ(ai) decreases to 0 for each i as λ ↓ 0, it follows that hλ(u) does likewise. Hence,

given any ε > 0 there exists a δ > 0 such that

g(λu)/λ ≤ ε, ∀λ ≤ δ, ∀u ∈ B.

Since each vector y with ‖y‖ ≤ δ may be written as λu for some u ∈ B, we have that

g(y)/‖y‖ ≤ ε. Hence, the limit of g(y)/‖y‖ is 0, and thus the zero vector is by definition

the gradient of g at the origin. ¥

Note that we are actually proving the stronger notion of Frechet differentiability here. This

is not completely surprising as on the interior of convex functions defined over Rn, these

two notions of differentiability are equivalent.

As alluded to earlier, the situation is vastly simplified in one-dimension. If a function

f : R→ R is proper and convex, by Theorem 1.15 the directional derivatives exist at every

point in the interior. Theorem 1.16 gave us come clues as to how to completely formulate

the subgradient of a one-dimensional function, and we formalize that result in our next

theorem.

Theorem 1.18 (Subdifferential in one dimension) Consider a proper convex function

f : R → R. For each point x ∈ int dom f the subdifferential is given by the (potentially

singleton) closed interval

∂f(x) = [f ′−(x), f ′+(x)].

Furthermore, the subdifferential is a singleton only at those points x where f is differentiable.

Proof: Consider any points x at which f is differentiable. At these points, f ′−(x) = f ′+(x) =

∇f(x) and the above set is a singleton equal to {∇f(x)}, which is the subdifferential of f

at x by Theorem 1.17.
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Consider now any points in x at which f is not differentiable. We must have that

f ′−(x) 6= f ′+(x), and by Theorem 1.15 we have specifically that f ′−(x) < f ′+(x). Consider

x∗ ∈ [f ′−(x), f ′+(x)]. Trivially we see that f ′−(x) ≤ x∗ ≤ f ′+(x), and therefore

f ′(x,−1) ≥ −x∗, and

f ′(x, 1) ≥ x∗.

Thus, by Theorem 1.16 it follows that x∗ is a subgradient of f at x. Additionally, in-

spection shows that there can be no other x∗ that satisfy the system of two linear in-

equalities from Theorem 1.16, thus we may represent all of the subgradients of f at x as

∂f(x) = [f ′−(x), f ′+(x)]. ¥

We finish this section with an example illustrating a practical application of Theorem

1.18.

Example 1.19 (Subgradient of absolute value function) Consider the function f :

R → R defined by f(x) = |x|. This function is differentiable everywhere but at the ori-

gin, thus by Theorem 1.17, ∂f(x) = {f ′(x)}, for all x 6= 0. The left derivative at the origin

is easily calculated as f ′−(x) = −1, while the right derivative is calculated as f ′+(x) = 1.

Using Theorem 1.18 the entire subdifferential is therefore given by

∂f(x) =





{−1}, x < 0

[−1, 1] , x = 0

{1}, x > 0.

¤

1.6 The Fenchel Conjugate

As characterized in Equation 1.13 we may view a convex function as being minorized at each

finite point f(x) by at least one unique non-vertical hyperplane. This leads to a natural

alternative representation of a convex function as being defined by the envelope of its tangent

hyperplanes. Equivalently, we can consider the epigraph of the function as being defined by

the closed-halfspaces which contain it. This concept is captured in the following result from

Rockafeller [16].
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Theorem 1.20 (Envelope representation of convex functions) ([16], Theorem 12.1,

page 102) A proper closed convex function f is the pointwise supremum of the collection

of all affine functions h such that h ≤ f .

Proof: Since epi f is a closed convex set it may be visualized as the intersection of all

half-spaces containing it. The half-spaces can not all be vertical since that would imply

that epi f was a union of vertical lines, contrary to properness. There is a one-to-one corre-

spondence between each non-vertical half-space and a minorizing affine function describing

the half-space, and the non-vertical half-spaces are the epigraphs of the corresponding affine

functions. To prove the theorem we must show that the vertical half-spaces (who have no

affine function counterpart) are redundant in defining f . In other words, given any vertical

half-space V containing epi f and a point v outside of V , find a minorizing affine function h

that excludes the point v. Let V = {(x, u) : 0 ≥ 〈x, b1〉 − β1 = h1(x)} and let v = (x0, u0).

We know there exists at least one minorizing affine function h2 such that h2 ≤ f . For every

x ∈ dom f we have h1(x) ≤ 0 and h2(x) ≤ f(x), and thus

λh1(x) + h2(x) ≤ f(x), ∀λ ≥ 0.

The same inequality holds when x 6∈ dom f because then f(x) = ∞. Thus, for any λ > 0

we may define h as

h(x) = λh1(x) + h2(x) = 〈x, λb1 + b2〉 − (λβ1 + β2)

and have an affine function h such that h ≤ f . Since h1(x0) > 0, choosing λ sufficiently

large will ensure that u0 < h(x0) as desired. ¥

Corollary 1.21 (Existence of minorizing hyperplanes) Given a proper convex func-

tion f : E → R there exists some b ∈ E and β ∈ R such that f(x) ≥ 〈x, b〉 − β for every

x.

According to Theorem 1.20 there is a dual way of describing any closed convex function

f on E: we can describe the set F ∗ consisting of all pairs (x∗, µ∗) in E × R such that the

affine function h(x) = 〈x, x∗〉 − µ∗ is majorized by f . It follows that h(x) ≤ f(x) for all x

if and only if

µ∗ ≥ sup {〈x, x∗〉 − f(x)}.
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Thus F ∗ is the epigraph of the function f∗ defined by

f∗(x∗) = sup
x
{〈x, x∗〉 − f(x)}. (1.22)

This f∗ is called the Fenchel conjugate of f (sometimes referred to as the Fenchel-Legendre

transform). This function can be viewed as the pointwise supremum of the collection of

affine functions g(x∗) = 〈x, x∗〉 − µ such that (x, µ) belongs to F = epi f . As such, f∗ is

itself another closed convex function. In a parallel relationship, we see that f may itself

be defined as the pointwise supremum of the affine functions h(x) = 〈x, x∗〉 − µ∗ such that

(x∗, µ∗) ∈ F ∗ = epi f∗, and therefore

f(x) = sup
x∗
{〈x, x∗〉 − f∗(x∗)} = f∗∗(x).

Clearly the conjugacy operation of Equation 1.22 is order-reversing; that is, for functions

f, g : E → R the inequality f ≥ g implies that f∗ ≤ g∗.

Example 1.23 (Absolute value function) Consider the function f : R 7→ R defined by

f(x) = |x| for all x ∈ R. By definition the conjugate is given by

f∗(y) = g(y) = sup
x
{xy − |x|}.

Splitting the function at the origin yields the following

g(y) = max
{

sup
x≤0

{x(y + 1)}, sup
x>0

{x(y − 1)}
}

= max

{{
+∞, y < −1

0, y ≥ −1
,

{
0, y ≤ 1

+∞, y > 1

}

=

{
0, y ∈ [−1, 1]

+∞, otherwise.

¤

Finding the conjugate at a point y can be visualized as finding the point x̄ at which

the hyperplane of slope y is furthest above the convex function f . When this supremum is

attained and unique, we may shift the hyperplane of slope y down by the value f∗(y) and

visualize a minorizing hyperplane h(x) = 〈x, y〉 − f∗(y) touching the original function f(x)

at x̄. This allows us to take the alternative view that the conjugate value of a function f at
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〈x, y〉

x̄

−f∗(y)

Figure 1.3: Vertical intercept interpretation of conjugate

a point y is equal to the negative of the value at the origin of the maximum hyperplane of

slope y that minorizes f (in other words, which is a subgradient of f at the point x̄). This

interpretation of the conjugate is shown graphically in Figure 1.3.

An immediate consequence of the definition of the Fenchel conjugate is the well-known

Fenchel-Young inequality .

Theorem 1.24 (Fenchel-Young inequality) Given a function f : E → R and x ∈
dom f , the following inequality holds for all x∗ ∈ E

f(x) + f∗(x∗) ≥ 〈x, x∗〉.

Moreover, the preceding holds with equality if and only if

x∗ ∈ ∂f(x).

Proof: The inequality is immediate from the definition of the Fenchel conjugate in Equation

1.22:

f∗(x∗) = sup
x
{〈x, x∗〉 − f(x)}

≥ 〈x, x∗〉 − f(x).
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By the definition of the subdifferential (Equation 1.13), x∗ ∈ ∂f(x) holds if and only if

f(y) ≥ f(x) + 〈x∗, y − x〉

or, equivalently

〈x∗, y〉 − f(y) + f(x) ≤ 〈x∗, x〉

for all y ∈ E. Taking the supremum over all y this is equivalent to

f∗(x∗) + f(x) ≤ 〈x∗, x〉

which proves the result. ¥

As earlier discussed, all closed convex functions f equal their biconjugates f∗∗. These

functions naturally occur as pairs. The only improper closed convex functions are those

which are uniformly +∞ or −∞, and these are plainly conjugate to each other. Thus, all

other pairs of conjugate functions must both be proper closed convex functions. We consider

now the special case of self-conjugate functions.

Theorem 1.25 (Self-conjugate functions) Consider a proper closed convex function f :

E → R such that f∗ = f . Then f(x) = 1
2〈x, x〉.

Proof: Consider the function x 7→ 1
2〈x, x〉. The Fenchel conjugate of this function is

given by supx{〈x, y〉 − 1
2〈x, x〉} = supx{

∑
(xiyi − 1

2x2
i )} =

∑
supxi

{xiyi − 1
2x2

i }. Taking

the derivative of the inner function yields yi − xi, thus the maximum occurs at xi = yi.

Substituting this back into the equation yields the conjugate 1
2〈x, x〉. Thus, we see that

1
2〈x, x〉 is self-conjugate.

Suppose we have a function f such that f = f∗. Then by Theorem 1.24 it follows

that f(x) ≥ 1
2〈x, x〉. Since conjugation is an order-reversing operation, it also follows that

f∗(x) ≤ (1
2〈x, x, 〉)∗, or equivalently f(x) ≤ 1

2〈x, x〉. Thus it must be that f(x) = 1
2〈x, x〉. ¥

By the above theorem it is now evident that there is only one function that is self-

conjugate, and that all other conjugate pairs must therefore consist of two distinct functions.

Refer to Table 1.1 for a brief list of some convex functions and their Fenchel conjugates.



1.6. THE FENCHEL CONJUGATE 21

f(x) = g∗(x) dom f g(y) = f∗(y) dom g

0 R 0 {0}
bx + c R −c {b}

x R+ 0 [0, 1]
|x| R 0 [−1, 1]

|x|p/p, p > 1 R |y|q/q (1
p + 1

q = 1) R

ex R
{

0, y = 0
y ln y − y, y > 0

R+

− log x R++ −1− log−y −R++

Table 1.1: Some conjugate pairs of one-dimensional convex functions

1.6.1 Concave Functions

All of the theory developed up until this point can be analogously applied to concave func-

tions, with obvious modifications. It should be noted that concave functions are not best

handled simply by multiplying by −1 and using the appropriate convex machinery, but

rather through a completely parallel theory. We cover the salient points here.

Consider a concave function g defined over a convex subset S of the space E. As with

convex functions, we can easily extend this function to the whole space by defining it to

take the value of −∞ outside of S. Similarly, we may define the hypograph of f to be the

set

hyp g = {(x, λ) ∈ E× R : λ ≤ g(x)}.

The notion of a subgradient may be replaced with a similar notion of a supergradient, and

the Fenchel conjugate for concave functions may be appropriately defined as

g∗(x∗) = inf
x
{〈x∗, x〉 − g(x)}.

The geometric interpretation of the concave conjugate is similar to that for convex con-

jugates. The hyperplane 〈x∗, x〉 − r = g∗(x∗) majorizes the set hyp g, and −g∗(x∗) is its

vertical intercept. The situation is summarized in Figure 1.4. Furthermore, it can be seen

that the concave conjugate is related to the convex conjugate in the following manner:

g∗(x) = −(−g)∗(−x).

It should be noted that all of the results proved earlier have concave counterparts of the
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〈x∗, x〉 − r = g∗(x∗)

hyp g

−g∗(x∗)

Figure 1.4: Conjugate relationship for concave functions

same form, usually involving only a change in the direction of inequality. We will use these

results without explicit proof.

1.7 Fenchel Duality

The theory of Fenchel duality exists in various forms, but we will present here the traditional

symmetric problem as described in [13, 16]. Newer works such as [4, 5] describe related but

slightly more general duality results involving systems with linear constraints.

Suppose we seek to minimize the difference between a convex function and a concave

function. Given a convex function f and a concave function g this amounts to solving

inf
x
{f(x)− g(x)}.

In a typical convex optimization problem g is uniformly zero (indeed, f(x) − g(x) is itself

a convex function), but this generalized form of the problem is conceptually useful. The

problem can be interpreted as finding the minimum vertical distance between the sets epi f

and hyp g. Imagine vertically displacing epi f until it just touches hyp g. At the point

of contact these sets may be separated by a (not necessarily unique) hyperplane. Thus,
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hyp g

epi f

Figure 1.5: Fenchel duality

geometric intuition tells us that we can consider the minimum vertical distance between f

and g as being equivalent to the maximum vertical distance between parallel supporting

hyperplanes that separate f and g.

The conjugate plays a natural role in expressing this dual relationship algebraically.

Since −f∗(y) is the vertical intercept of the support hyperplane of slope y minorizing epi f

and −g∗(y) is the vertical intercept of the support hyperplane of slope y majorizing hyp g,

it follows that g∗(y)− f∗(y) is the vertical seperation between the two parallel hyperplanes.

This duality is illustrated in Figure 1.5 and detailed in the following theorem.

Theorem 1.26 (Fenchel duality theorem) ([13], Section 7.12, Theorem 1, page

201) Assume that f and g are, respectively, convex and concave functions defined on E.

Assume that C = int dom f ∩ int dom g is non-empty. Suppose further that the the mini-

mization

µ = inf
x
{f(x)− g(x)}

is finite. Then it follows that

sup
y
{g∗(y)− f∗(y)}

will attain a finite maximum of µ achieved by some ȳ ∈ D = int dom g∗ ∩ int dom f∗.
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Additionally, if the primal infimum is attained by a point x̄ ∈ C, then

sup
x
{〈x, ȳ〉 − f(x)} = 〈x̄, ȳ〉 − f(x̄)

and

inf
x
{〈x, ȳ〉 − g(x)} = 〈x̄, ȳ〉 − g(x̄).

Proof: By definition, for all x ∈ C and y ∈ D we see that

f∗(y) ≥ 〈y, x〉 − f(x), and

g∗(y) ≤ 〈y, x〉 − g(x).

Therefore

f(x)− g(x) ≥ g∗(y)− f∗(y)

and hence

inf
x
{f(x)− g(x)} ≥ sup

y
{g∗(y)− f∗(y)}.

The equality in the theorem can be proved if a ȳ ∈ D can be found for which infx {f(x)− g(x)} =

g∗(ȳ)− f∗(ȳ).

By the definition of µ the convex sets epi {f − µ} and hyp g are arbitrarily close, but

with disjoint interiors. Since these sets have non-empty interior there exists a non-vertical

hyperplane in E× R separating them which may be represented as {(x, r) : 〈ȳ, x〉 − r = c}
for some ȳ ∈ D and c ∈ R (a vertical hyperplane would imply int dom f ∩ int dom g = ∅, a

contradiction). Since hyp g lies below this hyperplane but arbitrarily close to it, we have

c = inf
x
{〈ȳ, x〉 − g(x)} = g∗(ȳ).

By a similar argument, it is seen that

c = inf
x
{〈ȳ, x〉 − f(x) + µ} = f∗(ȳ) + µ,

and therefore µ = g∗(ȳ)− f∗(ȳ).

If the infimum µ is attained by some x̄ ∈ C then the set epi {f − µ} and hyp g have the

point (g(x̄), x̄) in common. This point lies in the separating hyperplane and immediately

gives the two final equalities. ¥
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1.7.1 Examples of Fenchel Duality

Several other duality results can be seen to be implied by Fenchel duality. One example of

this is the well known linear programming duality theorem, stated below. For a proof of

this theorem and many further results regarding linear programming, refer to [17].

Theorem 1.27 (Linear programming duality) Consider a primal linear program

min
x
{〈c, x〉 : x ≥ 0, Ax = b}

and its dual

max
y
{〈b, y〉 : A∗y ≤ c}.

Exactly one of the following holds:

• the primal attains its optimal solution, in which case so must the dual, and their

objective values are equal;

• the primal is infeasible, in which case the dual is either unfeasible or unbounded; or,

• the primal is unbounded, in which case the dual is infeasible.

Example 1.28 (Linear programming duality) Consider the following primal linear pro-

gram:

min
x
{〈c, x〉 : x ≥ 0, Ax = b},

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. This problem is easily recast into the framework of

Fenchel duality by first defining

f(x) =

{
〈c, x〉, x ≥ 0

∞, otherwise.

Trivially, this f is convex on Rn. Secondly, we define a concave indicator function g as

g(x) =

{
0, Ax = b

−∞, otherwise.

We can easily see that f and g yield a Fenchel primal problem that is equivalent to the

Linear Programming primal.

Straight-forward computation of conjugates yields

f∗(x∗) =

{
0, x∗ ≤ c

∞, otherwise
and g∗(x∗) = infx{〈x, x∗〉 : Ax = b}
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and the dual Fenchel problem

sup
z
{inf

x
{〈x, z〉 : Ax = b} : z ≤ c}.

Making the substitution z = A∗y for y ∈ Rm yields

sup
y
{inf

x
{〈x,A∗y〉 : Ax = b} : A∗y ≤ c}.

Since 〈x, A∗y〉 = 〈Ax, y〉 then this is further simplified to

sup
y
{〈b, y〉 : A∗y ≤ c},

which is precisely the linear programming dual.

Fenchel duality yields the linear programming primal/dual relationship, but it is not

strong enough to guarantee that there is not any duality gap when the primal program

attains its optimum. In order to fully recover linear programming duality we have to appeal

to results based on the polyhedrality of the primal domain {x : Ax = b}. For further details

on this, refer to Chapter 5 of [4]. ¤

In a similar manner the classical Min-Max theorem of game theory may be fully recovered

as an example of Fenchel duality. The following result is presented in [13].

Theorem 1.29 (Min-Max) Let A and B be compact convex subsets of E. Then

min
x∈A

max
y∈B

〈x, y〉 = max
y∈B

min
x∈A

〈x, y〉.

Proof: Define the function f on E as

f(x) = max
y∈B

〈x, y〉.

This maximum exists and is attained for every x ∈ X since B is compact. The function is

easily shown to be convex and continuous on E. Let g = −δA. The Fenchel primal problem

arising from these functions is therefore

min
x∈A

{f(x)},

which exists by the compactness of A and the convexity of f . We now apply the Fenchel

duality theorem, yielding

g∗(y) = min
x∈A

〈x, y〉
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by the definition of the concave conjugate. Consider δB. The convex conjugate of this

functional is trivially

(δB)∗(y) = max
x
{〈x, y〉 − δB(x)}

= max
x∈B

〈x, y〉
= f(y).

We see that δB and f are a conjugate pair, thus f∗ = δB. The dual then becomes

max
y∈B

g∗(y) = max
y∈B

min
x∈A

〈x, y〉.

The final result comes directly from the equivalence of the two expressions under Fenchel

duality. ¥

Notice that in this example, the compactness of the solution space allowed us to guarantee

that solutions exist and objective values are attained. Because of the potentially unbounded

or infeasible nature of linear programs, this was not possible in the previous example, hence

the weaker result.



Chapter 2

Convex Analysis in One Dimension

In this chapter we explore the problem of calculating Fenchel conjugates symbolically for

functions defined on the real line. We begin with an overview of the work presented in

[2, 3], and present extensions to that work that enable it to operate on a broader class of

functions.

2.1 A Good Class of Functions

Computer algebra systems are naturally suited to working with functions defined over the

real numbers that are finite in representation. It is useful to characterize what we mean by

having a finite representation, and to formalize the space of admissible functions.

Let F be the class of all functions f satisfying the following conditions:

(i) f is a function from R to R;

(ii) f is a closed convex function;

(iii) f is continuous on its effective domain; and,

(iv) there are finitely many points xi such that x0 = −∞ < x1 < · · · < xn−1 < xn = ∞
and f restricted to each open interval is one of the following:

(a) identically equal to ∞; or,

(b) differentiable.

The class of functions F encompasses all closed convex functions that are naturally

representable (piecewise with finitely many breaks) in a computer algebra system. In this

manner, it is very well suited to our purpose. Additionally, it is easily seen that F is closed

28
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under positive scalar multiplication, and addition. As will be shown later, for a given f ∈ F ,

f∗ can have at most finitely many points of non-differentiability, thus F is also closed under

the operation of conjugation.

2.2 Subdifferentiation

Subdifferentiation of functions in the class F is not very different from calculating standard

univariate derivatives. In the case where f is a proper convex one-dimensional function, we

may calculate the subdifferential directly as outlined in Theorem 1.18, with the subdifferen-

tial being undefined outside of dom f . The remaining two improper cases are easily handled

as exceptions to the general rule.

The algorithm begins by calculating the derivative f ′i along each open interval (xi, xi+1)

in int dom f , which yields the subdifferential by Theorem 1.18. Next, the left and right

derivatives are calculated at each point xi ∈ int dom f , with the subdifferential at these

points given by the (possibly singleton) closed set

[
lim
x↑xi

f ′i(x), lim
x↓xi

f ′i+1(x)
]

.

For xi not in dom f , the subdifferential is defined to be empty; the remaining cases involving

points in bd dom f , which are not covered under Theorem 1.18, are best illustrated in an

example.

Example 2.1 Consider the following function, illustrated in Figure 2.1(a):

f(x) =





∞, −∞ < x < −1

−x, −1 ≤ x < 0

0, 0 ≤ x < 1

tan (x− 1)− (x− 1), 1 ≤ x < 1 + π
2

∞, 1 + π
2 ≤ x < ∞.

In this example the function f is broken into open intervals by the points (x0, . . . , x5) =
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1 + π
2

-1

0

1

2

3

-1 0 1 2

(a)

1 + π
2

-3

-2

-1

0

1

2

3

-1 0 1 2

(b)

Figure 2.1: (a) f(x) and (b) ∂f(x) from Example 2.1
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(−∞,−1, 0, 1, 1 + π
2 ,∞). Calculating the derivative along each open interval yields:

f ′0(x) = undefined,

f ′1(x) = −1,

f ′2(x) = 0,

f ′3(x) = (tan (x− 1))2, and

f ′4(x) = undefined.

At the points x2 and x3 the subdifferential values are easily calculated using left and right

derivative limits yielding ∂f(x2) = [−1, 0] and ∂f(x3) = {0}. The point x1 is on the left

boundary of the domain of f , and as such is undefined to the left but well defined to the

right. Quite clearly all lines with slope less than limx↓x1 f ′2(x) = −1 are subgradients to f at

x1, thus the subdifferential is given by ∂f(x1) = [−∞,−1]. Lastly, the point x4 falls outside

the domain of f , and thus has an empty subdifferential. The subdifferential, pictured in

Figure 2.1(b), is therefore given by

∂f(x) =





∅, −∞ < x < −1

[−∞,−1] x = −1

{−1}, −1 < x < 0

[−1, 0] x = 0

{0}, 0 ≤ x < 1

{(tan (x− 1))2}, 1 ≤ x < 1 + π
2

∅, 1 + π
2 ≤ x < ∞.

¤

2.3 Symbolic Conjugation in One Dimension

Functions in the class F are extremely well behaved. Most importantly, they are subdiffer-

entiable on their entire domain. Given the subdifferential we may compute the value of the

Fenchel conjugate at a point y in two steps:

1. solve y ∈ ∂f(x) for x, and let x be such a solution;

2. use the Fenchel-Young inequality (Theorem 1.24) to obtain f∗(y) = xy − f(x).

The algorithm is most easily illustrated by way of an example.
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Example 2.2 Consider the convex function

f(x) =





−x, −∞ < x < 0

0, x = 0

x2, 0 < x < ∞.

Calculating the subdifferential results in

∂f(x) =





{−1}, −∞ < x < 0

[−1, 0], x = 0

{2x}, 0 < x < ∞.

We begin by examining the subdifferential over the first open interval (∞, 0). On this

interval the subdifferential takes only one value, namely y = −1, and it does so for all x in

the open interval. Taking x = −1 and substituting this into the Fenchel-Young inequality

yields f∗(−1) = (−1)(−1)− f(−1) = 1− 1 = 0.

Next we consider the subdifferential at the point x = 0. The subdifferential takes on all

values y ∈ [−1, 0]. This yields f∗(y) = (0)(y)− f(0) = 0 for y ∈ [−1, 0].

Finally, we consider ∂f(x) over (0,∞). Inverting y = ∂f(x) yields x = 1
2y. On this

interval, ∂f(x) takes values from limx↓0 2x = 0 to limx↑∞ 2x = ∞. Thus, we find that

f∗(y) = 1
2y2 − f(1

2y) = 1
4y2 for y ∈ (0,∞).

Gluing together these results yields the conjugate:

f∗(y) =





∞, −∞ < y < −1

0, −1 ≤ y ≤ 0
1
4y2, 0 < y < ∞

.

¤

In general, each piece of a subdifferential falls into one of four categories:

1. ∂f(x) is a constant singleton defined at a point;

2. ∂f(x) is a closed interval defined at a point;

3. ∂f(x) is a constant singleton over an open interval; or,

4. ∂f(x) is a singleton function of x over an open interval.
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As illustrated in the example, cases 2 and 4 translate to defining the conjugate f∗(y) over

intervals, whereas cases 1 and 3 simply define f∗(y) at a single point. Note that when the

input function is closed, cases 1 and 3 essentially contribute no information to the calculation

of the conjugate as the conjugate will itself be closed, with the behaviour at these points

being implied by lower semi-continuity.

2.4 Function Inversion

In calculating a one-dimensional conjugate, the subdifferential must be inverted. However,

the subdifferential, while guaranteed non-decreasing and therefore invertible, may be ex-

pressed as a piecewise composition of functions that are not trivially invertible over their

whole range. This leads to the problem of branch selection in calculating inverses of non-

decreasing functions on finite open intervals. We first give a few definitions pertaining to

branch points.

Definition 2.3 (Analytic function) Consider a complex function f : C → C, and let

f(z) = u(x, y) + iv(x, y) where z = x + iy. If the partial derivatives of f at a point z0 with

respect to x and y are continuous and they satisfy the (Cauchy-Riemann) conditions

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
,

then the function f is complex differentiable at the point z0. The function f is said to be

analytic over a region R ⊂ C if it is complex differentiable at every point z ∈ R.

It’s worth noting that complex differentiability at a point z0 is equivalent to having

a non-zero radius of convergence for the Taylor series expansion of f about that point.

Furthermore, the property of C∞ on R is weaker than analyticity. For examples and much

more detail refer to [1].

Definition 2.4 (Branch cuts) A branch cut is a curve in the complex plane across which

an analytic function is discontinuous.

For example, consider the function z 7→ z2. This function is single-valued and maps

every input z to a single well-defined value z2. Its inverse function
√

z, on the other hand,

is multi-valued and maps, for example, 1 7→ ±1. A unique principal value can be chosen
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for such multi-valued functions, but the choice can never be made such that the resulting

function is continuous over the whole of C. Choosing which is the principal value is largely

an issue of convention, and it is usually done to give rise to other simple analytic properties.

For our purposes (inverting multi-valued functions on the real line), a branch point is a

point on the real line R at which a branch cut intersects.

Example 2.5 (Simple branch point) We begin with a simple example. Consider the

convex function

f(x) =
1
4
x4, x ∈ R.

The subdifferential of this function is ∂f(x) = {x3}, x ∈ R. The function y = x3 has three

distinct inverses (one for each cube root of unity), given by

x ∈
{

y
1
3 ,

1
2

(
−1 + i

√
3
)

y
1
3 ,

1
2

(
−1− i

√
3
)

y
1
3

}
.

Obviously, the solution we intend is the real cube root. However, for y < 0, the value of y
1
3

is imaginary. Hence, for y < 0 another branch must be chosen. In fact, using the principal

branch conventions in force in Maple, the inverse is found to be

x =

{
1
2

(−1 + i
√

3
)
y

1
3 , y < 0

y
1
3 , 0 ≤ y

.

This example demonstrates that in calculating an inverse one may have to select from

amongst a finite family of solutions, each being applicable on distinct domains. ¤

Example 2.6 (Infinite inverses) Consider now the convex function

f(x) =

{
sinx, π ≤ x ≤ 2π

∞, otherwise
.

The subdifferential of this function is easily calculated as

∂f(x) = {cosx}, π ≤ x ≤ 2π

As seen in Figure 2.2, the subdifferential is increasing and therefore invertible. The general

form of the inverse of y = cosx is

x = arccos y − 2b arccos y + 2πz,
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2π

π

-1

0

1

Figure 2.2: Subdifferential of sinx on [π, 2π]

where b ∈ B = {0, 1} and z ∈ Z. Simple inspection shows the branch we are interested in is

characterized by b = z = 1, yielding an inverse of

x = − arccos y + 2π.

This example illustrates the possibility of having to choose an inverse from amongst an

infinite family of solutions. ¤

In the most general case, there may be the need to choose inverses from a finite collection

of infinite families of inverses, with multiple distinct solutions over disjoint sub-intervals.

The first problem that must be solved is that of finding the boundaries (branch points)

between intervals over which different branches may apply. We appeal first to a result from

elementary complex analysis.

Theorem 2.7 ([1], Chapter 3, Theorem 11, page 131) Suppose that f(z) is analytic

at z0, f(z0) = w0, and that f(z) − w0 has a zero of order n at z0. If ε > 0 is sufficiently

small, there exists a corresponding δ > 0 such that for all a with |a− w0| < δ the equation

f(z) = a has exactly n roots in the disk |z − z0| < ε.
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Proof: The proof of this theorem is beyond the scope of this thesis. For full details, refer

to [1]. ¥

Corollary 2.8 (Location of branch points) Suppose that f is as in Theorem 2.7. Sup-

pose furthermore that f(z) is analytic on the entire neighborhood |z − z0| < ε, and let

g1(a), . . . , gn(a) represent the n roots of f(z) = a on the neighborhood |a − w0| < δ. Then

g1(w0) = · · · = gn(w0) = z0.

Proof: Due to the nth order zero of f(z) at z0, it follows that f(z) may be expressed as

f(z)−w0 = (z−z0)ng(z), where g(z) 6= 0, for all z with |z−z0| < ε. Due to the analyticity of

f(z) and the existence of exactly n roots by Theorem 2.7, for any a with |a−w0| < δ we can

write f(z)−a = (z− g1(a)) · · · (z− gn(a))h(z), for some h(z) 6= 0. Since lima→z0 f(z)− a =

f(z)−w0, it follows that lima→z0 (z − g1(a)) · · · (z − gn(a))h(z) = (z−z0)ng(z), and therefore

(z − g1(w0)) · · · (z − gn(w0))h(z) = (z − z0)ng(z). Suppose gi(w0) 6= z0 for some i. Then,

since h(z0) 6= 0, it follows that the left hand side of the equation has at most n− 1 roots at

w0, a contradiction. Thus, it must be that g1(w0) = · · · = gn(w0) = z0. ¥

Corollary 2.8 tells us that anywhere a function has n inverses, the branches are equal at

a point with a zero of order n. This tells us that points where two branches are equal occur

at zeroes of the first derivative. Thus, when wanting to determine the inverse of a function

f over the interval (a, b) we first find all solutions to f ′(x) = 0, for x ∈ (a, b). If we can find

all of the zeroes then we are guaranteed to have found all of the possible branch points, and

can proceed to find the unique branch which is the inverse over each disjoint sub-interval.

In order for Corollary 2.8 to apply for our algorithms we need to restrict ourselves to input

functions that are real analytic; in other words, functions f that are analytic on dom f ⊂ R.

Example 2.9 (Branch points) Consider y = x3, x ∈ R from Example 2.5. Taking the

derivative yields y′ = 3x2, x ∈ R. Solving 3x2 = 0 yields the single solution b1 = 0. Thus,

we are assured that the inverse of x3 along the real line has at most one branch point,

located at the origin. ¤

Once the domain of the function has been partitioned into disjoint sub-intervals the

inverses over each of these may be determined. This can be accomplished by testing each

possible inverse in G over each distinct interval. When determining the inverses, there are

two cases to consider as outlined in Examples 2.5 and 2.6.
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We conclude this section with a discussion of the correctness of the one-dimensional

Fenchel conjugation algorithm. The algorithm assumes continuous convex input, and if it

completes the answer will be correct in this case. However, we must consider the case where

the input is not actually convex or continuous. It suffices to restrict ourselves to non-convex

continuous functions because we can easily detect non-continuity through the use of Maple’s

limit command.

If a function f is non-convex then the calculated ‘subdifferential’ ∂f from the algorithm

in Section 2.2 will be decreasing on at least one open interval on R. The boundaries of

this open interval will correspond to critical points of the ‘subdifferential’ and thus will be

determined by the inversion algorithm as potential branch points. Trivially, we may test

to see if the value of ∂f at each successive pair of potential branch points is decreasing,

and halt the computation if such a situation arises. In this manner, non-convexity can be

detected. This also guarantees that biconjugation can be used as a proof of convexity. If a

biconjugate f∗∗ can be successfully calculated and confirmed as being equal to the original

function f , then there can be no false positive results, and the calculation constitutes a

proof of convexity for f .

2.5 Numerical Methods

Often, no closed-form symbolic solution will be possible and in order to gain any insight

into the nature of a subdifferential or conjugate we must resort to numerical methods.

Although the Legendre-Fenchel transform is fundamental in convex analysis, until rela-

tively recently no algorithms were available to compute it efficiently. Early algorithms were

aimed at solving Hamilton-Jacobi equations [7] or Burger’s equation [14]. These algorithms

were designed similarly to Fast Fourier Transforms, and could compute an m point conju-

gate to a function evaluated at n points in O((n + m) log(n + m)) time. More recent work

by Yves Lucet in [11] and [12] describes an algorithm (the Linear time Legendre Transform,

or LLT ) that runs in O(n + m) time. The key innovation of this algorithm exploits the

already sorted nature of an array of function evaluation points.

Consider a one-dimensional function f : R → R restricted to a closed finite interval

[a, b]. The restricted function f[a,b] is defined as f + δ[a,b]. Similarly, we label the discrete

approximation to f as fX , where X = {x1, . . . , xn}. We quote a result from [7] and [11].

Proposition 2.10 (Convergence of discrete Legendre transform)
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Let X = {x1, . . . , xn} be a subset of [a, b] such that for all y ∈ [a, b] there exists xi ∈ X with

|xi − y| ≤ (b− a)/n. Let f be a function from R→ R.

1. If f is upper semi-continuous on a neighborhood of [a, b], then (fX)∗ converges point-

wise to (f[a,b])∗.

2. If f is twice continuously differentiable on a neighborhood of [a, b], then for all y

0 ≤ (f[a,b])
∗(y)− (fX)∗(y) ≤ (b− a)2

2n2
max
x∈[a,b]

f ′′(x).

The above result states that the conjugate of the discrete approximation of f converges

pointwise to the conjugate of the restriction f to [a, b]. As for convergence of the conjugate

of the restriction towards the conjugate, we have a much stronger result provided by Hiriart-

Urruty in [9]: (f[−a,a])∗ = f∗ for sufficiently large a.

Proposition 2.11 (Convergence of restricted functions) The following are equivalent:

1. There is a subgradient of f∗ at y ∈ [−a, a]: ∂f∗(y) ∩ [−a, a] 6= ∅; and,

2. Equality holds: (f[−a,a])∗(y) = f∗(y)

Combining the previous two results tells us that the discrete approximation to the con-

jugate will converge pointwise to the actual conjugate as we increase the range and number

of evaluation points.

2.5.1 The Linear-time Legendre Transform

The problem is to compute (fX(y))∗ = gY (y) for y in Y = {y1, . . . , ym}, where x1 < . . . < xn

and y1 < . . . < ym. Suppose f is convex. Then we can use the monotonicity of the

subdifferential ∂f more efficiently than other algorithms by introducing the (increasing)

sequence of slopes

si =
f(xi+1)− f(xi)

xi+1 − xi
.

Since f is convex finding the support point of the minorizing line with a slope y is rather

straight-forward (we can perform a search through the increasing si), and together with

Equation 1.22 yields the value of the discrete conjugate gY at y as:

1. if y < s1, then gY (y) = yx1 − f(x1);

2. if y > sn−1, then gY (y) = yxn − f(xn); and,
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3. if si−1 < y ≤ si, then gY (y) = yxi − f(xi).

The above logic is assuming that f and hence fX is convex. Since the set X is sorted, we

may apply any linear time algorithm (see [10] or [15]) to first calculate the convex hull of

fX .

Thus, given fX , X and Y the entire algorithm can be described as follows:

1. compute f̄X , the convex hull of fX ;

2. compute slopes S = {s1, . . . , sn−1}; and,

3. for each yj compute gY (yj) by finding the index i such that si−1 < yj ≤ si.

The first two steps are O(n). Since both Y and S are in increasing order, the last step can

be done in a single O(n + m) loop. Thus, the entire algorithm runs in O(n + m) time. For

further details of algorithmic performance, refer to [11] and [12].



Chapter 3

Convex Analysis in Higher

Dimensions

Recall the definition of the Fenchel conjugate from (Section 1.6). In higher dimensions this

can be rewritten as:

f∗(y) = sup
x
{〈x,y〉 − f(x)}

= sup
x1,...,xn

{
n∑

i=1

xiyi − f(x)

}

= sup
x1

{
x1y1 + sup

x2

{
x2y2 + · · ·+ sup

xn

{xnyn − f(x)} · · ·
}}

.

We introduce the concept of a partial conjugate. Consider an n-dimensional function that

has had a one-dimensional conjugate calculated with respect to the variable xi. The notation

fxi then represents this partial conjugate of f with respect xi. The above may be rewritten

as

f∗ = (−(· · · − (fxn · · · )x2)x1 .

This is equivalent to taking the conjugate along the xn variable, negating the result, taking

the conjugate along the xn−1 variable, negating the result, etc, until the conjugate is finally

taken along the x1 variable. In other words, the conjugate of an n-dimensional function can

be calculated as a sequence of n iterated one-dimensional conjugates. While the concept

of iterated conjugation is simple, various complications arise in practice which must be

addressed.

40
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The notion of iterated conjugation can be likened in many respects to that of iterated

integration, the standard technique used for calculating multiple integrals. In fact, as will

be shown in Section 3.3.3, the necessary juggling of partial conjugates between conjugation

iterations can be equated directly to the problem of changing the variable order in a multiple

integral.

Note that in the special case where the function f is separable the conjugate may be

simplified to

f∗(y) = sup
x

n∑

i=1

(xiyi − f(xi))

=
n∑

i=1

(
sup
xi

{xiyi − f(xi)}
)

=
n∑

i=1

f∗(yi),

which allows us to calculate the conjugate as n separate one-dimensional conjugates. How-

ever, this is not usually the case.

3.1 A Good Class of Functions

The natural space to work in is the recursive extension to F . An n-dimensional function f

is in Fn if:

(i) f(x1, . . . , xn) is a function from Rn to R;

(ii) f(x1, . . . , xn) is a closed convex function;

(iii) f(x1, . . . , xn) is continuous on its effective domain; and,

(iv) there are finitely many points ai such that a0 = −∞ < a1 < · · · < an−1 < an = ∞
and f(x2, . . . , xn) restricted to each open interval is in Fn−1 (where F1 = F).

Consider a function f(x1, . . . , xn) ∈ Fn defined on each open interval (ai1 , ai1+1) as

fi1(x2, . . . , xn). Each fi1 is similarly defined on the open interval (a(i1,i2), a(i1,i2+1)) as

f(i1,i2)(x3, . . . , xn). Taking this to its extreme, on the n-dimensional open-interval

(ai1 , ai1+1)×(a(i1,i2), a(i1,i2+1))×· · ·×(a(i1,...,in−1), a(i1,...,in−1+1)), f is given by f(i1,...,in−1)(xn).

The space Fn is very well suited to our purpose as it allows a relatively compact rep-

resentation of any piecewise continuous convex function defined on Rn. It is also recursive
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in nature, and therefore naturally representable and manipulated in a computer algebra

system.

3.2 One-Dimensional Conjugation With Bounded Parame-

ters

In order to calculate the conjugate of a function f in Fn we must first calculate the one-

dimensional conjugate of each f(i1,...,in−1). Each f(i1,...,in−1) may be dependent upon the

variables x1, . . . , xn−1. Thus, in calculating the partial conjugate with respect to xn, the

variables x1, . . . , xn−1 must be treated as real parameters with bounds a(i1,...,ik) < xk <

a(i1,...,ik+1). The existence of these bounded parameters makes it more difficult to choose

the appropriate branch when inverting the subdifferential.

Example 3.1 (Inversion with bounded parameters) Consider f(x2) = x1x
3
2 defined

for x2 > 0. Inverting this with respect to x2 yields 3 possible solutions:

f−1(y2) ∈
{

1
x1

(
y2x

2
1

)( 1
3) ,

1
2x1

(
y2x

2
1

)( 1
3)

(
−1 + i

√
3
)

,
−1
2x1

(
y2x

2
1

)( 1
3)

(
1 + i

√
3
)}

If x1 < 0 then

f−1(y2) =
−1
2x1

(
y2x

2
1

)( 1
3)

(
1 + i

√
3
)

.

However, if x1 > 0 then

f−1(y2) =
1
x1

(
y2x

2
1

)( 1
3) .

Thus, the knowledge of any free-parameter bounds is required in order to make the correct

decision in calculating the one-dimensional conjugates. ¤

3.3 Variable Reordering

Functions defined in Fn have an implicit variable order due to their recursive structure. A

function f ∈ Fn defined with the variable order x1, x2, . . . , xn may only have the partial

conjugate calculated along the xn variable, at which point the variables of the new partially

conjugated function are x1, . . . , xn−1, yn. For this function to be conjugated along any other

variable, it must first have its variables reordered so that one of x1, . . . , xn−1 is the last

variable. We illustrate with an example in F2.
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Figure 3.1: f(x1, x2) from Example 3.2
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f∗(y1, y2) = 0
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Figure 3.2: A plan view of f∗(y1, y2) from Example 3.2
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Example 3.2 (Product of roots) Consider the two-dimensional function (shown in Fig-

ure 3.1):

f(x1, x2) =





{
∞, ∀x2 , x1 < 0




∞, x2 < 0

0, x2 = 0

0, 0 < x2

, x1 = 0





∞, x2 < 0

0, x2 = 0

−√x1x2, 0 < x2

, 0 < x1

Calculating the partial conjugate with respect to the x2 axis involves calculating two one-

dimensional partial conjugates; one along the line x1 = 0 and the other over the half-plane

0 < x1. Calculating these conjugates (and negating the results) yields:

fx2(x1, y2) =





{
∞, ∀y2 , x1 < 0




0, y2 < 0

0, y2 = 0

∞, 0 < y2

, x1 = 0





x1
4y2

, y2 < 0

∞, y2 = 0

∞, 0 < y2

, 0 < x1

We now wish to calculate the partial conjugate along the x1 variable in order to complete

the two-dimensional conjugation. However, in order to do this, we must first reorder the

variables to (y2, x1). In this example this is easily done through inspection, resulting in:

fx2(y2, x1) =









x1
4y2

, x1 < 0

0, x1 = 0

∞, 0 < x1

, y2 < 0

{
∞, ∀x1 , y2 = 0{
∞, ∀x1 , 0 < y2

We may now proceed to calculate the complete conjugate by partially conjugating along the

x1 axis. There are two distinct one-dimensional conjugates to be calculated along the line
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y2 = 0 and the half-plane y2 < 0. This yields:

f∗(y2, y1) =









0, y1 < 1
4y2

0, y1 = 1
4y2

∞, 1
4y2

< y1

, y2 < 0

{
∞, ∀y1 , y2 = 0{
∞, ∀y1 , 0 < y2

It is desirable to have the conjugated function in the same variable order as the original func-

tion. This involves yet another variable reordering to (y1, y2). The result of this operation

is the final conjugate:

f∗(y1, y2) =









0, y2 < 1
4y1

0, y2 = 1
4y1

∞, 1
4y1

< y2

, y1 < 0

{
∞, ∀y2 , y1 = 0{
∞, ∀y2 , 0 < y1

The conjugate is easily visualized as the indicator function of a convex set in R2, this set

being illustrated in Figure 3.2. ¤

To simplify the requirements of variable reordering, we introduce the notion of pivoting .

A pivot is a change of variable order from (x1, . . . , xn) to (xn, x1, . . . , xn−1). Simply stated,

the penultimate variable becomes the last, and the last becomes the first. Pivoting is a

constrained form of general variable reordering, but it is sufficient to perform conjugate

calculations. To further simplify the discussion of pivoting, we first change the space of the

problem.

3.3.1 Region Representation

A function in Fn can be thought of as being defined by a collection of regions, where a region

r is a pair consisting of a set S ⊆ Rn and a function f which is continuously differentiable

over S. The set S is defined as S = {x : x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn}, where the one-

dimensional sets Xi are either open-intervals (ai(x1, . . . , xi−1), bi(x1, . . . , xi−1)) or singletons

{ai(x1, . . . , xi−1)}. For instance, the function in Example 3.2 may be represented by the
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following collection of regions:

({x : x1 ∈ (−∞, 0), x2 ∈ R }, ∞ ),

({x : x1 = 0, x2 ∈ (−∞, 0) }, ∞ ),

({x : x1 = 0, x2 = 0 }, 0 ),

({x : x1 = 0, x2 ∈ (0,∞) }, 0 ),

({x : x1 ∈ (0,∞), x2 ∈ (−∞, 0) }, ∞ ),

({x : x1 ∈ (0,∞), x2 = 0 }, 0 ) and

({x : x1 ∈ (0,∞), x2 ∈ (0,∞) }, −√x1x2 ).

For the sake of compactness, we may ignore any region over which the function is identically

∞, and make that value implicit for any point x ∈ Rn that does not fall within one of the

defined regions. The conversion of a function in Fn to a collection of regions is a straight-

forward recursive process. The reverse process is also possible, but much greater care need

be taken.

3.3.2 Region Representation to Recursive Representation

Consider a collection of regions R = {ri} where ri = ({x1 ∈ Xi,1, . . . , xn ∈ Xi,n}, fi).

Partition R into two sets, RS and RI , where

RS = {ri : Xi,1 is a singleton}, and

RI = {ri : Xi,1 is an open interval}.

Let E be the collection of interval end-points and singletons (as applicable) along the first

dimension of each region:

E = {−∞,∞} ∪ {ai,1 : ri ∈ RS} ∪ {ai,1, bi,1 : ri ∈ RI}.

Let the points in E be indexed by ei, where −∞ = e0 < e2 < · · · < em = ∞. We construct a

function g ∈ Fn defined over the finitely many points ei. Over each open interval (ei, ei+1)

we define g as g(i,i+1) ∈ Fn−1, and at each point ei we define g as gi ∈ Fn−1. We construct

g(i,i+1) as follows:

(i) Let R be the collection of all regions in RI that overlap the interval (ei, ei+1), reduced

to n− 1 dimensions by removing the constraint along the first dimension:

R = {({x2 ∈ Xj,2, . . . , xn ∈ Xj,2}, fj) : rj ∈ RI , Xj,1 ∩ (ei, ei+1) 6= ∅}.
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(ii) Let g(i,i+1) be the function in Fn−1 returned by recursively processing the regions R
using the algorithm of this section.

Similarly, we may construct each gi by recursively processing the set of (n− 1)-dimensional

regions given by:

R = {({x2 ∈ Xj,2, . . . , xn ∈ Xj,2}, fj) : rj ∈ R, ei ∈ Xj,1}.

The final case to consider is the base case, when the dimension has been reduced to 1.

In this case, region representation and recursive representation are much the same thing

and we can directly equate the two. Consider f ∈ F in region representation as:

({x ∈ (−∞, a1) }, f1 ),

({x = a1 }, f2 ),
...

...

({x = am−1 }, f2(m−1) ), and

({x ∈ (am−1,∞) }, f2m−1 ).

This is equivalent in recursive representation to:

f =





f1, x ∈ (−∞, a1)

f2, x = a1

...
...

f2(m−1), x = am−1

f2m−1, x ∈ (am−1,∞)

The entire procedure is clarified in the following example.
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Example 3.3 Consider the following set of regions:

r1 = ({x : x1 = −1, x2 = −1 }, 0 )

r2 = ({x : x1 = −1, x2 = 0 }, 0 )

r3 = ({x : x1 = −1, x2 = 1 }, 1 )

r4 = ({x : x1 = 0, x2 = 1 }, 1 )

r5 = ({x : x1 = 1, x2 = −1 }, 0 )

r6 = ({x : x1 = 1, x2 = 0 }, 0 )

r7 = ({x : x1 = 1, x2 = 1 }, 2 )

r8 = ({x : x1 = −1, x2 ∈ (−1, 0) }, 0 )

r9 = ({x : x1 = −1, x2 ∈ (0, 1) }, x2 )

r10 = ({x : x1 = 0, x2 ∈ (0, 1) }, x2 )

r11 = ({x : x1 = 1, x2 ∈ (−1, 0) }, 0 )

r12 = ({x : x1 = 1, x2 ∈ (0, 1) }, 2x2 )

r13 = ({x : x1 ∈ (−1, 0), x2 = 1 }, 1 )

r14 = ({x : x1 ∈ (−1, 1), x2 = −1 }, 0 )

r15 = ({x : x1 ∈ (−1, 1), x2 = 0 }, 0 )

r16 = ({x : x1 ∈ (0, 1), x2 = 1 }, (1 + x1) )

r17 = ({x : x1 ∈ (−1, 0), x2 ∈ (0, 1) }, x2 )

r18 = ({x : x1 ∈ (0, 1), x2 ∈ (0, 1) }, (1 + x1)x2 )

r19 = ({x : x1 ∈ (−1, 1), x2 ∈ (−1, 0) }, 0 )

We first partition these regions into the two setsRS = {ri : i = 1, . . . , 12} andRS = {ri : i =

13, . . . , 19}. Extracting the end-points and singletons yields the set E = {−∞,−1, 0, 1,∞}.
We begin with the first open-interval (−∞,−1). Since there are no regions that define

the function over this interval we can infer that g(0,1) = ∞, ∀x2.

Consider the point e1 = −1. We determine that each of {r1, r2, r3, r8, r9} contain this

point. Removing the first dimension from these regions yields:

R = {({x2 = −1}, 0), ({x2 ∈ (−1, 0)}, 0), ({x2 = 0}, 0), ({x2 ∈ (0, 1)}, x2), ({x2 = 1}, 1)} .

This is a one-dimensional region representation which is trivially converted to recursive form
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as:

g1 =





∞, x2 ∈ (−∞,−1)

0, x2 = −1

0, x2 ∈ (−1, 0)

0, x2 = 0

x2, x2 ∈ (0, 1)

1, x2 = 1

∞, x2 ∈ (1,∞)

Next we process the open interval (e1, e2) = (−1, 0). We find that the regions {r13, r14, r15, r17, r19}
overlap with this interval. Reducing by one dimension yields:

R = {({x2 = −1}, 0), ({x2 ∈ (−1, 0)}, 0), ({x2 = 0}, 0), ({x2 ∈ (0, 1)}, x2), ({x2 = 1}, 1)} .

Constructing the appropriate g(1,2) ∈ F yields that g(1,2) = g1.

We may proceed similarly with calculations for g3, g(3,4), g4 and g(4,5). Finally, we

construct g ∈ F2 as:

g =





{
∞, x2 ∈ (−∞,∞) , x1 ∈ (−∞,−1)




∞, x2 ∈ (−∞,−1)

0, x2 ∈ [−1, 0]

x2, x2 ∈ (0, 1]

∞, x2 ∈ (1,∞)

, x1 ∈ [−1, 0]





∞, x2 ∈ (−∞,−1)

0, x2 ∈ [−1, 0]

(1 + x1)x2, x2 ∈ (0, 1]

∞, x2 ∈ (1,∞)

, x1 ∈ (0, 1]

{
∞, x2 ∈ (−∞,∞) , x1 ∈ (1,∞)

¤

With the ability to convert easily between recursive representation and region repre-

sentation, we may pivot a function in recursive representation by first converting to region

representation, pivoting the individual regions, and then converting back to recursive rep-

resentation.
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3.3.3 Region Pivoting

Consider a region r = (S, f), with S = {x : x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn}. Let

V ⊆ {x1, . . . , xn−1} be the set of variables upon which Xn is dependent.

If V = ∅, then pivoting the set is as simple as rewriting it in the pivoted order S = {x :

xn ∈ Xn, x1 ∈ X1, . . . , xn−1 ∈ Xn−1}, as Xn is independent of any previous variables.

If |V | = 1, then let V = {xk}. We may pivot the two-dimensional set {(xk, xn) :

xk ∈ Xk, xn ∈ Xn} yielding {(xn, xk) : xk ∈ Xn, xn ∈ Xk}, and thereby pivot S as

S = {x : xn ∈ Xn, x1 ∈ X1, . . . , xk ∈ Xk, . . . , xn−1 ∈ Xn−1}. We discuss two-dimensional

set pivoting in greater detail in the subsequent section. If |V | > 1 the problem becomes

much more difficult, and no general solution is currently known.

As discussed earlier, the operation of changing variable order of a function in Fn is

completely analogous to that of changing the order of integration in a multiple-integral.

Consider the integral ∫

S
f(x)dx.

This may be rewritten as the multiple integral
∫

X1

· · ·
∫

Xn

f(x)dxn · · · dx1.

Changing the order of integration to
∫

Xn

∫

X1

· · ·
∫

Xn−1

f(x)dxn−1 · · · dx1dxn

is an equivalent operation to pivoting the original domain S. Consequently, all of the

techniques discussed in this section may be applied directly to this problem as well.

3.3.4 Region Pivoting in Two Dimensions

Consider the set S = {(x1, x2) : x1 ∈ X1, x2 ∈ X2}. Since X2 is dependent on x1, it

follows that X1 can not be a singleton, and is therefore an open interval (a, b). If X2 is

an open-interval, let X2 = (f(x1), g(x1)). For further generality, if X2 is a singleton, let

X2 = {f(x1)} and define g = f .

Pivoting a two-dimensional region will involve inverting f and g. However, f and g may

not be monotonic over the interval (a, b) and therefore may not have an inverse. Similarly,

as in Section 2.4 there may be branch points in (a, b).
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Figure 3.3: Pivoting two monotone regions

Prior to pivoting S, we first split S into a collection of disjoint sets, if necessary. Let

Cf = {x1 : f ′(x1) = 0, x1 ∈ (a, b)} if f is non-constant, and Cf = ∅ otherwise. Let

a = c0 < c1 < · · · < cm+1 = b, where Cf ∪ Cg = {ci : i ∈ {1, . . . , m}}. By splitting the

region at every possible branch point we have assured that f and g have unique inverses

over each interval (ci, ci+1). We may therefore partition S into a collection of disjoint sets

S = S1 ∪ P1 ∪ · · · ∪ Pm−1 ∪ Sm, where Si = {(x1, x2) : x1 ∈ (ci, ci+1), x2 ∈ X2(x1)}, and

Pi = {(x1, x2) : x1 = ci, x2 ∈ X2(ci)}.

Without loss of generality, we may now assume that f and g are either constant or

strictly monotonic on (a, b). Suppose X2 is a singleton, and therefore f = g. In this

case f is either strictly increasing or decreasing. If strictly increasing, we may pivot S as

S = {(x2, x1) : x2 ∈ (f(a), f(b)), x1 = f−1(x2)}. If f is strictly decreasing, this becomes

S = {(x2, x1) : x2 ∈ (f(b), f(a)), x1 = f−1(x2)}. In the rest of the cases, f 6= g.

Consider now the case when f is strictly decreasing and g is strictly increasing. There

are two sub-cases to consider: either f(a) = g(a), or f(a) < g(a) (where f(a) implies

limx1→a f(x1) when a = ±∞). These two cases are illustrated in Figure 3.3. In the first
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sub-case we may pivot S by splitting it into the following 3 disjoint sets:

S1 = {(x2, x1) : x2 ∈ (f(a), g(b)), x1 ∈ (a, g−1(x2)) },
S2 = {(x2, x1) : x2 = f(a), x1 ∈ (a, b) } and

S3 = {(x2, x1) : x2 ∈ (f(b), f(a)), x1 ∈ (f−1(x2), b) }.

In the second sub-case we may pivot S by splitting it into the following 5 disjoint sets:

S1 = {(x2, x1) : x2 ∈ (g(a), g(b)), x1 ∈ (a, g−1(x2)) },
S2 = {(x2, x1) : x2 = g(a), x1 ∈ (a, b) },
S3 = {(x2, x1) : x2 ∈ (f(a), g(a)), x1 ∈ (a, b) },
S4 = {(x2, x1) : x2 = f(a), x1 ∈ (a, b) } and

S5 = {(x2, x1) : x2 ∈ (f(b), f(a)), x1 ∈ (f−1(x2), b) }.

Continuing along this line of logic identifies 23 distinct cases to consider (which may be

reduced to effectively 12 after considering symmetry) for sets where f 6= g.

3.3.5 Region Swell

In general, after splitting the original S to ensure f and g are monotonic and invertible,

pivoting a set will result in one to five disjoint subsets. This phenomena can be likened

to intermediate coefficient swell in many polynomial arithmetic algorithms, and causes the

number of regions necessary to represent a given function to increase while performing pivot

and partial conjugate calculations.

After a pivot operation it is usually possible to simplify and merge adjacent regions

into one region in an attempt to mitigate region swell. Such an operation helps to reduce

intermediate region swell, and in most cases produces a pivoted function whose overall region

complexity is comparable to the original.

3.3.6 Boundary Point Problem

While partial conjugates are always convex and lower semi-continuous with respect to

the last variable conjugated, it is possible that the intermediates may not be lower semi-

continuous with respect to the whole space. Referring to Example 3.2 we see that the first

partial conjugate fx2(x1, y2) is defined as x1
4y2

for x1, y2 < 0. Since fx2(4mz, z) = m, it

follows that the limit of fx2 as z approaches zero from the left (the limit in the direction
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−[4m, 1]) is m. Thus, for any value m ≥ 0, there is a sequence of points approaching this

value at the origin. Hence, fx2 is discontinuous at the origin.

In order for partial conjugation to succeed the input to the one-dimensional partial

conjugation operation must be lower semi-continuous. Thus, these points of discontinuity

must be adjusted to be lower semi-continuous with respect to the next partial conjugate

variable.

Consider the function f in recursive representation. For our purposes an admissible

boundary point of f is any point (ai1 , ai1,i2 , . . . , ai1,...,in) in the recursive representation of f

that occurs on the boundary of dom f . Letting x = (ai1 , ai1,i2 , . . . , ai1,...,in) = (x1, . . . , xn),

x is a boundary point of f if and only if for all i one or both of f(x1, . . . , xi−δ, . . . , xn) = ∞
and f(x1, . . . , xi + δ, . . . , xn) = ∞ for sufficiently small δ > 0 applies, but where for at least

one i, only one applies.

To correct the boundary point problem we simply identify any points in the recursive

representation that are boundary points and replace them with their limit as taken from

the next partial conjugate variable, from the direction of the defined side, if there is one.

Let (x1, . . . , xn) be such a point and consider the function values g−(δ) = f(x1, . . . , xn − δ)

and g+(δ) = f(x1, . . . , xn + δ) for sufficiently small δ > 0. If g−(δ) = g+(δ) = ∞, then we

define f(x1, . . . , xn) = ∞. If only g−(δ) = ∞, then we define f(x1, . . . , xn) = limδ↓0 g+(δ).

If neither of the former cases apply, then it follows by our definition of a boundary point

that g+(δ) = ∞, in which case we define f(x1, . . . , xn) = limδ↓0 g−(δ). This can be seen in

the different values of fx2 at the origin for its two distinct representations in Example 3.2.

After conjugating with respect to x2 we see that fx2(0, 0) = limy2↑0 0 = 0, whereas in the

variable order (y2, x1) (where x1 is the next partial conjugate variable) we see that we must

set fx2(0, 0) to ∞ in order to preserve lower semi-continuity with respect to x1.

3.4 Symbolic Conjugation in Higher Dimensions

With the ability to calculate conjugates of parameterized functions in F and the ability to

pivot the representation of a function in Fn, we can calculate an n-dimensional conjugate

as follows:

(1) Calculate the partial conjugate of f(x1, . . . , xn) resulting in fxn(x1, . . . , xn−1, yn).

(2) Negate the partial conjugate.

(3) Pivot the partial conjugate to the variable order (yn, x1, . . . , xn−1).
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(4) Calculate the partial conjugate of fxn(yn, x1, . . . , xn−1) resulting in

f (xn−1,xn)(yn, x1, . . . , xn−2, yn−1).

(5) Repeat steps (2) through (4) for xn−2, . . . , x1.

(6) Pivot the complete conjugate f∗(y2, . . . , yn, y1) to the original variable order

f∗(y1, . . . , yn).

3.5 Numerical Methods

We begin by noting that the convergence results of Section 2.5 all exist in generalized d-

dimensional forms (which can be found in [7] and [11]), thus discrete conjugation algorithms

are equally valid and applicable in multiple dimensions.

Using the same iterated conjugation concepts as in the symbolic case, the one-dimensional

LLT from Section 2.5.1 may be easily extended to the d-dimensional case. Consider a

function f : Rd → R, X = X1 × · · · × Xd, and Y = Y1 × · · · × Yd. The algorithm

works by calculating the partial one-dimensional conjugates along X1 yielding g1 (defined

over the grid Y1 × X2 × · · · × Xd). It then iteratively calculates gi (defined over the grid

Y1 × · · · × Yi ×Xi+1 × · · · ×Xd) as the partial conjugate along the ith dimension of −gi−1.

Let ni = |Xi| and mi = |Yi|. Calculating the partial conjugate along the ith dimen-

sion involves calculating
∏

j<i mj
∏

j>i nj conjugates, each an O(ni + mi) operation. Sum-

ming this complexity over all i iterated partial conjugations yields a total complexity of

O(
∑d

i=0 n1 · · ·nimi+1 · · ·md). Letting n = n1 · · ·nd and m = m1 · · ·md, this simplifies

to the time complexity O(d(n + m)). For further details on algorithmic performance and

implementation issues, refer to [11] and [12].



Chapter 4

Applications and Examples

In this chapter we aim to work through a representative set of examples displaying the

use and capabilities of these algorithms in practice, as well as illustrating some potential

applications.

In addition to simplifying and attempting to automate atomic convex analysis operations

the tools may be used in more comprehensive practical settings as well. In some cases, it is

possible to symbolically solve certain problems. In other cases, the tools can be used to aid

symbolic solutions or inspire intuition through visualization.

4.1 Functionality of the SCAT Package

The algorithms of this thesis have been implemented in Maple as the Symbolic Convex

Analysis Toolkit (SCAT). This package introduces significant new functionality and integrates

itself into the Maple environment.

The following new commands have been introduced:

• SCAT[Plot], for plotting one- and two-dimensional convex functions and one-dimensional

subdifferentials;

• SCAT[PwfToPiecewise,PiecewiseToPwf,PwfToRegions,RegionsToPwfPl], for con-

verting between different representations of piecewise continuous functions;

• SCAT[Eval], for evaluating any-dimensional convex functions and one-dimensional

subdifferentials at points;

• SCAT[Subs], for performing substitutions into any-dimensional convex functions and

55



56 CHAPTER 4. APPLICATIONS AND EXAMPLES

one-dimensional subdifferentials;

• SCAT[Limit], for calculating limits of free parameters in any-dimensional convex func-

tions and one-dimensional subdifferentials;

• SCAT[SubDiff,Integ], for calculating the subdifferentials of one-dimensional convex

functions, and integrating them back to one-dimensional convex functions;

• SCAT[Conj,PartialConj], for calculating complete and partial conjugates of any-

dimensional convex functions;

• SCAT[InfConv], for calculating the infimal convolution of a set of any-dimensional

convex functions;

• SCAT[Convex], for attempting to prove convexity of a given any-dimensional function;

• SCAT[Equal], for comparing any-dimensional functions and one-dimensional subdif-

ferentials;

• SCAT[Assume,Additionally,Assumptions], for dealing with constraints and assump-

tions on free parameters within SCAT internal data formats for functions; and,

• SCAT[CreateNpwf,ConjN,SubDiffN], for creating numeric NPWF function representa-

tions, and calculating numeric conjugates and subdifferentials.

Additionally, the SCAT package has been integrated as much as possible into Maple,

supporting the following built-in functions:

• type, for type testing of SCAT internal data formats;

• print, for pretty-printing any-dimensional convex functions and one-dimensional sub-

differentials;

• convert, for converting piecewise functions to the SCAT internal PWF format; and,

• simplify, for simplifying algebraic operations applied to one or more any-dimensional

convex functions and one-dimensional subdifferentials.

• Standard Maple commands such as norm, evalf, factor, expand, etc, also work with

PWF and SD objects.

4.2 Ten Classic Examples

The following examples aim mainly to demonstrate the usage of the software. To this

end, a representative set of one- and many-dimensional examples have been selected from

[2, 3, 4, 16]. Specific emphasis has been placed on demonstrating introduced or improved
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functionality not possible in earlier packages.

Example 4.1 (Absolute value) One of the simplest examples of a convex function that

is not everywhere differentiable is the absolute value function f : x 7→ |x|. Its derivative at

the origin fails to exist since f ′−(0) = −1 < 1 = f ′+(0). The notion of the subgradient is

able to capture this behaviour and accordingly it is seen that ∂f(0) = [−1, 1]. In order to

explore this function we first represent it in a form that SCAT understands; the PWF (piecewise

function) format:

> f1 := convert(abs(x),PWF);

f1 :=





−x, x < 0

0, x = 0

x, x > 0
We may easily calculate the subdifferential of f1 and confirm our earlier calculation from

Example 1.19:

> sdf1 := SubDiff(f1);

sdf1 :=





{−1}, x < 0

[−1, 1], x = 0

{1}, x > 0
We may also calculate the conjugate, yielding the expected answer as found in Example

1.23:

> g1 := Conj(f1,y);

g1 :=





∞, y < −1

0, y = −1

0, (−1 < y) and (y < 1)

0, y = 1

∞, 1 < y

¤

Example 4.2 (Negative entropy) The exponential function and the (negative) Boltzmann-

Shannon entropy function are a well known pair of Fenchel conjugates. Using the SCAT

package this conjugacy relationship is easily confirmed by entering:

> f2 := convert(exp(x),PWF);

f2 := {ex all(x)

> g2 := Conj(f2,y);
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g2 :=





∞, y < 0

0, y = 0

ln(y)y − y, 0 < y

¤

Example 4.3 (De Pierro and Iusem) This function was originally suggested by De Pierro

and Iusem on page 438 of [8], and also used as an example in [2, 3]. The function is easily

constructed and its conjugate calculated by issuing the following commands:

> piecewise(x<=1,1/2*(x^2-4*x+3),-ln(x)):

> f3 := convert(%,PWF);

f3 :=





1
2x2 − 2x + 3

2 , x < 1

0, x = 1

− ln(x), 1 < x

> g3 := Conj(f3,y);

g3 :=





2y + 1
2y2 + 1

2 , y < −1

−1, y = −1

−1− ln(−y), (−1 < y) and (y < 0)

∞, y = 0

∞, 0 < y

¤

Example 4.4 (Affine and quadratic) Affine functions on R are those of the form f :

x 7→ bx + c where b and c are both real constants. Being a function of a constant

slope, there is only one subgradient (that of slope b) that minorizes it. Thus, the con-

jugates of these functions are finite at only one point, as shown by entering the command

Conj(convert(b*x+c,PWF,x)): 



∞, y < b

−c, y = b

∞, b < y

Similarly, quadratic functions are those of the form f : x 7→ ax2 + bx + c for a 6= 0, and real

constants b and c. The subset of convex quadratic functions (those with a > 0) turns out

to be closed under the operation of Fenchel conjugation, as shown with the commands f4

:= convert(a*x^2+b*x+c,PWF,x,{a>0}) and g4 := Conj(f4,y):

g4 :=
{
−1

4
2yb−y2−b2+4ca

a all(y)

A specific case of the more general result from Theorem 1.25 may be seen by solving for the

values of a, b and c that make the above pair of conjugates equal. We can quickly generate

a system of three equations and solve for the parameters with the following commands:
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Figure 4.1: Plots from Example 4.5

> F4 := PwfToPiecewise(f4):

G4 := subs(y=x,PwfToPiecewise(g4)):

map(i->subs(x=i,F4=G4),[0,1,-1]):

solve({op(%),a>0},{a,b,c});
subs(op(%),F4=G4); {

c = 0, a = 1
2 , b = 0

}
1
2x2 = 1

2x2 ¤

Example 4.5 (An example from Rockafeller) The following function can be found on

page 229 of Rockafeller’s text [16]. The function is easily constructed using piecewise and

converted to the PWF format:

> piecewise(-3<=x and x<=1,abs(x)-2*sqrt(1-x),infinity):

f5 := convert(%,PWF);

f5 :=





∞, x < −3

1, x = −3

−2
√

1− x− x, (−3 < x) and (x < 0)

−2, x = 0

−2
√

1− x + x, (0 < x) and (x < 1)

1, x = 1

∞, 1 < x
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We now use the command Plot(f5,x=-4..2,scaling=constrained,axes=framed) to plot

the function, yielding Figure 4.1(a). Next, to calculate and plot the subdifferential we use the

commands sdf5 := SubDiff(f5) and Plot(sdf5,-3..1,view=[-3..1,-3..5],axes=none),

yielding

sdf5 :=





{}, x < −3

[−∞,−1
2 ], x = −3

{ (−1+
√

1−x)
√

1−x
x−1 }, (−3 < x) and (x < 0)

[0, 2], x = 0

{− (1+
√

1−x)
√

1−x
x−1 }, (0 < x) and (x < 1)

{}, x = 1

{}, 1 < x

and the plot in Figure 4.1(b). Finally, we find the conjugate, the biconjugate and manually

verify the convexity of f5 with the following commands:

> g5 := Conj(f5,y);

g5 :=





−3y + 1, y < −1
2

5
2 , y = −1

2
y2+2y+2

1+y , (−1
2 < y) and (y < 0)

2, y = 0

2, (0 < y) and (y < 2)

2, y = 2
y2−2y+2
−1+y , 2 < y

> F5 := Conj(g5,x):

Equal(f5,F5);

true ¤

Example 4.6 (An infimal convolution) Given two closed convex functions f and g the

function (f∗ + g∗)∗ is called the (closure of the) infimal convolution of f and g. If either

one of the functions is differentiable then the infimal convolution will be as well; thus, the

operation is a regularization, which can be used to add additional structure to an object while

maintaining much of its original shape. In this example we regularize the non-differentiable

absolute value function from Example 4.1 with 1
2x2. A plot of the regularized function can

be found in Figure 4.2. Notice that it retains the large-scale features of the absolute value

function, but with the discontinuity smoothed out by the quadratic.
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Figure 4.2: Plot of (f1∗ + f6∗)∗ from Example 4.6

> f6 := convert(x^2/2,PWF):

> Conj(simplify(Conj(f1,y)+Conj(f6,y)),x);

> Plot(%,-5..5);



−x− 1
2 , x < −1

1
2 , x = −1

1
2x2, (−1 < x) and (x < 1)
1
2 , x = 1

x− 1
2 , 1 < x

We can also perform the infimal convolution by calling the command InfConv(f1,f6)

directly. ¤

Example 4.7 (Young’s inequality) Suppose 1 < p < ∞ and let q be such that 1
p + 1

q = 1.

The equality
1
p
ap +

1
q
bq ≥ ab, ∀a, b ≥ 0,

is known as Young’s inequality . As we are about to see, since (1
p | · |p)∗ = 1

q | · |q this is actually

a special case of the stronger Fenchel-Young inequality from Theorem 1.24. In this example

we show and confirm the above conjugate pair.

This example elaborates on a similar example provided in [3]. The algorithms developed

in this thesis are able to handle p as a free parameter while those in [3] were restricted to
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Figure 4.3: Plot of g8 from Example 4.8

fixed values of p. The general pair of conjugate functions is easily derived using the following

commands:

> f7 := convert(abs(x)^p/p,PWF,x,{p>1});
g7 := Conj(f7,y):

g7 := Subs(p=1/(1-1/q),g7);

f7 :=





(−x)p

p , x < 0

0, x = 0
xp

p , 0 < x

g7 :=





(− 1
y
)(−q)

q , y < 0

0, y = 0
yq

q , 0 < y

In creating f7, notice that we passed additional parameters consisting of a set of assump-

tions. In this example, if we do not provide the information that p > 1 then the process will

fail, producing the following output:

> f := convert( abs(x)^p/p, PWF, x );
Error, (in EvalRel) unable to evaluate relation:

1/p*limit(x^p,x = 0,right) = 1/p*limit((-x)^p,x = 0,left)
¤

Example 4.8 (Indicator function of the unit ball in R2) We now consider the indi-

cator function of the unit ball in two-dimensions. Due to the verbose nature of the output

for multi-dimensional PWF objects, we will generally suppress the display of these objects.

We begin by manually constructing the PWF object, which is recursive in nature, and

described in section 3.3.2. The indicator function of the unit ball is simply the function that
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Figure 4.4: Conjugate pair from Example 4.9

has value 0 for all |x| ≤ 1, and ∞ elsewhere. The PWF object for this function is constructed

with the following commands:

> [infinity]:

> [infinity,0,0,infinity]:

> [infinity,sqrt(1-x1^2),0,0,sqrt(1-x1^2),0,infinity]:

> [%%%,-1,%%,%,1,%%,%%%]:

> f8 := PWF(%,[x1,x2],x1::real,x2::real):

The conjugate of this function is calculated using the command g8 := Conj(f8,[y1,y2]),

which yields the function
√

y2
1 + y2

2. It turns out that this and Example 4.1 are simply

specific cases of the more general result on Rn that

‖x‖∗ =

{
0, ‖y‖ ≤ 1

∞, otherwise.

The plot of g8 in Figure 4.3 is generated using the command Plot(g8, -1..1, -1..1,

axes=framed, orientation=[66,77]). ¤

Example 4.9 (An example on R2 from Borwein and Lewis) We consider the follow-

ing function given in an exercise on page 40 of [4]:




x2
2

x1
, if x2 > 0

0, if x = 0

∞, otherwise.
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Specifically, we consider a variation of the above function defined on the half-plane for

x2 > a > 0, and consider the behaviour of this function in the limit as a decreases to 0. The

following code manually creates the PWF object corresponding to this function:

> [infinity,a,0,0]:

> [infinity,a,x1^2/a,x1^2/x2]:

> [%,0,%%,%]:

> f9 := PWF(%,[x1,x2],{x1::real,x2::real,a>0}):
We can learn about the behaviour of this function at its limit through the following com-

mands:

> g9a := Limit(Conj(f9,[y1,y2]),a=0,right):

> g9b := Conj(Limit(f9,a=0,right),[y1,y2]):

> Equal(g9a,g9b);

true

Thus we see that in this example the conjugate of the limit and the limit of the conjugate

agree. Finally, we can prove convexity (answering the exercise presented in [4]) and visually

examine the conjugate pair (Figure 4.4) with the following commands:

> f9a := Limit(f9,a=0,right):

> Convex(f9);

> Plot(f9a,-10..10,0..10,axes=framed,orientation=[65,30]);

> Plot(g9a,-10..10,-10..0,axes=framed,orientation=[65,30]);

true ¤

Example 4.10 (An example on R3) We consider one final example in higher dimen-

sions. In this example we demonstrate an alternative construction technique, building the

PWF object from its (non-recursive) region representation, as discussed in section 3.3.1. It

is often the case that such a representation is easier and more readable for PWF creation

purposes. We consider the function − ln(x + 1) + y ln(y) + z2 defined on R3
+. The following

commands generate the PWF and test it for convexity.

> f := (x,y,z) -> -log(x+1)+y*log(y)+z^2:

> R := [[0,infinity, 0,infinity, 0,infinity, f(x,y,z)],

[0,infinity, 0,infinity, 0,0, f(x,y,0)],

[0,infinity, 0,0, 0,infinity, f(x,0,z)],

[0,0, 0,infinity, 0,infinity, f(0,y,z)],
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[0,infinity, 0,0, 0,0, f(x,0,0)],

[0,0, 0,infinity, 0,0, f(0,y,0)],

[0,0, 0,0, 0,infinity, f(0,0,z)],

[0,0, 0,0, 0,0, f(0,0,0)]]:

vl := [x,y,z]:

al := convert(map(i->i::real,vl),set):

RegionsToPwfPl(R,vl):

f10 := PWF(%,vl,al):

Convex(f10);

true

SCAT is able to extract lower dimensional convex functions from higher dimensional func-

tions through partial evaluation. We demonstrate this ability in the following example:

> g := Conj(f,[X,Y,Z]):

Eval(g,Y=-1,Z=0);



e(−2), X < −1

e(−2), X = −1

−1−X − ln(−X) + e(−2), (−1 < X) and (X < 0)

∞, X = 0

∞, 0 < X

¤

4.3 Horse Racing Problem

SCAT is powerful enough to handle many functions symbolically, and this can allow for

certain optimization problems to be solved symbolically. In the following example from

[13], SCAT is able to find a closed form of the dual which allows us to find quick and accurate

numerical solutions to the primal.

Suppose there is a fixed quantity of x0 of some commodity that needs to be allocated

among n distinct activities in such a way as to maximize the return. We may assume that

the return associated with the ith activity is an increasing concave function gi(x) due to

diminishing marginal returns. Letting xi represent the amount of commodity allocated to

the ith activity, the problem may be stated as

{
maximize g(x) =

∑n
i=1 gi(xi)

subject to
∑n

i=1 xi = x0, and xi ≥ 0, i = 1, . . . , n.
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This problem is easily recast into the framework of Fenchel duality. Let each gi have domain

R+, and accordingly let g have the domain Rn
+. Define the set C = {x :

∑n
i=1 xi = x0} and

construct the function f = δC . Since each gi is concave on R, then g is concave on Rn. Since

C is a convex set it follows that f is convex. We see that dom f ∩ dom g = {x :
∑n

i=1 xi =

x0, x ∈ Rn
+}, thus our problem is defined over the correct domain. In this notation, the

problem now becomes

inf{−g(x) : x ∈ C ∩ Rn
+}.

We now consider the convex conjugate f∗, given by

f∗(y) = sup{〈y, x〉 − f(x) : x ∈ C}
= sup{〈y, x〉 : x ∈ C}.

Let a be the index of the yi with the largest magnitude, and similarly let b be the index of

the yi with the smallest magnitude. Suppose |yb| < |ya|. By setting xa = x0 + rsign(ya),

xb = −rsign(ya) and xi = 0 otherwise, we see that as r tends to infinity, so does 〈y, x〉. Now

consider y such that |ya| = |yb|. There are two subcases to consider. Suppose ya = −yb.

Without loss of generality, let ya > 0. Taking the same allocation as above yields 〈y, x〉 =

(x0 + r)ya − r(−ya) = x0 + 2rya, which obviously tends to infinity as r does. Thus, we are

left with the case ya = yb, which implies that y has the form y = λ(1, . . . , 1) for λ ∈ R. In

this case, the inner product always has the same value, namely λx0. Thus, we see that

f∗(y) =

{
λx0, y = λ(1, . . . , 1)

∞, otherwise.

Since g is separable, we may easily calculate g∗(y) as

g∗(y) =
n∑

i=1

{(gi)∗(y)}.

The dual problem then becomes

inf
λ∈R

{λx0 −
n∑

i=1

{(gi)∗(λ)}. (4.11)

Surprisingly, the n-dimensional primal problem is reduced to a single dimension optimiza-

tion problem in the dual.

Consider the problem of betting on a horse race. Assuming we know the probability pi

that the ith horse will win, we wish to know how best to distribute a total bet of x0 dollars.
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Let the track keep a proportion 0 < 1 − C < 1 of the total amount bet and distribute

the rest proportionally amongst those who bet on the winning horse. Finally, let si be the

amount that the rest of the public is betting on horse i. If we bet amount xi on the ith

horse, we receive

C

(
x0 +

n∑

i=1

si

)
xi

si + xi

if it wins. Thus, the expected net return R is calculated as

R = C

(
x0 +

n∑

i=1

si

)(
n∑

i=1

pixi

si + xi

)
− x0.

The problem then becomes to maximize R, or equivalently

g(x) =
n∑

i=1

gi(xi)

where

gi(x) =
pixi

si + xi
.

Inspecting the second derivative of gi shows that it is strictly decreasing, and thus each gi

is concave. Using the relationship between convex and concave conjugates in Section 1.6.1,

SCAT can calculate the concave conjugate of gi yielding:



−∞, λ < 0

−pi, λ = 0

−λsi + 2
√

λpisi − pi, (0 < λ) and (λ < pi

si
)

0, λ = pi

si

0, pi

si
< λ

The calculated closed form of each gi may then be used in solving the one-dimensional mini-

mization in Equation 4.11. Unfortunately, no symbolic solution exists to this minimization,

but any numerical solver will quickly and accurately find the unique minimization point

because of the symbolic representation of the objective function.

Given a solution λ to the dual problem, we want to find the associated xi values in the

primal domain. By Theorem 1.26, it follows that the optimal x will maximize the equation

〈x, λ(1, . . . , 1)〉 − g(x).

Thus, each xi will maximize

xiλ− gi(xi).
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Solving for the critical point by differentiation yields

xi =
√

sipi

λ
− si.

Since this value is negative (and outside of the domain of gi) if λ > pi
si

, then it follows that

xi =





√
sipi

λ − si, λ < pi

si

0, otherwise.

Thus, we see that λ is chosen such that

S(λ) =
∑

i:λ<
pi
si

(√
sipi

λ
− si

)
= x0.

Now S(λ) is easily verified as continuous, and it can be seen that S(0) = ∞, S(∞) = 0.

Thus, there will always exist a λ that satisfies this equation.

It is interesting to note that for small x0, a larger λ will need to be found to satisfy this

equation, and as x0 gets small enough (x0 <<
∑

si), it will eventually be such that λ is

smaller than only the maximum pi
si

. This means that the entire bet should be placed on the

single horse with maximum pi
si

, or equivalently, with maximum piri where

ri = C
∑

j

sj

si

is the track odds.

4.4 Future Work

While progress has been made in extending earlier work on symbolic conjugation to the non-

separable multi-dimensional case, much work remains to be done. The two biggest hurdles

to successfully completing a conjugation calculation are the inverting of the one-dimensional

subdifferential, and the pivoting operation between partial conjugates.

Focussing effort on improving the ability to find inverses on a wider variety of functions

would simultaneously improve the functionality of SCAT on both of these troublesome fronts.

This is most directly addressed by improving the underlying tools in Maple.

The operation of pivoting (variable reordering) in two-dimensions has been fully ex-

plored, and is limited only by the ability to find branch points and inverses. However, there
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remains much room for further exploration into variable reordering in higher dimensions.

While there is not much hope for a general solution, many special cases and heuristics are

sure to exist which will extend the class of functions SCAT can handle in closed form.

There is also the possibility of tackling new related problems. Having the ability to

symbolically calculate convex hulls of one-dimensional functions would greatly improve the

range of input functions that SCAT could handle, as well as provide useful new functionality

in its own right. Additionally, it would be interesting to investigate direct algorithms for

calculating infimal convolutions symbolically instead of using conjugation and addition; a

direct algorithm would likely be more efficient, and may be able to handle a broader class

of input functions.

Other often neglected areas to improve are those of user interface and data structures.

It is currently rather cumbersome to create symbolic representations of higher dimensional

functions, as evidenced by the latter examples in Section 4.2. Improved data structures may

simultaneously yield more intuitive representations and allow for algorithmic improvements.

This thesis has presented algorithms for symbolically calculating Fenchel conjugates on

Rn and subdifferentials on the real line. It has provided examples of situations where the

algorithms succeed, commented on their shortcoming and identified areas for improvement.

It is hoped that the SCAT package will be a useful tool that will spur further research into

both symbolic and numeric algorithms for problems in convex analysis.
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