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Abstract
We record and substantially extend what is known about the closed forms for
various Bessel function moments arising in quantum field theory, condensed
matter theory and other parts of mathematical physics. In particular, we
develop formulae for integrals of products of six or fewer Bessel functions.
In consequence, we are able to discover and prove closed forms for cn,k :=∫∞

0 t kKn
0 (t) dt with integers n = 1, 2, 3, 4 and k � 0, obtaining new results

for the even moments c3,2k and c4,2k . We also derive new closed forms for
the odd moments sn,2k+1 := ∫∞

0 t2k+1I0(t)K
n−1
0 (t) dt with n = 3, 4 and for

tn,2k+1 := ∫∞
0 t2k+1I 2

0 (t)Kn−2
0 (t) dt with n = 5, relating the latter to Green

functions on hexagonal, diamond and cubic lattices. We conjecture the values
of s5,2k+1, make substantial progress on the evaluation of c5,2k+1, s6,2k+1 and
t6,2k+1 and report more limited progress regarding c5,2k, c6,2k+1 and c6,2k . In
the process, we obtain eight conjectural evaluations, each of which has been
checked to 1200 decimal places. One of these lies deep in four-dimensional
quantum field theory and two are probably provable by delicate combinatorics.
There remains a hard core of five conjectures whose proofs would be most
instructive, to mathematicians and physicists alike.
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1. Introduction

As we shall show in this paper, integrals of products of Bessel functions play a significant role
in various parts of physics. Such product integrals have a long history when four-or-fewer
Bessel functions are engaged, and they become increasingly challenging to evaluate as the
number increases. Moreover, these physically meaningful integrals have remarkable liaison
with analytic number theory; this is largely because many can be evaluated in terms of elliptic
integrals at singular values, as we discuss below. This interplay of physical and mathematical
ideas provides a substantial test bed for the techniques of experimental mathematics.

We present here a large collection of evaluations of these integrals, many of them explicitly
in terms of well-known constants, and others given by intriguing expressions connecting
disparate topics of modern mathematics and mathematical physics. Virtually all of this
material is original. A few of these results were subsequently found, through diligent checking,
in earlier published material; we have cited references in such instances.

What we study here are representations of the vacuum [35, 56] and sunrise [30, 40, 41]
diagrams

Vn(a1, . . . , an) :=
∫ ∞

0
t

(
n∏

j=1

K0(aj t)

)
dt (1)

Sn+1(a1, . . . , an, w) :=
∫ ∞

0
t

(
n∏

j=1

K0(aj t)

)
J0(wt) dt, (2)

where all the arguments of Vn and all but the last argument of Sn+1 are real and positive. Here
and below I0, J0 and K0 are the conventional Bessel functions of order zero as in [1, chapter
15]. These integrals occur in quantum field theories in two spacetime dimensions, where we
do not need to regularize ultraviolet divergences. Numbers generated by them are expected
to occur in the finite parts of integrals from Feynman diagrams in four spacetime dimensions.
To be concrete, we illustrate V3 and S4 as follows:

��
����

V3

��
����

S4

By casting Bessel’s differential equation in the form(
1

a
+

d

da

)
d

da
K0(at) = t2K0(at)

and applying the corresponding differential operator to (1), we may increase the exponent of
t in the integrand by steps of 2. But to obtain even powers of t, we need to start with

V n(a1, . . . , an) :=
∫ ∞

0

⎛⎝ n∏
j=1

K0(aj t)

⎞⎠ dt, (3)

which plays no obvious role in quantum field theory. To evaluate the latter form, we found it
useful to regard the Fourier transform

Sn+1(a1, . . . , an, w) := 1

π

∫ ∞

0

⎛⎝ n∏
j=1

K0(aj t)

⎞⎠ cos(wt) dt, (4)

as an analogue of (2).
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We shall be especially interested in the moments

cn,k :=
∫ ∞

0
t kKn

0 (t) dt (5)

for integers n � 1 and k � 0, as studied in [8, 10, 26, 60].
In [10] these moments arose in the study of Ising-type integrals

Cn,k = 1

n!

∫ ∞

0
· · ·

∫ ∞

0

dx1 dx2 · · · dxn

(cosh x1 + · · · + cosh xn)k+1
,

which are linked by

Cn,k = 2n

n!k!
cn,k. (6)

In [26, 60] it is proven that for fixed n these moments satisfy a linear recursion for which
a simple algorithm exists with coefficients polynomial in k. For example, for n = 1 and 2 one
easily obtains the closed forms

c1,k = 2k−1�2

(
k + 1

2

)
and c2,k =

√
π�3

(
k+1

2

)
4�

(
k
2 + 1

) , (7)

and for n = 3 and 4 one obtains the recursions

(k + 1)4c3,k − 2(5k2 + 20k + 21)c3,k+2 + 9c3,k+4 = 0 (8)

(k + 1)5c4,k − 4(k + 2)(5k2 + 20k + 23)c4,k+2 + 64(k + 3)c4,k+4 = 0. (9)

These recursion formulae may be written quite compactly as

M∑
i=0

(−1)ipn,i(k + i + 1)cn,k+2i = 0, (10)

where M = �(n + 1)/2�. For instance, for n = 5 and 6, we have

p5,0(x) = x6 p6,0(x) = x7

p5,1(x) = 35x4 + 42x2 + 3 p6,1(x) = x(56x4 + 112x2 + 24)

p5,2(x) = 259x2 + 104 p6,2(x) = x(784x2 + 944)

p5,3(x) = 225 p6,3(x) = 2304x.

(11)

The same recursions apply to the moments

sn,k :=
∫ ∞

0
t kI0(t)K

n−1
0 (t) dt (12)

for integers n � 3 and k � 0, and to

tn,k :=
∫ ∞

0
t kI 2

0 (t)Kn−2
0 (t) dt (13)

for integers n � 5 and k � 0.

2. Two Bessel functions

The transforms

S2(a,w) =
∫ ∞

0
tK0(at)J0(wt) dt = 1

a2 + w2
(14)
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S2(a,w) = 1

π

∫ ∞

0
K0(at) cos(wt) dt = 1

2
√

a2 + w2
(15)

give V1(a) = 1/a2 and V 1(a)/π = 1/(2a) at w = 0. The distributions∫ ∞

0
vJ0(vt1)J0(vt2) dv = 2δ

(
t2
1 − t2

2

)
(16)

2

π

∫ ∞

0
cos(vt1) cos(vt2) dv = δ(t1 + t2) + δ(t1 − t2) (17)

(where δ is the Dirac delta distribution) then lead to the evaluations

V2(a, b) =
∫ ∞

0
tK0(at)K0(bt) dt =

∫ ∞

0
wS2(a,w)S2(b,w) dw

= log(a/b)

a2 − b2
(18)

V 2(a, b) =
∫ ∞

0
K0(at)K0(bt) dt = 2π

∫ ∞

0
S2(a,w)S2(b,w) dw

= π

a + b
K
(

a − b

a + b

)
, (19)

with a complete elliptic integral of the first kind,

K(k) :=
∫ π/2

0

1√
1 − k2 sin2 φ

dφ, (20)

appearing in (19) and a limit intended in (18) when a = b. We shall need to refer to the
complementary integral K′(k) := K(k′), with k′ := √

1 − k2. In the case a � b, this provides
a compact alternative form of (19),

V 2(a, b) = π

2a
K′(b/a), (21)

obtained by the Landen [3] transformation in [1, 17.3.29].

3. Three Bessel functions

We follow Källén [51, 52] by constructing S3(a, b,w) from its discontinuity across the cut in
the w2 plane with branch point at w2 = −(a + b)2, obtaining

S3(a, b,w) =
∫ ∞

0
tK0(at)K0(bt)J0(wt) dt =

∫ ∞

a+b

2vD3(a, b, v)

v2 + w2
dv,

with a discontinuity

D3(a, b, c) = 1√
(a + b + c)(a − b + c)(a + b − c)(a − b − c)

that is completely symmetric in its three arguments. The v-integral is easily performed, to
give

S3(a, b,w) = 2 arctanh

⎛⎝√w2 + (a − b)2

w2 + (a + b)2

⎞⎠D3(a, b, iw), (22)
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and, in particular, the on-shell value [40]

s3,1 = S3(1, 1, i) :=
∫ ∞

0
tI0(t)K

2
0 (t) dt = L−3(1) = π

3
√

3
,

where

L−3(s) :=
∞∑

n=1

χ−3(n)

ns
=

∞∑
k=0

(
1

(3k + 1)s
− 1

(3k + 2)s

)
is the Dirichlet L-function with the real character χ−3(n) given by the Legendre–Jacobi–
Kronecker symbol (D|n) for discriminant D = −3.

Nomenclature. We shall refer to the construction of a Feynman amplitude from its discontinuity
across a cut as a dispersive calculation. Kramers [53] and Kronig [54] founded this approach
in studies of the dispersion of light, in the 1920s. In the 1950s, the utility of dispersive methods
was recognized in particle physics [45, 52, 69]. Cutkosky [31] turned them into a calculus
that became a routine part of the machinery of quantum field theory. Barton [20] has given a
scholarly and instructive introduction to these techniques.

3.1. The odd moments s3,2k+1

By differentiating

S3(1, 1, ix) = 2 arcsin(x/2)

x
√

4 − x2

before setting x = 1, we evaluate

s3,3 =
∫ ∞

0
t3I0(t)K

2
0 (t) dt =

(
1

x
+

d

dx

)
dS3(1, 1, ix)

dx

∣∣∣∣
x=1

= 4

3
s3,1

and are then able to solve the recursion relation [26, 60] for s3,2k+1 by the closed form

s3,2k+1 = π

3
√

3

(
2kk!

3k

)2

ak (23)

with integers

ak =
k∑

j=0

(
k

j

)2(2j

j

)
. (24)

Integer sequence (24) begins

1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995

(25)

and is recorded7 as entry A2893 of the on-line version of [66], which gives the recursion

(k + 1)2ak+1 − (10k2 + 10k + 3)ak + 9k2ak−1 = 0 (26)

and the generating function

I 3
0 (2t) =

∞∑
k=0

ak

(
t k

k!

)2

. (27)

We have verified that recursion (26) reproduces the recursion for (23), which has the same
form as for the odd moments in (8). We note that integers ak were encountered in studies of

7 See http://www.research.att.com/∼njas/sequences/A002893.
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cooperative phenomena in crystals [36] and also in studies of matrices [43] with entries 0 or 1.
In [32, proposition 2], they are related to enumeration of closed walks in a two-dimensional
hexagonal lattice. They also appear in an enumeration of Feynman diagrams [61, table 2] in
quantum chromodynamics, via the constrained sum [18]

ak =
∑

p+q+r=k

(
k!

p!q!r!

)2

that results from the Taylor expansion of I 3
0 .

It is notable that I 3
0 provides a generating function for moments of I0K

2
0 . In section 4, we

shall show that I 4
0 generates moments of I0K

3
0 .

3.2. The odd moments c3,2k+1

Next, we construct

V3(a, b, c) :=
∫ ∞

0
tK0(at)K0(bt)K0(ct) dt =

∫ ∞

0
wS3(a, b,w)S2(c, w) dw

= L3(a, b, c) + L3(b, c, a) + L3(c, a, b)

4
D3(a, b, c), (28)

with a dilogarithmic function

L3(a, b, c) := Li2

(
(a2 + b2 − c2)D3(a, b, c) + 1

(a2 + b2 − c2)D3(a, b, c) − 1

)
− Li2

(
(a2 + b2 − c2)D3(a, b, c) − 1

(a2 + b2 − c2)D3(a, b, c) + 1

)
computed by Davydychev and Tausk [35]. The representation has a removable singularity
when a + b = c with the parameters ordered so 0 < a � b � c. As we were alerted to by
John Zucker (private communication), L’Hospital’s rule produces

V3(a, b, a + b) = a log(1 + b/a) + b log(1 + a/b)

ab(a + b)
.

Setting a = b = c = 1 in (28), we obtain

c3,1 = V3(1, 1, 1) = 3

4
L−3(2) = 1

9

∞∑
n=0

(−1

27

)n 5∑
k=1

vk

(6n + k)2
,

where the vector of coefficients v = [9,−9,−12,−3, 1] was discovered (and proven) in the
course of investigation of three-loop vacuum diagrams in four dimensions [29].

Similarly,

c3,3 = L−3(2) − 2
3

may be obtained by suitable differentiations of (28). Then higher moments c3,2k+1 with k > 1
may be obtained by using (8). Because of the mixing of L−3(2) with unity, we were unable to
write a closed form for their rational coefficients in c3,2k+1.

3.3. The even moments c3,2k

For even moments, we lack the dispersion relations [20] of quantum field theory and so fall
back on the general Aufbau,

Sm+n+1(a1, . . . am, b1, . . . bn, w) =
∫ ∞

−∞
Sm+1(a1, . . . am, v)Sn+1(b1, . . . bn, v + w) dv, (29)

6
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which follows from the distribution
1

π

∫ ∞

−∞
cos(vt1) cos((v + w)t2) dv = δ(t1 + t2) cos(wt2) + δ(t1 − t2) cos(wt2)

obtained from (17) and the expansion cos((v + w)t2) = cos(vt2) cos(wt2) − sin(vt2) sin(wt2).
In particular, by setting m = n = 1 in (29), we evaluate

S3(a, b,w) = 1

π

∫ ∞

0
K0(at)K0(bt) cos(wt) dt =

∫ ∞

−∞
S2(a, v)S2(b, v + w) dv

as the complete elliptic integral

S3(a, b,w) = 1

4

∫ ∞

−∞

dv√
(a2 + v2)(b2 + (v + w)2)

=
K
(√

w2+(a−b)2

w2+(a+b)2

)√
w2 + (a + b)2

, (30)

and recover the previous result (19) for V 2(a, b) = πS3(a, b, 0) by setting w = 0.
Next, by setting m = 2 and n = 1 in (29), we write

S4(a, b, c,w) = 1

π

∫ ∞

0
K0(at)K0(bt)K0(ct) cos(wt) dt =

∫ ∞

−∞
S3(a, b, v)S2(c, v + w) dv

as an integral over an elliptic integral

S4(a, b, c,w) = 1

2

∫ ∞

−∞

K
(√

v2+(a−b)2

v2+(a+b)2

)√
(v2 + (a + b)2)((v + w)2 + c2)

dv, (31)

and at w = 0 obtain

V 3(a, b, c) :=
∫ ∞

0
K0(at)K0(bt)K0(ct) dt = π

∫ ∞

0

K
(√

v2+(a−b)2

v2+(a+b)2

)√
(v2 + (a + b)2)(v2 + c2)

dv. (32)

Remarkably, the integral (32) may be evaluated by exploiting a more general identity given
in WN Bailey’s second paper on infinite integrals involving Bessel functions [17]. Without
loss of generality, we assume that c � b � a > 0 and define

k± :=
√

(c + a)2 − b2 ±
√

(c − a)2 − b2

2c
, k′

± :=
√

1 − k2±.

Then our result may written as

2c

π
V 3(a, b, c) = K(k−)K(k′

+) + K(k+)K(k′
−). (33)

We remark that when c > a + b each term in (33) is real; otherwise, each is the complex
conjugate of the other. The form of k± comes from Bailey’s conditions k+k− = a/c and
k′

+k
′
− = b/c.
We proved (33) by setting ν = ρ = 0 in Bailey’s equation (3.3), to obtain∫ ∞

0
Iµ(at)K0(bt)K0(ct) dt = 1

4c
Wµ(k+)Wµ(k−)

with a hypergeometric series

Wµ(k) :=
∞∑

n=0

�2
(
n + 1+µ

2

)
k2n+µ

�(n + 1 + µ)n!
=

√
π�

( 1+µ

2

)
(1 − k2)1/4

P
−µ/2
−1/2

(
2 − k2

2
√

1 − k2

)
,

where P is the Legendre function defined in [1, 8.1.2]. Then (33) follows from the expansions

Iµ(x) = I0(x) − µK0(x) + O(µ2)

Wµ(k) = 2K(k) − µπK(
√

1 − k2) + O(µ2),

7
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where the derivative of Wµ(k) at µ = 0 is obtained by setting a = b = 1
2 and z = 1 − k2 in

[1, 15.3.10].
Specializing (33) to the case a = b = 1 we obtain

2c

π

∫ ∞

0
K2

0 (t)K0(ct) dt = A(2/c) = B(c/2) (34)

with the choice of a sum of squares or a product in the functions

A(x) := K2

(√
1 + x − √

1 − x

2

)
+ K2

(√
1 + x +

√
1 − x

2

)
(35)

B(x) := 2xK

(√
1 + x − √

1 − x

2

)
K

(√
1 + x +

√
1 − x

2

)
, (36)

with (35) coming directly from (33). The identity A(x) = B(1/x) may be proven by showing
that A(1 − y) and B(1/(1 − y)) satisfy the same third-order differential equation and have
Taylor series about y = 0 that agree in their first three terms.

Alternative one may use transformations of the Meijer G-functions

2
√

πA(x) = G23
33

(
1

x2

∣∣∣∣1 1 1
1
2

1
2

1
2

)
= G32

33

(
x2

∣∣∣∣ 1
2

1
2

1
2

0 0 0

)
(37)

2
√

πB(x) = G23
33

(
x2

∣∣∣∣1 1 1
1
2

1
2

1
2

)
= xG23

33

(
x2

∣∣∣∣ 1
2

1
2

1
2

0 0 0

)
(38)

in the notation of [63, vol 3]. This provides an inversion formula, 8.2.1.14, used in (37) and a
multiplication formula, 8.2.1.15, used in (38).

Remark. Our forms, (35) and (36), for the Bessel integral (34), were tabulated, without proof,
in identities 2.16.46.4 and 2.16.46.5 of [63, vol 2]. Our proof of the more general identity (33)
came from following a reference to Bailey’s work, given in section 7.14.2.43 of the Bateman
project [37, vol 2].

Setting c = 1 in (34), we obtain

c3,0 = π

2
K3K

′
3 = 3�6

(
1
3

)
32π22/3

, (39)

with the product of K3 = K(k3) and K ′
3 = √

3K3 obtained from (36) at x = 1
2 , where the

third singular value [24]

k3 =
√

3 − 1

2
√

2
= sin(π/12)

results. Moreover, Bessel’s differential equation yields

c3,2 = π

2

(
1

c
+

d

dc

)
d

dc

B(c/2)

c

∣∣∣∣
c=1

= �6
(

1
3

)
96π22/3

− 4π522/3

9�6
(

1
3

) , (40)

upon use of the evaluations

E(sin(π/12)) = K ′
3 + 3K3

6
+

π

4K ′
3

E(cos(π/12)) = K ′
3 − K3

2
+

π

4K3

8
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of complete elliptic integrals of the second kind, recorded in [24, p 28] and first found by
Legendre. Prior to finding this proof, we discovered (40) in the more palatable form

c3,2 = 1

9
c3,0 − π4

24
c−1

3,0 (41)

by using PSLQ [5, 12, 22] in a manner suggested by previous discoveries in quantum field
theory, as described in section 5.

3.4. Continued fraction

We recall that

9
c3,2

c3,0
= 9 × 14

d(1) − 9 × 34

. . . − 9 × (2N − 1)4

d(N) − · · ·

, (42)

where d(N) := 40N2 + 2 was derived in [10]. Hence, dividing (41) by c3,0, we obtain a neat
continued fraction for

1 − 27/39

(
�
(

2
3

)
�
(

1
3

))6

= 9
c3,2

c3,0
. (43)

3.5. Double integrals

Inspection of [10] also reveals that we now have evaluated the integrals∫ ∞

0

∫ ∞

0

dx dy√
(1 + x2)(1 + y2)(1 + (x + y)2)

= 2

3
K3K

′
3 (44)∫ ∞

0

∫ ∞

0

dx dy√
(1 + x2)(1 + y2)(1 + (x − y)2)

= 4

3
K3K

′
3. (45)

The first integral occurs in a formula for 4c3,0/(3π) in [10]. To evaluate the second integral,
we note that it is twice the value obtained from the simplex x > y > 0. The transformation
x = y + z then proves that (45) is twice (44).

In section 5, we give evaluations of double integrals arising in quantum field theory.

3.6. Hypergeometric series

We may also obtain a simple hypergeometric series for c3,0 from the Clausen product formula
[24, p 178] in the form

4

π2
K2(sin(α/2)) = 3F2

( 1
2 , 1

2 , 1
2

1, 1

∣∣∣∣ sin2 α

)
, (46)

which is valid for π/2 � α � 0. Setting α = π/6, so that sin(α) = 1/2, we recast (39) as

c3,0 =
√

3π3

8

∞∑
n=0

(2n

n

)3

28n
=

√
3π3

8
3F2

( 1
2 , 1

2 , 1
2

1, 1

∣∣∣∣14
)

. (47)

Moreover, we conjectured the compact formula

c3,2 =
√

3π3

288

∞∑
n=0

(2n

n

)3

28n

1

(n + 1)2
=

√
3π3

288
3F2

( 1
2 , 1

2 , 1
2

2, 2

∣∣∣∣14
)

(48)

9
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as an alternative to (41). A proof was provided by Maple, which evaluates this sum in terms
of K3 and E3. Our evaluation of the latter then shows that (48) follows from (40).

3.7. Integrals of elliptic integrals

Setting a = b = 1, w = 2 tan θ and c = 2 sin α in (32), we obtain from (34) the evaluation∫ π/2

0

K(sin θ)

cos θ
√

tan2 θ + sin2 α
dθ = B(sin α)

2 sin α

and hence, by trigonometric simplification, we prove the identity∫ π/2

0

K(sin θ)√
1 − cos2 α cos2 θ

dθ = K(sin(α/2))K(cos(α/2)), (49)

which we had conjectured empirically from interpolating known results, using Maple’s
MinimalPolynomial. At α = π/2, identity (49) reduces to the evaluation∫ 1

0

K(k)√
1 − k2

dk = K2

(
1√
2

)
= �4

(
1
4

)
16π

given in [24, p 188]. At α = π/6, we obtain

2
∫ π/2

0

K(sin θ)√
1 + 3 sin2 θ

dθ = K3K
′
3. (50)

We did not find identity (49) in the literature. However, John Zucker remarked to us that
the left-hand side may be transformed to a double integral using (20). If we then exchange the
order of integration and set C = cos2 α and S = sin2 φ in the evaluation∫ π/2

0

1√
(1 − C cos2 θ)(1 − S sin2 θ)

dθ = K(
√

C + S − CS)

given in [58], we obtain an identity first derived by Glasser [38], namely∫ π/2

0
K(
√

1 − sin2 α cos2 φ) dφ = K(sin(α/2))K(cos(α/2)), (51)

which was re-derived by Joyce and Zucker and recorded in [23, equation (2.3.5)].

3.8. Sum rule

Using the analysis of c3,0 above and in [10] we obtain a sum rule
∞∑

n=0

(2n

n

)3

28n

(
8

3
log 2 −

n∑
k=1

1

k(2k − 1)
− π√

3

)
= 0. (52)

In section 5, we conjecture an integral counterpart to this sum rule.

4. Four Bessel functions

We may construct S4 by folding one instance of S3, in (22), with the discontinuity of another,
to obtain

S4(a, b, c,w) =
∫ ∞

a+b

2uD3(a, b, u)S3(u, c,w) du, (53)

from which we obtain an evaluation of the on-shell value

s4,1 = S4(1, 1, 1, i) =
∫ ∞

2

4 arctanh
(√

u−2
u+2

)
u(u2 − 4)

du =
∫ 1

0

2y log(y)

y4 − 1
dy = π2

16
(54)

by the substitution u = y + 1/y.

10
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4.1. The odd moments s4,2k+1

By differentiation of

S4(1, 1, 1, ix) =
∫ ∞

2

4 arctanh
(√

(u−1)2−x2

(u+1)2−x2

)√
(u2 − 4)((u − 1)2 − x2)((u + 1)2 − x2)

du

we evaluate

s4,3 =
(

1

x
+

d

dx

)
dS4(1, 1, 1, ix)

dx

∣∣∣∣
x=1

= π2

64

and are then able to solve the recursion relation [26, 60] for s4,2k+1 by the closed form

s4,2k+1 = π2

16

(
k!

4k

)2

bk (55)

with integers

bk =
k∑

j=0

(
k

j

)2(2k − 2j

k − j

)(
2j

j

)
. (56)

Integer sequence (56) begins

1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624, 12046924528 (57)

and is recorded8 as entry A2895 of the on-line version of [66], which gives the recursion

k3bk − 2(2k − 1)(5k2 − 5k + 2)bk−1 + 64(k − 1)3bk−2 = 0 (58)

and the generating function

I 4
0 (2t) =

∞∑
k=0

bk

(
t k

k!

)2

. (59)

We have verified that recursion (58) reproduces the recursion for (55), which has the same
form as for the odd moments in (9). We note that in [36, 43] the integers bk were related to
enumeration of paths in three-dimensional diamond lattices. They also appear in a study [21,
equation (6.10)] of lattice magnetic walks. From the generating function I 4

0 we see that they
result from the constrained sum

bk =
∑

p+q+r+s=k

(
k!

p!q!r!s!

)2

.

The economical recursion in (58) will be used in section 5.

4.2. Dispersion relation

We adapt the dispersive method of [20, 28, 65] to two spacetime dimensions and take the
discontinuity of (53) across the cut with branch point w2 = −(a + b + c)2, obtaining the
dispersion relation

S4(a, b, c,w) =
∫ ∞

a+b+c

2vD4(a, b, c, v)

v2 + w2
dv, (60)

with a discontinuity given by a complete elliptic integral K of the first kind, and hence by an
arithmetic-geometric mean [3, 24], namely

8 See http://www.research.att.com/∼njas/sequences/A002895.
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D4(a, b, c, d) =
∫ d−c

a+b

2uD3(a, b, u)D3(u, c, d) du (61)

=
2K

(
Q(a,b,c,−d)

Q(a,b,c,d)

)
Q(a, b, c, d)

= π

AGM(Q(a, b, c, d), 4
√

abcd)
, (62)

where

Q(a, b, c, d) :=
√

(a + b + c + d)(a + b − c − d)(a − b + c − d)(a − b − c + d)

is completely symmetric in its four arguments.
In physical terms, D4(a, b, c, d) gives the volume of phase space for the decay of a particle

of mass d > a + b + c into three particles with masses a, b and c in two spacetime dimensions.
In four spacetime dimensions, one would obtain an incomplete elliptic integral for the area
of the Dalitz plot, in the generic mass case; in two spacetime dimensions we obtain a simple
arithmetic-geometric mean for the length of a Dalitz line [33].

Using this elliptic representation for S4(1, 1, 1, 0) = V3(1, 1, 1) = c3,1, we obtain an
evaluation of the integral∫ 1

3

0
D(y) dy = c3,1 = 3

4
L−3(2), (63)

with D(y) := 2D4(1, 1, 1, 1/y)/y given by

D(y) =
4yK

(√
(1−3y)(1+y)3

(1+3y)(1−y)3

)√
(1 + 3y)(1 − y)3

= 3
√

3πy

2
HeunG (−8,−2; 1, 1, 1, 1; 1 − 9y2), (64)

where the general Heun function, HeunG, satisfies Heun’s differential equation as specified
in Maple, see [64]. Similarly,∫ 1

3

0
D(y)y2 dy = 1

4
c3,3 = 1

4
L−3(2) − 1

6
.

In section 5, we shall show that the HeunG representation of the elliptic integral (64),
from quantum field theory, may be related to the hexagonal lattice sequence (24) of crystal
theory. For the present, we note that (54) and (60) provide the evaluation∫ 1

3

0

D(y)

1 − y2
dy = s4,1 = π2

16
. (65)

4.3. The odd moments c4,2k+1

For V4 we have two representations. First, from the elementary arctanh function in (22), we
may compute

V4(a, b, c, d) =
∫ ∞

0
wS3(a, b,w)S3(c, d,w) dw (66)

and easily evaluate

c4,1 =
∫ ∞

0

4 arctanh2
(

w√
w2+4

)
w(w2 + 4)

dw =
∫ 1

0

4y log2(y)

1 − y4
dy = 7

8
ζ(3)

by the substitution w = 1/y − y. Similarly, by differentiation of (66), we obtain

c4,3 = 7
32ζ(3) − 3

16 .

12
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In general, all the odd moments c4,2k+1 are given by rational linear combinations of ζ(3) and
unity, as shown in [10, 26, 60]. Because of the mixing of ζ(3) with unity, we were unable to
write a closed form for their rational coefficients in c4,2k+1.9

The alternative folding, using (62), is

V4(a, b, c, d) =
∫ ∞

0
wS4(a, b, c,w)S2(d,w) dw

=
∫ ∞

a+b+c

2vD4(a, b, c, v)V2(v, d) dv,

which yields a novel formula for ζ(3), namely∫ 1
3

0

D(y) log(y)

y2 − 1
dy = c4,1 = 7

8
ζ(3) (67)

by the substitution v = 1/y.

4.4. The even moment c4,0

The analogue to (66), for even moments, is

V 4(a, b, c, d) = 2π

∫ ∞

0
S3(a, b,w)S3(c, d,w) dw, (68)

with a product of elliptic integrals coming from (30). Setting c = a and d = b, we obtain the
intriguing case ∫ ∞

0
K2

0 (at)K2
0 (bt) dt = 2π

∫ ∞

0

K2
(√

w2+(a−b)2

w2+(a+b)2

)
w2 + (a + b)2

dw, (69)

where the square of K may be replaced by a 3F2 series [15] for only part of the range of the
integration, because of the restricted validity of the Clausen product (46). In particular, it was
not at first clear how to evaluate the integral in

c4,0 = π

∫ π/2

0
K2(sin θ) dθ (70)

obtained by setting a = b = 1 and w = 2 tan θ .
The key to unlock this puzzle was provided by the trigonometric series

K(sin θ) =
∞∑

n=0

γn sin((4n + 1)θ) (71)

with coefficients

γn :=
(

�
(
n + 1

2

)
�(n + 1)

)2

= 4

4n + 1
+ O

(
1

n3

)
(72)

given by Tricomi [68] and recorded in [37, section 13.8, equation (8)]. The identity (71) is
valid for π/2 > θ > 0. Thus, the integral in (70) is easily transformed to a hypergeometric
sum in

c4,0 = π2

4

∞∑
n=0

γ 2
n = π4

4

∞∑
n=0

(2n

n

)4

28n
= π4

4
4F3

( 1
2 , 1

2 , 1
2 , 1

2
1, 1, 1

∣∣∣∣1) (73)

9 Closed forms are given in [10] for the rational coefficients of ζ(3) in the evaluation of c4,2k+1, and for the rational
coefficients of L−3(2) in the evaluation of c3,2k+1.
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by using the orthogonality relation∫ π/2

0
sin((4m + 1)θ) sin((4n + 1)θ) dθ = π

4
δm,n.

It is instructive to split c4,0 = A1 + A2 into the contributions

A1 = π

∫ π/4

0
K2(sin θ) dθ, A2 = π

∫ π/4

0
K2(cos θ) dθ,

and use the Clausen product (46) for the former. The result is A1 = 1
4c4,0 which proves that

A2/A1 = 3, as we had noted numerically. A more direct derivation of this proven factor of 3
would probably be enlightening.

We also note that A1 = 1
4c4,0 may be obtained by setting φ = 0 in the double series

π

∫ π/4

φ/2
K2(sin θ) dθ = π3

8
cos φ

∞∑
n=0

(2n

n

)3

26n 2F1

(
1
2 , 1

2 − n

3
2

∣∣∣∣∣ cos2 φ

)
,

which is valid π/2 � φ � 0.

4.5. Sum rule

Combining (73) with a more complicated sum in [10, equations (3)–(5)], we get the discrete
sum rule

∞∑
n=0

(2n

n

)4

28n

⎧⎨⎩8

(
− log 2 +

n∑
k=1

1

2k(2k − 1)

)2

−
n∑

k=1

4k − 1

2k2(2k − 1)2
− π2

3

⎫⎬⎭ = 0, (74)

with one more central binomial coefficient and one more power of π/
√

3 than (52).

4.6. The even moment c4,2

Integer relation algorithms (see [5, 7, 12] for extended discussion) led us to conjecture that

c4,2 = π2

256

∞∑
n=0

γ 2
n

(
12

n + 1
− 3

(n + 1)2
− 8

)
, (75)

which we shall now prove.
As before, we use Bessel’s differential equation and operate on our master formula, in

this case (68), before setting parameters to unity, obtaining

c4,2 = π

∫ π/2

0

(
cos 4θ − 1

16
+

4 cot θ + sin 4θ

32

d

dθ

)
K2(sin θ) dθ.

Then, using Tricomi’s expansion (71), we easily reduce

π

∫ π/2

0
K2(sin θ) cos 4θ dθ = π2

16

∞∑
n=0

γ 2
n

(
2 − 1

n + 1

)2

to single sums of the form in (75). The term involving sin 4θ gives a multiple of the same
sum, using integration by parts.

However, the term involving cot θ is more demanding. Integrating it by parts, we conclude
that (75) is equivalent to the evaluation

B :=
∫ π/2

0

4πK2(sin θ) − π3

sin2 θ
dθ = π2

4

∞∑
n=0

γ 2
n

4n + 3

(n + 1)2
, (76)

which we now prove by using a subtracted form for the differential of (71).

14
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Defining δn := 4 − (4n + 1)γn, we prove by induction that
n−1∑
m=0

δm = 4n − 4n2γn = 1 −
∞∑

m=n

δm. (77)

Then from this we derive a subtracted series for

dK(sin θ)

dθ
− sin2 θ

cos θ
=

∞∑
m=1

δm(cos θ − cos((4m + 1)θ)), (78)

by subtracting the trigonometric series [59]

4
∞∑

m=0

sin((4m + 1)θ)

4m + 1
= π

2
+ log(sec θ + tan θ) (79)

from (71) and then differentiating, to obtain

dK(sin θ)

dθ
− sec θ = −

∞∑
m=1

δm cos((4m + 1)θ).

Adding cos θ to each side and using
∑∞

m=0 δm = 1, as a consequence of (77), we obtain (78).
By combining (71) and (78), we obtain the double series

B
2π2

− γ0 =
∑

m,n�0

δm(M0,n − Mm,n)γn,

using the triangular array M with entries

Mm,n := 4

π

∫ π/2

0
cot θ cos((4m + 1)θ) sin((4n + 1)θ) dθ

for non-negative integers m and n. These entries are very simple: Mm,n = 2, for m < n,

Mm,n = 0, for m > n and Mn,n = 1, resulting in

B
2π2

= γ0 +
∞∑

m=0

δm

(
−γm − γ0 + 2

m∑
n=0

γn

)
=

∞∑
n=0

γnεn

with the γ0 terms cancelling, since
∑∞

m=0 δm = 1. Here,

εn := −δn + 2
∞∑

m=n

δm = (8n2 + 4n + 1)γn − 2(4n + 1)

appears by a change of the order of summation and is easily evaluated, by using (77).
Looking back to what needs to be proved, in (76), we see that we now need to establish

the vanishing of
∞∑

n=0

γn

(
4n + 3

8(n + 1)2
γn − εn

)
= 0.

This is achieved by taking the N → ∞ limit of the explicit evaluation
N−1∑
n=0

γn

(
4n + 3

8(n + 1)2
γn − εn

)
= 2N2γNδN = O

(
1

N

)
(80)

of a truncated sum, which is easily proven by induction. We note that the Gosper algorithm
[62] in Maple failed to evaluate (80), as written, since δn and εn mix binomial and polynomial
terms. If one separates these by hand then our compact result is verified.
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4.7. Further evaluation of integrals

We also succeeded in separating B = B1 + B2 into the contributions

B1 :=
∫ π/4

0

4πK2(sin θ) − π3

sin2 θ
dθ = −2π2 + H +

π2

4

∞∑
n=0

γ 2
n

2n + 1

n + 1
(81)

B2 :=
∫ π/4

0

4πK2(cos θ) − π3

cos2 θ
dθ = −2π2 − H +

3π2

4

∞∑
n=0

γ 2
n

2n + 1

n + 1
, (82)

with a familiar factor of 3 multiplying the 4F3 series in the latter and a new constant from the
singular value k1 = sin(π/4), namely

H := π3

(
1 − 3F2

(− 1
2 , 1

2 , 1
2

1, 1

∣∣∣∣1)) = π3 − �4
(

1
4

)
+ 16�4

(
3
4

)
8

.

The π3 terms in H and the integrand of (82) match, since
∫ π/4

0 sec2 θ dθ = 1.

4.8. Further evaluations of sums

Evaluations (81) and (82) were discovered using PSLQ. To prove (81), we may again use a
Clausen product, with its first term subtracted. We then encounter the integrals

2
∫ π/4

0

sin2n 2θ

sin2 θ
dθ = B

(
n − 1

2
,

1

2

)
+

2

2n − 1
with n > 0. Here B is Euler’s Beta function and yields yet another 4F3 series, which we
eliminate by using the N → ∞ limit of the summation

N−1∑
n=0

γ 2
n

(
2

1 − 2n
− 1

n + 1

)
= 16N3

2N − 1
γ 2

N = 8 + O

(
1

N

)
,

which was also proven by induction. To prove (82), we then subtract (81) from (76) and use
the N → ∞ limit of the summation

N−1∑
n=0

γ 2
n

(
8 − 8

n + 1
+

1

(n + 1)2

)
= 16N2γ 2

N = 16 + O

(
1

N

)
,

which was proven in the same manner.
Thus one may undo the explicit evaluations of parts of (82), in terms of π and � values,

and instead write

π

∫ π/4

0

K2(cos θ)

cos2 θ
dθ = π3

8

∞∑
n=0

(2n

n

)3

26n

2n + 1

n + 1
+

π4

32

∞∑
n=0

(2n

n

)4

28n

4n2 + 10n + 5

(n + 1)2

in terms of undigested hypergeometric series.
More productively, we may use the explicit summations so far achieved to reduce

16c4,0 − 64c4,2

3π4
− 4

π2
= 4F3

(
1
2 , 1

2 , 1
2 , 1

2
2, 1, 1

∣∣∣∣∣1
)

(83)

to a single 4F3 series. Comparing this last result with (73), we conclude that all moments c4,2k

can be expressed in terms π and a pair of contiguous 4F3 series. An equivalent hypergeometric
expression is

c4,2 = π4

64

{
44F3

( 1
2 , 1

2 , 1
2 , 1

2
1, 1, 1

∣∣∣∣1)− 34F3

( 1
2 , 1

2 , 1
2 , 1

2
2, 1, 1

∣∣∣∣1)}− 3π2

16
. (84)
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For comparison, we repeat

c4,0 = π4

4
4F3

(
1
2 , 1

2 , 1
2 , 1

2
1, 1, 1

∣∣∣∣∣1
)

. (85)

4.9. Relation to Meijer’s G-function

A generalization of (69) is derivable in terms of the Meijer-G function [63, vol 3]. For example,
we have

I (a, b, k) :=
∫ ∞

0
t kK2

0 (at)K2
0 (bt) dt = π

8ak+1
G33

44

(
b2

a2

∣∣∣∣∣
1−k

2
1−k

2
1−k

2
1
2

0 0 0 − k
2

)
, (86)

which may be proven by making two copies of the representation

tµK2
0 (at) =

√
π

2aµ
G30

13

(
a2t2

∣∣∣∣∣
µ+1

2
µ

2
µ

2
µ

2

)
and integrating them with weight t to obtain

I (a, b, µ + ν + 1) = π

4aµbν

∫ ∞

0
tG30

13

(
a2t2

∣∣∣∣∣
µ+1

2
µ

2
µ

2
µ

2

)
G30

13

(
b2t2

∣∣∣∣∣ ν+1
2

ν
2

ν
2

ν
2

)
dt.

Then we use Meijer’s result for the integral of the product of two G-functions to obtain

I (a, b, µ + ν + 1) = π

8aµ+2bν
G33

44

(
b2

a2

∣∣∣∣∣−
µ

2 −µ

2 −µ

2
ν+1

2
ν
2

ν
2

ν
2 −µ+1

2

)
.

The apparent freedom in the choice of parameters µ and ν is demystified by formula (8.2.1.15)
in [63, vol 3], which shows that multiplication by a power of the argument of a G-function is
equivalent to adding a constant to all its parameters, as in the example (38). We resolve this
redundancy by setting µ = k − 1 and ν = 0 and hence prove (86). Similarly, we obtained∫ ∞

0
t kK0(at)K2

0 (bt) dt = 2k−2√π

ak+1
G32

33

(
4b2

a2

∣∣∣∣∣ 1−k
2

1−k
2

1
2

0 0 0

)
. (87)

In [10] the special cases of (86) and (87) with a = b = 1 were studied numerically, using
Adamchik’s algorithm [2]. This algorithm converges quickly in the case of c3,k , obtained
from (87) with an argument of 4. But in Maple it is painfully slow in the case of c4,k , obtained
from (86) with unit argument. Numerical evaluation of our new hypergeometric results (84)
and (85) goes far faster, with Maple.

4.10. Another continued fraction

Again we may derive from [10] that

8
c4,2

c4,0
= 16

e(1) − 36

. . . − (2N − 1)6

e(N) − · · ·

, (88)

where e(N) := N(20N2 + 3) and the ratio 8c4,2/c4,0 may be made explicit from (84, 85).
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4.11. The even moment s4,0

The odd moment s4,1 relates directly to quantum field theory; it is the two-loop on-shell equal-
mass sunshine diagram in two spacetime dimensions. No such meaning attaches to s4,0; it is
hard to think of a physical application for this moment. However, we found a rather pretty
formula for it, which we record as

s4,0 =
∫ ∞

0
I0(t)K

3
0 (t) dt =

∫ π/2

0
K(sin θ)K(cos θ) dθ. (89)

This amusing twist of the integral (70) for c4,0 follows from Nicholson’s integral representation
[72, 13.72, equation (3)] of the product

I0(t)K0(t) = 2

π

∫ π/2

0
K0(2t sin α) dα.

Substituting c = 2 sin α in (34) and using the appropriate reduction (36) to a product of K
values, we obtain∫ ∞

0
I0(t)K

3
0 (t) dt =

∫ π/2

0

B(sin α)

2 sin α
dα =

∫ π/2

0
K(sin(α/2))K(cos(α/2)) dα.

Setting α = 2θ , we prove (89). Then Pari-GP gives, in a tenth of a second, 64 digits of

s4,0 = 6.997563016680632359556757826853096005697754284353362908336255807 . . . .

A corresponding twist of the sum (73) for c4,0 comes from Tricomi’s expansion (71) and∫ π/2

0
sin((4m + 1)θ) cos((4n + 1)θ) dθ = 1

4m + 4n + 2
.

This yields the double sum

s4,0 =
∑

m,n�0

γmγn

4m + 4n + 2
=

∞∑
n=0

γ 2
n

(
λn − 1

8n + 2

)
with γn in (72) and

λn := 2

γn

n∑
m=0

γm

4m + 4n + 2
= 1 +

n∑
m=1

8m

16m2 − 1
,

where the latter form was proven by Maple. Hence we obtain

s4,0 =
∫ ∞

0
I0(t)K

3
0 (t) dt = π2

2

∞∑
n=0

(2n

n

)4

28n

(
1

4n + 1
+

2n−1∑
k=0

2

2k + 1

)
. (90)

By way of comparison, we note the simpler evaluation∫ ∞

0
I 2

0 (t)K2
0 (t) dt =

∞∑
k=0

(
2k

k

)
c2,2k

(2kk!)2
= π2

4

∞∑
k=0

(2k

k

)4

28k
= 1

π2

∫ ∞

0
K4

0 (t) dt (91)

from the closed form for c2,2k in (7) and the expansion

I 2
0 (t) =

∞∑
k=0

(
2k

k

)(
t k

2kk!

)2

. (92)
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Table 1. Evaluations for cn,k with n = 3, 4.

c3,0 = 3�6
(

1
3

)
32π22/3 =

√
3π3

8 3F2

(
1
2 , 1

2 , 1
2

1, 1

∣∣∣∣∣ 1
4

)
c3,1 = 3

4 L−3(2)

c3,2 = �6
(

1
3

)
96π22/3 − 4π522/3

9�6
(

1
3

) =
√

3π3

288 3F2

(
1
2 , 1

2 , 1
2

2, 2

∣∣∣∣∣ 1
4

)
c3,3 = L−3(2) − 2

3

c4,0 = π4

4

∑∞
n=0

(
2n
n

)4

28n = π4

4 4F3

(
1
2 , 1

2 , 1
2 , 1

2
1, 1, 1

∣∣∣∣∣1
)

c4,1 = 7
8 ζ(3)

c4,2 = π4

16 4F3

(
1
2 , 1

2 , 1
2 , 1

2
1, 1, 1

∣∣∣∣∣1
)

− 3π4

64 4F3

(
1
2 , 1

2 , 1
2 , 1

2
2, 1, 1

∣∣∣∣∣1
)

− 3π2

16

c4,3 = 7
32 ζ(3) − 3

16

4.12. Tabular summary

In table 1, we recapitulate the key discoveries for the moments cn,k := ∫∞
0 t kKn

0 (t) dt with
n = 3, 4. The results for the even moments c3,2k and c4,2k are new. The table may extended
by using the recursions (8) and (9).

5. Five Bessel functions

Little is known for certain about integrals involving five Bessel functions. However, there are
some remarkable conjectures arising from studies in quantum field theory [55, 56].

5.1. Conjectural evaluations of Feynman diagrams

In [55], Stefano Laporta developed an impressive technique for numerical evaluation of the
coefficients of the Laurent expansion in ε of Feynman diagrams in D = 4 − 2ε spacetime
dimensions. Here we are concerned with just one of the many diagrams that he considered,
namely the dimensionally regularized three-loop sunrise diagram with four internal lines

S5(w
2,D) :=

∫ ∫ ∫
dDp1 dDp2 dDp3

N(p1)N(p2)N(p3)N(q − p1 − p2 − p3)

∣∣∣∣
q·q=w2

,

where N(p) := p · p + 1 is the inverse propagator of a scalar particle with unit mass and
momentum p. In the on-shell case, the Laurent expansion found by Laporta has the form

S5(−1, 4 − 2ε)

(π2−ε�(1 + ε))3
= 2

ε3
+

22

3ε2
+

577

36ε
+ S205 + O(ε)

with a numerical value S205 ≈ 21.92956264368, for the finite part, given in equation (205)
of [55]. Subsequently, in equation (21) of [56], this constant was conjecturally related to
products of elliptic integrals of the first and second kind, with a numerical check to 1200
decimal places.
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In a talk10 entitled ‘Reciprocal PSLQ and the Tiny Nome of Bologna’, Broadhurst observed
that Laporta’s conjecture may be written rather intriguingly using the constant

C := π

16

(
1 − 1√

5

)(
1 + 2

∞∑
n=1

exp
(
−n2π

√
15
))4

(93)

and its reciprocal 1/C, in terms of which he wrote Laporta’s conjecture as

S205
?[1]== 6191

216
− π2

3

(
4C +

7

40C

)
. (94)

Broadhurst further conjectured that the odd moments

s5,2k+1 =
∫ ∞

0
t2k+1I0(t)K

4
0 (t) dt

are linear combinations of π2C and π2/C, with rational coefficients, and in particular that

s5,1

π2

?[2]== C (95)

s5,3

π2

?[3]==
(

2

15

)2 (
13C − 1

10C

)
(96)

s5,5

π2

?[4]==
(

4

15

)3 (
43C − 19

40C

)
, (97)

with higher moments obtained by a recursion of the form (10) with polynomials p5,i given in
(11). We have checked these three conjectures to 1200 decimal places.

In the course of this work, we discovered that the moments

t5,2k+1 =
∫ ∞

0
t2k+1I 2

0 (t)K3
0 (t) dt

follow an uncannily similar pattern. If qk and rk are the rational numbers that give s5,2k+1/π
2,

conjecturally, as qkC−rk/C, then we found that qkC+rk/C gives the value of 2t5,2k+1/(
√

15π).
We checked 60 000 decimal places of the resultant evaluations

2t5,1√
15π

�[5]== C (98)

2t5,3√
15π

�[6]==
(

2

15

)2 (
13C +

1

10C

)
(99)

2t5,5√
15π

�[7]==
(

4

15

)3 (
43C +

19

40C

)
, (100)

for which we eventually found a proof, presented in subsection 5.10.
Finally, by doubling one of the masses in the Feynman diagram corresponding to t5,1, we

arrived at the conjectural evaluation∫ ∞

0
tI 2

0 (t)K2
0 (t)K0(2t) dt

?[8]== 1

12
K3K

′
3, (101)

which has been checked to 1200 decimal places.

10 Zentrum für interdisziplinäre Forschung in Bielefeld, 14th of June, 2007. Displays available from
http://www.physik.uni-bielefeld.de/igs/schools/ZiF2007/Broadhurst.pdf leading to 200 000 decimal places for c5,1
and c5,3 in http://paftp.open.ac.uk/pub/staff ftp/dbroadhu/newconst/V5AB.txt.
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Notation. In the eight evaluations (94)–(101) we have used the device
?[n]== or

�[n]== to
distinguish the cases that remain unproven from the three cases in (98)–(100), which we were
eventually able to prove. Some of the labels n = 1, . . . , 8 will recur, as we give equivalent
forms of these conjectured or proven evaluations.

5.2. The odd moments t5,2k+1

Evaluations (98, 99, 100) were easy to check to high precision, thanks to our closed form (55)
for the odd moments s4,2k+1. By expanding one of the functions

I0(t) =
∞∑

n=0

(
tn

2nn!

)2

in the integrand, t2k+1I 2
0 (t)K3

0 (t), of t5,2k+1, we obtain a rapidly converging sum in

t5,2k+1 = 4k−2π2
∞∑

n=k

bn

(
n!

8n(n − k)!

)2

(102)

in terms of the diamond lattice integers (56). To relate t5,1 to a product of complete elliptic
integrals we use Jacobi’s identity√

2K(k)

π
= θ3(q) :=

∞∑
n=−∞

qn2
(103)

with a nome related to k by q = exp(−πK′(k)/K(k)). Specializing to the singular value [24]

k15 = (2 − √
3)(

√
5 − √

3)(3 − √
5)

8
√

2

with the ‘tiny nome’ q15 := exp(−π
√

15) ≈ 0.000005197, we obtain from (93)

C =
√

5 − 1

4
√

5π
K2

15 = 1

2
√

15π
K15K5/3

with K15 := K(k15) and K5/3 := K(k5/3), where

k5/3 = (2 − √
3)(

√
5 +

√
3)(3 +

√
5)

8
√

2

yields the larger nome q5/3 := exp(−π
√

5/3) = q
1/3
15 . Thus evaluation (98) amounts to

t5,1 = π2

16

∞∑
n=0

bn

64n

�[5]== 1

4
K15K5/3 (104)

with a summand bn/64n = O(n−3/2/4n), from (56), giving rapid convergence. By taking 105

terms, we checked (98) to 60 000 decimal places, using the recursion (58) for the diamond
lattice sequence bn. Our closed form in (104) resulted from paying diligent attention to a
footnote in [56, p 121], which led us, eventually, to discover and prove the connection between
quantum field theory and these diamond lattice integers.

We remark that our evaluations of s5,2k+1 and t5,2k+1 may be expressed in terms of �

values, using the corresponding evaluation of K2
15 in [7], as was remarked by Laporta after

Broadhurst’s talk (see footnote 3). For example, we may re-write the conjectural evaluation
for s5,3 in (96) as√

5

2

∫ ∞

0
t3I0(t)K

4
0 (t) dt

?[3]== 13�
(

1
15

)
�
(

2
15

)
�
(

4
15

)
�
(

8
15

)
303

− �
(

7
15

)
�
(

11
15

)
�
(

13
15

)
�
(

14
15

)
15

,

(105)

21



J. Phys. A: Math. Theor. 41 (2008) 205203 D H Bailey et al

which contains all eight values of �(n/15) with n ∈ [1, 14] and coprime to 15. Then the
counterpart for t5,3 in (99) may be written as

π3

4
√

3

∞∑
n=1

n2bn

64n

�[6]== 13�
(

1
15

)
�
(

2
15

)
�
(

4
15

)
�
(

8
15

)
303

+
�
(

7
15

)
�
(

11
15

)
�
(

13
15

)
�
(

14
15

)
15

(106)

by the remarkable sign change discovered in our present work and the relation to diamond
lattice numbers in (102).

5.3. Double integrals

The moments c5,1, s5,1 and t5,1 are easily expressible as double integrals of elementary
functions.

For the four-loop vacuum [56] diagram

V5(a, b, c, d, e) =
∫ ∞

0
tK0(at)K0(bt)K0(ct)K0(dt)K0(et) dt

in two spacetime dimensions, we obtain the double integral

V5(a, b, c, d, e) =
∫ ∞

0

∫ ∞

0
xyS3(a, b, x)D3(x, y, ic)S3(d, e, y) dx dy,

by grouping the internal lines with masses a and b to give a total momentum with norm x2 and
those with masses d and e to give a total momentum with norm y2. Then the coupling term

1

π

∫ π

0

dθ

x2 + 2xy cos θ + y2 + c2
= 1√

(x + y)2 + c2
√

(x − y)2 + c2
= D3(x, y, ic)

comes from an angular average in two Euclidean dimensions. Setting the five masses to unity,
we obtain

c5,1 =
∫ ∞

0

∫ ∞

0

4 arcsinh(x/2) arcsinh(y/2) dx dy√
(4 + x2)(4 + y2)(1 + (x + y)2)(1 + (x − y)2)

, (107)

where we have converted the arctanh function of (22) to a more convenient arcsinh function,
in the equal-mass case.

Similarly, the three-loop sunrise [40] diagram

S5(a, b, c, d, z) =
∫ ∞

0
tK0(at)K0(bt)K0(ct)K0(dt)J0(zt) dt

yields the double integral

S5(a, b, c, d, z) =
∫ ∞

0

∫ ∞

0
xyS3(a, b, x)D3(x, y, ic)D3(y, z, id) dx dy,

by cutting one line in V5 and setting the norm of its Euclidean momentum to z2. Setting the
four masses to unity and analytically continuing to the on-shell point z2 = −1, we obtain

s5,1 =
∫ ∞

0

∫ ∞

0

2 arcsinh(x/2) dx dy√
(4 + x2)(4 + y2)(1 + (x + y)2)(1 + (x − y)2)

?[2]== π

2
√

15
K15K5/3,

(108)

whose conjectural evaluation is given by (95).
We then define

T5(w, a, b, c, z) :=
∫ ∞

0
tJ0(wt)K0(at)K0(bt)K0(ct)J0(zt) dt
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as the angular average of the diagram obtained by cutting two lines in V5 and setting the norms
of their momenta to w2 and z2. Hence we obtain the double integral

T5(w, a, b, c, z) =
∫ ∞

0

∫ ∞

0
xyD3(w, x, ia)D3(x, y, ib)D3(y, z, ic) dx dy,

which leads to

t5,1 =
∫ ∞

0

∫ ∞

0

dx dy√
(4 + x2)(4 + y2)(1 + (x + y)2)(1 + (x − y)2)

�[5]== 1

4
K15K5/3, (109)

whose evaluation is given by (98). If we multiply (109) by 4, we recover the double-integral
discovery reported by Laporta in equations (17)–(19) of [56].

Finally, by doubling one of the internal masses, we obtain∫ ∞

0
tI 2

0 (t)K2
0 (t)K0(2t) dt =

∫ ∞

0

∫ ∞

0

dx dy√
(4 + x2)(4 + y2)(4 + (x + y)2)(4 + (x − y)2)

and hence the conjectural evaluation∫ ∞

0

∫ ∞

0

dx dy√
(1 + x2)(1 + y2)(1 + (x + y)2)(1 + (x − y)2)

?[8]== 1

3
K3K

′
3, (110)

after rescaling x and y by a factor of 2 and invoking (101).
Evaluation (110) resonates with the proven evaluations (44) and (45) in section 3, where

we found that removing (1 + (x − y)2) from the square root in (110) doubles the value of the
integral and that removing (1 + (x + y)2) multiplies it by 4.

We were unable find a transformation of variables for the double integrals in (109) and
(110) that suggested their evaluations as products at the singular values k15 and k3, respectively.
In the following three subsections we show how to express (109) as a single integral of a
complete elliptic integral, in three rather different ways.

As observed in a footnote in [56, p 120], entry 3.1.5.16 in [63, vol 1] is intriguing: for
real parameters k1 and k2, with k2

1 + k2
2 < 1, one has∫ π/2

0

∫ π/2

0

dθ dφ√
1 − k2

1 sin2 θ − k2
2 sin2 φ

= 2K(α)K′(β)

1 +
√

1 − k2
2

, (111)

where

α :=
√

1 − k2
1 −

√
1 − k2

1 − k2
2

1 +
√

1 − k2
2

and β :=
√

1 − k2
1 +

√
1 − k2

1 − k2
2

1 +
√

1 − k2
2

.

Perhaps there are implications for (110) from this general form. As discussed in [19, 39], one
can establish a more recondite counterpart for∫ π/2

0

∫ π/2

0

√
1 − k2

1 sin2 θ − k2
2 sin2 φ dθ dφ.

5.4. Single integrals from polar coordinates

We may recast evaluations (109) and (110) by transforming the more general double integral

J (c) :=
∫ ∞

0

∫ ∞

0

dx dy√
(c + x2)(c + y2)(1 + (x + y)2)(1 + (x − y)2)
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to polar coordinates. With x = r cos θ and y = r sin θ , the product of the first two factors in
the square root gives a term linear in w := cos 4θ , as does the remaining product. An angular
integral of the form∫ 1

−1

dw√
(1 − w2)(2A2 − 1 − w)(2B2 − 1 + w)

= 1

AB
K

(√
A2 + B2 − 1

AB

)
results, with A = 1 + 2c/r2 and B = 1 + 1/r2. Transforming to z = r2/(1 + r2), we obtain
the single integral

J (c) =
∫ 1

0
K
(

z
√

1 + 4c(1 − z)(z + c(1 − z))

z + 2c(1 − z)

)
dz

z + 2c(1 − z)
. (112)

Setting c = 4, we transform evaluation (109) to∫ 1

0
K
(

z
√

(13 − 12z)(5 − 4z)

8 − 7z

)
dz

8 − 7z

�[5]== 1

4
K15K5/3. (113)

Setting c = 1, we transform conjecture (110) to∫ 1

0
K

(
z
√

5 − 4z

2 − z

)
dz

2 − z

?[8]== 1

3
K3K1/3 (114)

since, by definition of a singular value, K1/3 = K ′
3. A hypergeometric version of (114) may

be obtained by writing its left-hand side as the ornate triple sum

π

4

∞∑
n=0

(
(2n)!

22nn!

)3 n∑
m=0

22m

2F1

(
2n + 1, 2n + 1

2n + 2 + m

∣∣∣∣ 1
2

)
(n − m)!(2n + 1 + m)!

?[8]== π2

4
√

3
3F2

( 1
2 , 1

2 , 1
2

1, 1

∣∣∣∣14
)

.

We computed the single integrals in (113) and (114) using Pari-GP, which provides an
efficient agm procedure, for evaluating the complete elliptic integral K, and an efficient intnum
procedure, for the numerical quadrature. In each case, we confirmed the evaluation to 1200
decimal places but were none the wiser as to its origin.

5.5. Single integrals over discontinuities

Seeking illumination, we turned to integrals over the elliptic integral (62) in the discontinuity
D4, coming from the Dalitz-plot integration in (61).

For the four-loop vacuum diagram V5 we may fold D4 from (62) with V3 from (28), to
obtain

V5(a, b, c, d, e) =
∫ ∞

a+b+c

2vD4(a, b, c, v)V3(v, d, e) dv. (115)

With unit masses and y = 1/v, this gives the moments

c5,1 =
∫ 1

3

0

D(y)L(y)√
1 − 4y2

dy (116)

c5,3 =
∫ 1

3

0

y2D(y)

(1 − 4y2)2

(
4(1 − 2y2 + 4y4)L(y)√

1 − 4y2
+ 2 − 8y2 + 8(1 − y2) log(y)

)
dy, (117)

with a complete elliptic integral in D(y), from (64), and a dilogarithmic function
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L(y) := 1

2
Li2

(√
1 − 4y2 − 1√
1 − 4y2 + 1

)
− 1

2
Li2

(√
1 − 4y2 + 1√
1 − 4y2 − 1

)
(118)

= −Li2

(
1 −

√
1 − 4y2

2

)
+

1

2
log2

(
1 −

√
1 − 4y2

2

)
− log2(y) +

π2

12
, (119)

with (118) coming from (28) and the reduction to a single convenient Li2 value in (119) obtained
by transformations in [57, A.2.1] and noted in [34, equation (3.21)]. Further differentiations
yield an even lengthier integrand for c5,5. However, we expected the odd moments c5,2k+1 with
k > 1 to be expressible as Q-linear combinations of c5,3, c5,1 and unity. Hence we lazily used
PSLQ to arrive at our ninth conjecture

c5,5
?[9]== 76

15
c5,3 − 16

45
c5,1 +

8

15
(120)

with a final rational term originating, presumably, from the analytically trivial input∫ ∞

0
t5K0(t)K

4
1 (t) dt = lim

t→0

t5K5
1 (t)

5
= 1

5
(121)

to the richer (and more challenging) recursions considered in the talk of footnote 3, which
dealt with integrals of products of powers of t, K0(t) and the derivative K ′

0(t) = −K1(t).
From (116), (117) and the eminently believable conjecture (120), higher odd moments are
obtainable from (10) and (11). Unfortunately, we lack a more explicit evaluation of the single
integrals for c5,1 and c5,3.

For the three-loop sunrise diagram, the corresponding folding is

S5(a, b, c, d,w) =
∫ ∞

a+b+c

2vD4(a, b, c, v)S3(v, d,w) dv, (122)

from which we obtain the on-shell value

s5,1 =
∫ 1

3

0

2D(y)√
1 − 4y2

arctanh

(√
1 − 2y

1 + 2y

)
dy

?[2]== π

2
√

15
K15K5/3 (123)

and, by use of Bessel’s equation, the more complicated integral

s5,3 =
∫ 1

3

0

4y2D(y)

(1 − 4y2)2

⎛⎝2(1 − 2y2 + 4y4) arctanh
(√ 1−2y

1+2y

)√
1 − 4y2

− 1 + y2

⎞⎠ dy (124)

for the next odd moment, conjecturally given by (96). Then PSLQ gives

s5,5
?[2,3,4]== 76

15 s5,3 − 16
45 s5,1, (125)

which presumably results from a partial integration in the even richer (and even more
challenging) recursions for integrals of products of powers of t, I0(t), I1(t),K0(t) and
K1(t). We used Pari-GP to evaluate the dispersive single integrals for the first three odd
moments s5,2k+1, with k = 0, 1, 2 to 1200 decimal places, and hence checked the conjectured
evaluations (95)–(97) and their consequent integer relation (125), to this high precision.

Similarly, the folding

T5(u, a, b, c,w) =
∫ ∞

a+b+c

2vD4(a, b, c, v)D3(u, iv,w) dv (126)

gives, with y = 1/v, the on-shell, unit-mass result

t5,1 =
∫ 1

3

0

D(y)√
1 − 4y2

dy
�[5]== 1

4
K15K5/3 (127)
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and, by use of Bessel’s equation

t5,3 =
∫ 1

3

0

4y2(1 − 2y2 + 4y4)D(y)

(1 − 4y2)5/2
dy (128)

for the next odd moment, given by (99). Then PSLQ gives

t5,5
�[7]== 76

15
t5,3 − 16

45
t5,1, (129)

which was checked to 60 000 decimal places, in the more convenient sum
∞∑

n=0

bn

64n

(
16n2(n − 1)2 − 76

15
4n2 +

16

45

)
�[7]== 0 (130)

over the diamond lattice integers in (102).
By setting u = w = i, a = b = 1 and c = 2 in (126) and transforming to y = 4/v, we

obtain the representation∫ 1

0

4yK
( 2+y

2−y

√
1−y

1+y

)√
(2 − y)3(2 + y)(1 + y)

dy
?[8]== 1

3
K3K1/3 (131)

as the dispersive counterpart to (114), but still have no better idea as to why the third singular
value occurs.

5.6. Relations between elliptic integrals

We found a third way of stating our conjectures in terms of integrals over K. This arose from
the double-integral representation

s5,1 =
∫ ∞

0

∫ ∞

0

2 arcsinh(x/2) dx dy√
(4 + x2)(4 + y2)R(x, y)

?[2]== π

2
√

15
K15K5/3 (132)

with the product (1 + (x + y)2)(1 + (x − y)2) in (108) replaced by the non-factorizable term

R(x, y) =
∣∣∣∣ (x + i)2 + 4 + y2

2

∣∣∣∣2 = x2 +

(
3 + x2 + y2

2

)2

.

We obtained (132) by introducing a Feynman parameter, z, to combine two unit-mass
propagators, with momenta q − p and r − q, in the integral

1

AB
=
∫ 1

0

dz

(zA + (1 − z)B)2

with A := N(q − p) and B := N(r − q). Here, p is the combined momentum of the
other two internal lines and r is the external momentum of the three-loop sunrise diagram.
Integration over the two-dimensional vector q leaves an integral over z with a denominator
z(1 − z)(r − p) · (r − p) + 1 that is symmetric about the mid-point z = 1

2 . Integrating over
the angle between p and r, setting p · p = x2 and analytically continuing to the on-shell point
r · r = −1, we obtain (132) by making the transformation z(1 − z) = 1/(4 + y2) which maps
z = 0 to y = ∞ and the mid-point z = 1

2 to y = 0.
This method provided an analytical advance, since it proved the equality E1(u) = E2(u)

between the elliptic integrals

E1(u) := 1

2

∫ ∞

0

dv√
v(4 + v)(1 + 2u + 2v + (u − v)2)

(133)
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E2(u) :=
∫ ∞

0

dv√
v(4 + v)(4u + (3 + u + v)2)

, (134)

where we have transformed to u = x2 and v = y2. When Maple was asked to evaluate E1

and E2 it printed different expressions, each containing an incomplete elliptic integral

F(sin φ, k) :=
∫ φ

0

1√
1 − k2 sin2 θ

dθ

with a relation between k and φ which we reduced to the form

k =
√

1 − 2 cos φ

(1 − cos φ) sin φ
. (135)

The incomplete integral was eliminated by computing (2E1 + E2)/3, for which Maple gave an
expression involving only the complete elliptic integral K(k). By this means, we proved that

F(sin φ, k) = 2
3 K(k) (136)

whenever k and φ are related by condition (135). Moreover, by using [1, 17.4.13], we proved
that this condition also gives the evaluation

F(1 − cos φ, k) = 1
3 K(k), (137)

which we shall use in the following subsection.
Our result for E(x) := E1(x

2) = E2(x
2) is

E(x) =
√

sin(2α(x))

2x

K(sin α(x))

3
= π

3
√

3
HeunG (9, 3; 1, 1, 1, 1;−x2) (138)

with

α(x) = 3 arctan(x) − arctan(x/3)

2
. (139)

This then gives

s5,1 =
∫ ∞

0

2E(x)√
4 + x2

arcsinh
(x

2

)
dx

?[2]== π

2
√

15
K15K5/3 (140)

t5,1 =
∫ ∞

0

E(x)√
4 + x2

dx
�[5]== 1

4
K15K5/3 (141)

as the non-dispersive counterparts to the integrals (123) and (127) over the different complete
elliptic integral in D(y), with a closely related HeunG function in (64).

We note that E(x) contains a factor of 1/3 from evaluating (2E1 + E2)/3. This ensures
that we correctly reproduce

s3,1 = E(0) = π

3
√

3
= L−3(1)

using α(x) = 4x/3 + O(x3). The relationship

tan(2α(x)) = 8x

3 − 6x2 − x4
(142)

gives E(x) = log(x2)/x2 + O(log(x)/x4), as expected at large momentum.

27



J. Phys. A: Math. Theor. 41 (2008) 205203 D H Bailey et al

5.7. Expansions near singularities

The HeunG forms for D(y) and E(x), in (64) and (138), yield expansions near the regular
points y = 1

3 and x = 0, respectively. However, these regular expansions were not needed
in our numerical integrations, since the agm procedure of Pari-GP is highly efficient for the
evaluation of K(k) when k is not close to the singular point at k = 1. What we really need,
and eventually found, are the expansions

D(y)

3y
= −

∞∑
k=0

(hk + ak log(y2))y2k (143)

x2E(x) = −
∞∑

k=0

hk − ak log(x2)

(−x2)k
(144)

that isolate the logarithmic singularities as y → 0 and x → ∞, respectively. Here ak is the
hexagonal lattice integer of (24) and hk is determined by the differential equation for D(y),
or equivalently E(x), which yields the recursion

(k + 1)2hk+1 − (10k2 + 10k + 3)hk + 9k2hk−1 = −2(k + 1)ak+1 + 10(2k + 1)ak − 18kak−1

(145)

with a starting value h0 = 0. We note that (143) converges for 0 < y < 1
3 and (144) converges

for x > 3. We were alerted to role of the hexagonal lattice integers by the regular expansion

E(x) = π

3
√

3

∞∑
k=0

ak

(−x2

9

)k

, (146)

which is valid for |x| < 1, since ak = O(9k/k) for large k.
We were able to solve the recursion (145) in closed form, by considering the moment

T4(u, a, b, v) :=
∫ ∞

0
tJ0(ut)K0(at)K0(bt)J0(vt) dt

=
∫ ∞

a+b

2wD3(a, b,w)D3(u, v, iw) dw

which yields, in general, an incomplete elliptic integral

T4(u, a, b, v) =
∫ ∞

(a+b)2

dx√
(x − (a + b)2)(x − (a − b)2)(x + (u + v)2)(x + (u − v)2)

(147)

by transforming to x = w2. In the special case with a = 1, b = 1/y > 1 and u = v = i,
Maple gave the evaluation

T4(i, 1, 1/y, i) = 2y2F(1 − cos φ, k)√
(1 + 3y)(1 − y)3

with

φ = arccos

(
2y

1 + y

)
, k =

√
(1 − 3y)(1 + y)3

(1 + 3y)(1 − y)3
. (148)

This relation between k and φ is precisely as in (135). Hence, using (137), we obtain

yD(y)

6
= T4(i, 1, 1/y, i) :=

∫ ∞

0
tI 2

0 (t)K0(t)K0(t/y) dt (149)
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since D(y) in (64) contains the complete elliptic integral K(k) with k given in (148). Then we
used the expansion of I 2

0 (t), in (92), and of [1, 9.6.13]

K0(t) = −(log(t/2) + γ )I0(t) +
∞∑

k=1

(
t k

2kk!

)2 k∑
n=1

1

n
, (150)

where γ is Euler’s constant, to obtain from (143) and (149) the closed form

hk =
k∑

j=1

(
k

j

)2(2j

j

) j−1∑
n=0

2

k − n
, (151)

which is a harmonic twist of the closed form (24) for the hexagonal lattice integers ak . Hence
we obtain an integer sequence for Hk := k!hk/4, with k > 0, beginning with

1, 13, 263, 7518, 280074, 12895572, 707902740, 45152821872, 3282497058384 . . . .

Thanks to this sequence, we were able to evaluate all the single integrals over D(y) and E(x) in
this work to 1200 decimal places, since we had very good control of logarithmic singularities
near the endpoints, as y → 0 and x → ∞, respectively.

5.8. A modular identity from quantum field theory

A careful analysis [33] of the Dalitz plot shows that the relation (135) between k and φ implies
that [33, equation (5.17)]

Z(F(sin φ, k), k) = 1
3k2 sin3 φ, (152)

where Z is Maple’s JacobiZeta function. Combining our new finding (136) with this, we obtain
from [1, 17.4.38] an elementary evaluation of
√

3π

4K(k)

∞∑
n=0

(
4

(q−3n−1 − q3n+1)
− 4

(q−3n−2 − q3n+2)

)
= 1

2
t−1 − 1

6
t−3, (153)

where q is the nome associated with k and t = tan(φ/2) is determined algebraically by

r = (
4k2(1 − k2)

) 1
3 , s = 2k

√
r + k2 + 2k2 +

2(1 − 2k2)r√
1 + r + r2

− r,

t =
(

k −
√

r + k2 +
√

s

3k +
√

r + k2 − √
s

) 1
2

.

In particular, for k = 1/
√

2 we obtain t = (2/
√

3 − 1)1/4.

A modular setting for this result is provided by Jacobi’s identity

√
kθ3(q) = θ2(q) :=

∞∑
n=−∞

q(n+ 1
2 )

2

(154)

with θ3(q) related to K(k) by (103). Summation of the Lambert series in (153) gives
θ3

2 (q3/2)/θ2(q
1/2), which is a result known to Ramanujan. Thus we have proven the modular

identity
√

3
θ3

2 (q3/2)

θ2
3 (q)θ2(q1/2)

= t−1 − 1

3
t−3, (155)

where c := t−2 is the unique positive root of the polynomial

S(x) = 3 + 8

(
1 − 2

θ4
2 (q)

θ4
3 (q)

)
x + 6x2 − x4 (156)
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and indeed 1 � c � 3. The real roots are −θ2
3 (q1/3)/θ2

3 (q) and 3θ2
3 (q3)/θ2

3 (q), as has been
known since Joubert and Cayley [24, (4.6.14)]. Hence (155) devolves to

θ3
2 (q3/2)

θ2(q1/2)
= θ2

3 (q)

{
θ3(q

3)

θ3(q)
− θ3

3 (q3)

θ3
3 (q)

}
. (157)

Such modular identities are machine provable—in principle and in practice—by
computing that sufficiently many terms of the Taylor series agree. This is the so-called
‘modular machine’ [25, section 3]. In this case confirming 1000-term agreement is more
than adequate to prove (157), as takes seconds in Maple. A conventional proof can be pieced
together from [24, theorem 4.11]. Our proof came from quite another source: the Lorentz
invariance of quantum field theory in two spacetime dimensions, which enabled us to prove
that (133) and (134) are identical.

5.9. A discrete sum rule

It seemed reasonable to try to prove the evaluation for t5,1 in one of its forms

t5,1 =
∫ 1

3

0

D(y) dy√
1 − 4y2

�[5]== 1

4
K15K5/3 (158)

t5,1 =
∫ ∞

0

E(x) dx√
4 + x2

�[5]== 1

4
K15K5/3 (159)

with D(y) given by (64) and E(x) by (138).
For example, by using [23, (2.35), p 119] one may deduce that∫ π/2

0

∫ π/2

0

dθ dφ√
64 − (16 − sin2 φ) sin2 θ

= 1

8
K15K5/3 (160)

and then hope to relate some such recognizable double integral to the single integrals in (158)
and (159).

In fact, the integral forms (158) and (159) resisted prolonged and intense efforts to find a
proof. A break-through came from the sum in (104), which we rewrite as

∞∑
k=1

bk−1

64k

�[5]== 1

16π2
K15K5/3, (161)

whose right-hand side we shall relate to the first of the generalized Watson integrals [49, 50]

Wj(z) := 1

π3

∫ π

0

∫ π

0

∫ π

0

dθ1 dθ2 dθ3

1 − zwj (θ1, θ2, θ3)
(162)

with

w1(θ1, θ2, θ3) = cos θ1 cos θ2 + cos θ2 cos θ3 + cos θ3 cos θ1

3
(163)

in the case of a face-centred cubic (f.c.c.) lattice [46],

w2(θ1, θ2, θ3) = cos θ1 + cos θ2 + cos θ3

3
(164)

in the case of a simple cubic (s.c.) lattice [48],

w3(θ1, θ2, θ3) = cos θ1 cos θ2 cos θ3 (165)
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in the case of a body-centred cubic (b.c.c.) lattice [47] and

w4(θ1, θ2, θ3) = 1 + cos θ1 cos θ2 + cos θ2 cos θ3 + cos θ3 cos θ1

4
(166)

in the case of a diamond lattice [44].
In 1971, Joyce gave the notable f.c.c. evaluation [46, equation (4)]

W1(z) = 12

π2

K(k+(z))K(k−(z))

3 + z
(167)

with

k2
±(z) = 1

2
± 2

√
3z

(3 + z)3/2
−

√
3

2

(3 − z)(1 − z)1/2

(3 + z)3/2
. (168)

Our progress resulted from the intriguing observation that at z = 1
5 this gives k−(1/5) = k15

and k+(1/5) = k5/3. Hence we obtain

W1

(
1

5

)
= 15

4π2
K15K5/3, (169)

which reduces (161) to the discrete sum rule
∞∑

k=1

bk−1

64k

�[5]==
∞∑

k=1

fk−1

60k
(170)

where the f.c.c. lattice integers

fk := 4k

π3

∫ π

0

∫ π

0

∫ π

0
(cos θ1 cos θ2 + cos θ2 cos θ3 + cos θ3 cos θ1)

k dθ1 dθ2 dθ3 (171)

give the Taylor coefficients of the expansion

W1(z) =
∞∑

k=0

fk

( z

12

)k

(172)

for |z| � 1. In the following subsection, we show that (170) derives from a more general set
of sum rules. Then, in subsection 5.11, we shall expose a cubic modular equation, implicit
in (168).

5.10. Sum rules for diamond and cubic lattice integers

The first few terms in the sequence for the f.c.c. lattice integers (171) are

1, 0, 12, 48, 540, 4320, 42240, 403200, 4038300, 40958400, 423550512, 4434978240

(173)

for n = 0 . . . 11. The values up to f8 = 4038300 are recorded in [70, table 1] and the next
integer, f9 = 40958400, was given by Domb [36] and recorded11 in entry A2899 of the on-line
version of [66], which provided us with no closed formula for fk . By way of contrast, the s.c.,
b.c.c. and diamond lattice expansions

W2(z) =
∞∑

k=0

(
2k

k

)
ak

( z

6

)2n

(174)

W3(z) =
∞∑

k=0

(
2k

k

)3 ( z

8

)2n

(175)

11 See http://www.research.att.com/∼njas/sequences/A002899.
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W4(z) =
∞∑

k=0

bk

( z

16

)n

(176)

lead to explicit expressions for the integer sequences in entries A2896, A2897 and A2895,
respectively, of the on-line version of [66]. As in the f.c.c. case (172), expansions (174) to
(176) are valid for |z| � 1. For convenience, we repeat here the closed forms

ak =
k∑

j=0

(
k

j

)2(2j

j

)
, bk =

k∑
j=0

(
k

j

)2(2k − 2j

k − j

)(
2j

j

)
, (177)

for the hexagonal and diamond lattice integers, previously given in (24) and (56). The
hexagonal lattice integers ak appear in the s.c. lattice integers

(2k

k

)
ak of expansion (174). We

also note the terminating hypergeometric series

bk =
(

2k

k

)
4F3

( 1
2 ,−k,−k,−k

1, 1,−k + 1
2

∣∣∣∣1)
for the diamond lattice integers. Likewise

ak = 3F2

( 1
2 ,−k,−k

1, 1

∣∣∣∣4) .

We were able to derive the closed form

fk =
k∑

j=0

(
k

j

)
(−4)k−j bj (178)

for the f.c.c. lattice integers, by noting the similarity between (163) and (166), which leads to
the functional relationship

1

4N + 4
W4

(
4

N + 1

)
= 1

4N
W1

(
3

N

)
(179)

between the Green functions for the diamond and f.c.c. lattices. Then for N � 3 we may
expand each side, to obtain the sum rule

∞∑
k=1

bk−1

(4N + 4)k
=

∞∑
k=1

fk−1

(4N)k
(180)

and derive the closed form (178) for the f.c.c. lattice integers defined in (171) by further
expanding the left-hand side in powers of 1/N .

Setting N = 3 in (180), we prove the sum rule
∞∑

k=1

bk−1

16k
=

∞∑
k=1

fk−1

12k
= 1

12
W1(1) = 1

4π2
K3K1/3 (181)

from Watson’s evaluation [71] of W1(1), at the singular value k3.
Setting N = 15 in (180), we prove the sum rule

∞∑
k=1

bk−1

64k
=

∞∑
k=1

fk−1

60k
= 1

60
W1

(
1

5

)
= 1

16π2
K15K5/3 (182)

at the singular value k15. Hence we have proven (170) and all the other forms of our initial
conjecture (98) for the moment t5,1. By taking up to four differentials of W1(3/N), before
setting N = 15, one may also prove the evaluations of t5,3 in (99) and t5,5 in (100), using the
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evaluations of the elliptic integrals E(k15) and E(k5/3) given explicitly in the talk of footnote
3 and derivable from identities in [24].

These eventual proofs of our conjectures for the moments t5,2k+1 came from noting a
parenthetical remark in [48, p 601] to the effect that the Green function for the diamond lattice
is given by a product of complete elliptic integrals. It will be useful to consider the generating
function D̃ which has the explicit form

D̃(y) :=
2K

(√ 16y3

(1+3y)(1−y)3

)
π
√

(1 + 3y)(1 − y)3
= 1

AGM(
√

(1 − 3y)(1 + y)3,
√

(1 + 3y)(1 − y)3)
(183)

with a complete elliptic integral that is complementary to that in (64) for D(y). For |y| < 1
3 ,

we have the expansion

D̃(y) = HeunG(9, 3; 1, 1, 1, 1; 9y2) =
∞∑

k=0

aky
2k (184)

in terms of the hexagonal lattice integers in (177).
The full story, for the f.c.c., s.c., b.c.c. and diamond lattices, is then provided by the four

identities

D̃2(
√−x) =

( ∞∑
k=0

ak(−x)k

)2

=
∞∑

k=0

fk

xk

(1 + 3x)2k+2
(185)

=
∞∑

k=0

ak

(2k

k

)
(−x(1 + x)(1 + 9x))k

((1 − 3x)(1 + 3x))2k+1
(186)

=
∞∑

k=0

((2k

k

)
xk
)3

((1 + x)3(1 + 9x))k+ 1
2

(187)

=
∞∑

k=0

bk

xk

((1 + x)(1 + 9x))k+1
, (188)

which are valid for sufficiently small x and were obtained by simplification of formulae in
[46–48].

At bottom, all four results (185)–(188) originate from the first paper [16] of Wilfrid
Norman Bailey’s adroit series on infinite integrals involving Bessel functions, in much the
same way that our proof of (33) resulted from his second paper [17]. In [16, equation (8.1)],
Bailey showed that

∫∞
0 Jµ(at)Jν(bt)Jρ(ct) dt is given by a product of 2F1 hypergeometric

functions. In [46–48], Joyce used this result to obtain diamond and cubic lattice Green
functions, in three spatial dimensions, from the square of the Green function (183) for the
hexagonal (or ‘honeycomb’) lattice in two spatial dimensions, for which we have given a
HeunG form in (184) equivalent to that given in [42, equation (4)]. With x � 0, the explicit
form of E in (138) provides an analytic continuation for

D̃(
√−x) = 3

√
3

π
E(3

√
x). (189)

The singular value k15, obtained from the diamond and f.c.c. lattice sums in (182), also
appears in the s.c. and b.c.c. lattice sums
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∞∑
k=0

(2k

k

)
(−45)k

ak = 3
√

5

2π2
K15K5/3 (190)

∞∑
k=0

(2k

k

)3

24k(
√

5 + 1)8k
= 4

π2
K2

15 (191)

obtained by setting x = x15 := 3 − 4
3

√
5 ≈ 0.018576 in (186) and (187). Setting x = x15 in

(189), we obtain the singular value k5/3 = sin(α(3
√

x15)) from definition of the angle α(x)

in (139). This is confirmed by the formula for tan(2α(x)) in (142). We remark that (190)
follows from the functional relationship given in [50, equation (3.23)] and that (191) follows
from [24, table 5.2a (N = 15)] and the Clausen product in [24, theorem 5.7(a)(i), p 180]. We
now show how to obtain other singular values from lattice Green functions, using a modular
identity.

5.11. Cubic modular equations

The cubic modular equation [24, theorem 4.1, p 110]

θ4(q)θ4(q
3) + θ2(q)θ2(q

3) = θ3(q)θ3(q
3) (192)

relates instances of the Jacobi functions θ2, in (154), and θ3, in (103), with nomes q and q3, to
corresponding instances of

√
k′θ3(q) = θ4(q) :=

∞∑
n=−∞

(−1)nqn2
(193)

with k′ := √
1 − k2 and nome q associated with k. If we associate q3 with the complete elliptic

argument l, then (192) gives the identity [24, equation (4.2.6)]
√

k′l′ +
√

kl = 1. The results
of the previous subsection follow from the notable circumstance that (168) gives√

k′
+(z)k

′−(z) +
√

k+(z)k−(z) − 1 = 0, (194)

which may be proven symbolically, by setting z = 1 − t2 and denoting the left-hand side of
(194) by y(t). Then y(t) is analytic on the closed unit disk, |t | � 1, and Maple computes an
algebraic equation of the form y(t)P (y(t), t) = 0 with P(0, 0) nonzero. This proves that y(t)

vanishes in some neighbourhood of t = 0 and hence for |t | � 1.
The resulting modular identities for the Green functions of cubic lattices are most

conveniently obtained from the Green function W4, for the diamond lattice, with a parametric
solution

W4(z4) = θ2
3 (q)θ2

3 (q3), z4 := 1 − 4η2

1 − η2
, η := 3θ4

3 (q3) − θ4
3 (q)

3θ4
3 (q3) + θ4

3 (q)
, (195)

corresponding to the series solution (188) at x = (1 − 2η)/(3 + 6η). Then the Green functions
for the f.c.c., s.c. and b.c.c. lattices are given by the functional relationships

4

3
(1 − η2)W1(z1) = 2

3η
(1 − η2)W2(z2) =

√
3 − 3η

1 + η
W3(z3) = W4(z4) (196)

with the arguments

z1 = 1 − 4η2, z2 =
√

z1

(
1 − 1

η2

)
, z3 = 1 − 2η

2 + 2η

√
z4, (197)
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obtained from (185) to (187), respectively, by the substitution x = (1−2η)/(3 + 6η) that gave
(195). We note the alternative b.c.c. parameterization [24, theorem 5.7(a)(i), p 180],

W3(z3) = 3F2

( 1
2 , 1

2 , 1
2

1, 1

∣∣∣∣z2
3

)
= θ4

3 (q3), z3 = 2l
√

1 − l2, l := θ2
2 (q3)

θ2
3 (q3)

. (198)

The equivalence of the forms for z3 in (197) and (198) results from the modular identity

z2
3 = (1 − 2η)2

(2 + 2η)2

1 − 4η2

1 − η2
= 4l2(1 − l2) = (2ll′)2 (199)

with η defined in (195) and l in (198). To prove (199), we combined the cubic modular identity
(192) with the Joubert–Cayley result [24, (4.6.14)] S

(
3θ2

3 (q3)
/
θ2

3 (q)
) = 0, where S is defined

in (156). Alternatively, we may again apply the ‘modular machine’ [25, section 3]12.
Noting that the lattices sums in (181) and (182) yield the singular values k3 and k15,

from rational summands, we wondered if any other singular value might be obtained from
a lattice Green function in such a neat manner. We know from Watson’s classic work
[71] that W3(1) yields the singular value k1 = 1/

√
2 while W2(1) yields the singular

value k6 = (
√

3 − √
2)(2 − √

3), as noted in [23]. Moreover, (198) is equivalent to
W3(2kNk′

N) = 4K2
N

/
π2, for q3 = exp(−π

√
N). Hence W3(z3) yields the singular values

k1, k3, k7 for the rational arguments z3 = 1, 1
2 , 1

8 , respectively.
Prompted by the sum over s.c. lattice integers in (190), we sought further examples, in

which a sum over rational numbers might lead to a singular value kN . We found five new
results for W2, which appear to exhaust the cases with rational summands. These occur with
N/3 = 7, 11, 19, 31, 59, for which we obtained

∞∑
k=0

(2k

k

)
(−108)k

ak = 6

π2
(3

√
3 −

√
21)K21K7/3 = 3

7
G(21) (200)

∞∑
k=0

(2k

k

)
(−396)k

ak = 6

π2
(3

√
33 − 5

√
11)K33K11/3 =

√
3√
11

G(33) (201)

∞∑
k=0

(2k

k

)
(−2700)k

ak = 30

π2
(3

√
57 − 13

√
3)K57K19/3 = 15

19
G(57) (202)

∞∑
k=0

(2k

k

)
(−24300)k

ak = 90

π2
(39

√
3 − 7

√
93)K93K31/3 = 45

31
G(93) (203)

∞∑
k=0

(2k

k

)
(−1123596)k

ak = 69

8π2
(
√

3 − 1)9
√

59K177K59/3 = 23
√

3√
59

G(177), (204)

with reductions to � values given by

G(N) = 1

2
√

2π

4N−1∏
n=1

[
�

(
n

4N

)] 1
4 (−4N |n)

, (205)

where �(n/(4N)) contributes to the product if n is coprime to 4N and then occurs with an
exponent ± 1

4 , according as the sign of the Legendre–Jacobi–Kronecker symbol (−4N |n).

12 Striking cubic modular equations (q 
→ q3 or N 
→ 9N ), originating with Ramanujan, are explored in [24,
section 4.7]. In particular, there are attractive cubic recursions for the cubic multiplier M = √

(1 + η)/(3 − 3η) =
θ2

3 (q3)/θ2
3 (q), as occurs in (196).
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We remark that p = 7, 11, 19, 31, 59 are the only primes for which N = 3p is a disjoint
discriminant of type one, as considered in [24, equation (9.2.8), p 293].

We may obtain other singular values by choosing the argument of W4 in (195) to be an
appropriate algebraic number. For example, the sums

∞∑
k=0

bk

(12 + 4
√

13)2k
= 4

π2
K39K13/3 (206)

∞∑
k=0

bk

(3
√

3 + 5)2k(6
√

3 + 4
√

7)2k
= 4

π2
K105K35/3 (207)

over the diamond lattice integers bk in (177) have relatively simple surds in their summands,
obtained by setting q = exp(−π

√
13/3) and q = exp(−π

√
35/3) in the parametric solution

(195). We may also obtain quartic values of z4 and evaluations like (207) at the even singular
values kN with N/6 = 3, 5, 7, 13, 17. We remark that p = 5, 7, 13, 17 are the only primes for
which N/2 = 3p is a disjoint discriminant of type two, as considered in [24, equation (9.2.9),
p 293].

5.12. Integral sum rules

Unfortunately, the discrete sum rule (181), at the singular value k3, does not prove conjecture
(101) but instead converts it to the conjectural integral sum rule∫ ∞

0
tI0(t)

(
I0(t)K0(2t) − 1

3
I0(2t)K0(t)

)
K2

0 (t) dt,
?[8]== 0, (208)

where the term containing I0(2t) is now proven to yield the singular value k3, whose appearance
in the term containing K0(2t) was conjectured in (101).

It looks to be an even tougher proposition to prove the sum rule∫ ∞

0
tI0(t)

(
K0(t) − 2π√

15
I0(t)

)
K3

0 (t) dt
?[2]== 0, (209)

for which we have now obtained two representations in terms of integrals of complete elliptic
integrals, namely

∫ 1
3

0

D(y)√
1 − 4y2

(
arctanh

(√
1 − 2y

1 + 2y

)
− π√

15

)
dy

?[2]== 0 (210)

∫ ∞

0

E(x)√
4 + x2

(
arcsinh

(x

2

)
− π√

15

)
dx

?[2]== 0, (211)

with D(y) given in (64), E(x) given in (138) and the three-loop sunrise diagram s5,1 appearing
via the more demanding logarithmic terms in (123) and (140).

As a companion to the proven evaluation (50) and the discrete sum rule (52), we present∫ π/2

0

K(sin θ)√
1 + 3 sin2 θ

(
arcsinh(2 tan θ) − π√

3

)
dθ

?[10]== 0 (212)

as our penultimate conjecture, also checked to 1200 decimal places. If the mathematics of
sum rule (212) might be elucidated at the singular value k3, then there might be some hope for
a proof of the quantum field theory result (209), at the singular value k15.
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5.13. The even moment c5,0

We were unable to derive single integrals of elliptic integrals for the even moments c5,2k . A
double-integral representation is readily available by setting w = 0 in the Aufbau

S6(a, b, c, d, e,w) =
∫ ∞

−∞
S4(a, b, c, v)S3(d, e, v + w) dv

=
∫ ∞

−∞

∫ ∞

−∞
S3(a, b, u)S2(c, u + v)S3(d, e, v + w) du dv (213)

to obtain

V 5(a, b, c, d, e) = π

2

∫ ∞

−∞

∫ ∞

−∞

S3(a, b, u)S3(d, e, v)√
c2 + (u + v)2

du dv (214)

with S3 given by (30). Setting the five parameters to unity and making the transformations
u = 2 tan θ and v = 2 tan φ, we obtain

c5,0 = π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ)K(sin φ)√
cos2 θ cos2 φ + 4 sin2(θ + φ)

dθ dφ. (215)

The higher even moments are obtained by suitable differentiations of (214) with respect to c,
before setting c = 1.

6. Six Bessel functions

We are now equipped to write the odd moments t6,1, s6,1 and c6,1 as single or double integrals
over complete elliptic integrals, with integrands that are computable with great efficiency, using
the exponentially fast process of the arithmetic-geometric mean, discovered by Lagrange,
around 1784, and independently by Gauss, at the age of 14, in 1791 [3, 24].

6.1. The odd moments t6,2k+1

We begin by folding D4, in (62), with T4, in (147), to determine

T6(u, a, b, c, d, v) :=
∫ ∞

0
tJ0(ut)K0(at)K0(bt)K0(ct)K0(dt)J0(vt) dt

=
∫ ∞

a+b+c

2wD4(a, b, c,w)T4(u, d,w, v) dw,

where we group the three internal lines with masses a, b and c to have a total momentum with
norm w2. Setting a = b = c = d = 1, u = v = i and w = 1/y, we obtain one instance of
D(y), from its definition D(y) := 2D4(1, 1, 1, 1/y)/y, and another, somewhat surprisingly,
from the novel result D(y) = 6T4(i, 1, 1/y, i)/y in (149). Hence we obtain

t6,1 =
∫ ∞

0
tI 2

0 (t)K4
0 (t) dt = 1

3

∫ 1
3

0

D2(y)

2y
dy (216)

with an initial factor of 1
3 arising from (137), in the special case (135). This is a rather efficient

representation of t6,1, which delivers 1200 decimal places in 2 min, using Pari-GP. Similarly,
we may derive a one-dimensional integral for higher odd moments by differentiations of
D4(a, b, c,w) with respect to one of its masses, before going to the equal-mass point. More
conveniently, one may use the summation

t6,2k+1 =
∞∑

n=0

(
2n

n

)
c4,2k+2n+1

(2nn!)2
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that follows from (92). By this means, we found that 85
72 t6,3 − 1

36 t6,1 reproduces the value of
t6,5 to 1200 decimal places.

6.2. The odd moments s6,2k+1

We were unable to derive a one-dimensional integral over agm functions for s6,1, though we
shall conjecture such an integral, in the following subsection. Here, the best that we can do
comes from using the folding

S6(a, b, c, d, e,w) =
∫ ∞

a+b+c

2uD4(a, b, c, u)S4(d, e, u,w) du,

which leads to a choice of integrals for

S4(d, e, u,w) =
∫ ∞

d+e+u

2vD4(d, e, u, v)S2(v,w) dv

=
∫ ∞

d+e

2vD3(d, e, v)S3(v, u,w) dv,

with the first form involving an agm and the second an arctanh procedure. The latter is more
convenient, since it yields the rectangular double integral

s6,1 =
∫ 1

3

0
D(y)

∫ 1
2

0

4z arctanh
√

A−/A+√
(1 − 4z2)A+A−

dz dy, (217)

with A± := (y ± z)2 − y2z2, obtained by transforming to y = 1/u and z = 1/v, and D(y)

given in (64). We remark that A+ is positive, within the rectangle of integration, and that
when A− is negative an analytic continuation of arctanh to arctan keeps the integrand real and
positive. Higher odd moments may be obtained by differentiations with respect to w, before
setting w2 = −1. More conveniently, we may use the summation

s6,2k+1 =
∞∑

n=0

c5,2k+2n+1

(2nn!)2
, (218)

since c5,1 and c5,3 were computed by Broadhurst to 200 000 decimal places (see footnote 3)
and higher moments are (conjecturally) determined by them, using (120) and the appropriate
recursion from (10). By this means, we found that 85

72 s6,3 − 1
36 s6,1 reproduces the value of s6,5

to 1200 decimal places.

6.3. Sum rules

Our final conjecture is that there is a infinite tower of sum rules relating moments in which
powers of K0 are replaced by corresponding powers of πI0. We were alerted to this possibility
by the sum rule∫ ∞

0

(
π2I 2

0 (t) − K2
0 (t)

)
K2

0 (t) dt = 0 (219)

proven in (91). For each pair of integers (n, k) with n � 2k � 2 we conjecture that

Z2n,n−2k :=
�n/2�∑
m=0

(−1)m
(

n

2m

)∫ ∞

0
tn−2k[πI0(t)]

n−2m[K0(t)]
n+2m dt

?[11]== 0, (220)

with the vanishing of Z4,0 proven in (219), in the case with n = 2 and k = 1.
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With six Bessel functions in play, the sum rule

Z6,1 := π

∫ ∞

0
tI0(t)

(
π2I 2

0 (t) − 3K2
0 (t)

)
K3

0 (t) dt
?[11]== 0 (221)

relates a pair of odd moments, giving the conjectural evaluation

s6,1
?[11]== π2

3

∫ ∞

0
tI 3

0 (t)K3
0 (t) dt. (222)

At first sight, this seems to be hard to check, at high precision, because it involves the slowly
convergent moment∫ ∞

0
tI 3

0 (t)K3
0 (t) dt =

∞∑
k=0

ak

c3,2k+1

(2kk!)2
,

with an integrand of order 1/t2, at large t, and a summand of order 1/k2, at large k, coming
from the hexagonal lattice integers ak in (24). However, we were able to exploit the integral
representation

c3,2k+1

(2kk!)2
=
∫ 1

3

0
D(y)y2k dy

to obtain ∫ ∞

0
tI 3

0 (t)K3
0 (t) dt =

∫ 1
3

0
D(y)D̃(y) dy (223)

as an integral over a pair of agm functions, with D(y) given by (64) and D̃(y) by (183). Then
conjecture (221) is equivalent to the evaluation

s6,1 =
∫ ∞

0
tI0(t)K

5
0 (t) dt

?[11]== π2

3

∫ 1
3

0
D(y)D̃(y) dy, (224)

which was confirmed to 1200 decimal places, by setting k = 0 in (218) to compute s6,1 and
by using Pari-GP to evaluate the integral over y. We find it remarkable that the complicated
double integral four-loop sunrise diagram in (217) seems to be reducible to the attractive single
integral in (224), by removing a factor 1

3π2.
With eight Bessel functions in play, conjecture (220) gives a pair of sum rules. From the

vanishing of Z8,0 and Z8,2, we obtain

c8,0
?[11]== π2

∫ ∞

0
I 2

0 (t)
(
6K2

0 (t) − π2I 2
0 (t)

)
K4

0 (t) dt (225)

c8,2
?[11]== π2

∫ ∞

0
t2I 2

0 (t)
(
6K2

0 (t) − π2I 2
0 (t)

)
K4

0 (t) dt, (226)

again noting the slow convergence of these integrals and of the equivalent sums

c8,0
?[11]==

∞∑
k=0

( π

2kk!

)2
((

2k

k

)
6c6,2k − π2bkc4,2k

)
(227)

c8,2
?[11]==

∞∑
k=0

( π

2kk!

)2
((

2k

k

)
6c6,2k+2 − π2bkc4,2k+2

)
, (228)

which involve the diamond lattice integers bk in (56) or (177).
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Conjecture (220) gives novel evaluations of c4n,2k and s4n+2,2k+1, for n > k � 0. We
remark, however, that (227) and (228) do not exhaust the integer relations for moments with
eight Bessel functions. We also found that the ratio∫∞

0 tI 2
0 (t)K6

0 (t) dt∫∞
0 tI 4

0 (t)K4
0 (t) dt

=
∑∞

k=0

(2k

k

) c6,2k+1

(2kk!)2∑∞
k=0 bk

c4,2k+1

(2kk!)2

coincides with 9
14π2, to 80 decimal places.

6.4. The odd moments c6,2k+1

Grouping the six internal lines of the five-loop vacuum diagram

V6(a, b, c, d, e, f ) =
∫ ∞

a+b+c

∫ ∞

d+e+f

4uvD4(a, b, c, u)V2(u, v)D4(v, d, e, f ) dv du

into two sets of three lines, we obtain

c6,1 =
∫ 1

3

0
D(y)

∫ 1
3

0

D(z) log(z/y)

z2 − y2
dz dy, (229)

after setting the masses to unity and transforming to y = 1/u and z = 1/v. We also note that
Broadhurst conjectured that the value of c6,5 is 85

72c6,3 − 1
36c6,1 + 5

48 . This was later checked to
500 decimal places, using data in [9].

6.5. The even moment c6,0

Finally, we obtain three complete elliptic integrals in the integrand of

V 6(a, b, c, d, e, f ) = π

∫ ∞

−∞

∫ ∞

−∞
S3(a, b, u)S3(c, d, u + v)S3(e, f, v) du dv (230)

using the Aufbau (29). This then delivers

c6,0 = π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ)K(sin φ)K
( sin(θ+φ)√

cos2 θ cos2 φ+sin2(θ+φ)

)
√

cos2 θ cos2 φ + sin2(θ + φ)
dθ dφ (231)

by the same transformations as for (215).

7. Computational notes

This paper contains several proofs of identities that we first conjectured on the basis of
numerical investigation, hugely facilitated by access to Sloane’s wonderful sequence finder.
For the many one-dimensional integrals that we have noted, we were greatly aided by the
efficiency of the agm and intnum procedures of Pari-GP, for evaluations of integrands and
integrals at precisions up to 1200 decimal places. Results were then fed to the implementation
of the PSLQ algorithm in Pari-GP’s lindep procedure, with which we performed many
unsuccessful searches for integer relations, as well as obtaining the positive results reported
in the paper. By way of example, we remark that the integral

E :=
∫ ∞

0

E(x)√
4 + x2

arcsinh2
(x

2

)
dx
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was evaluated to high precision in order to search for relations between c5,1, c5,3, E and
products of powers of π,C and 1/C, with coefficients that might be Q-linear combinations of
1,

√
3,

√
5 and

√
15. No such relation was found.

Maple was especially useful for its HeunG, MeijerG and Gosper procedures and also for quick
PSLQ searches with few terms, at relatively low precision.

But for two-dimensional numerical quadratures we found neither Pari-GP nor Maple to
be remotely adequate for our demanding investigations. For these, we came to rely on Bailey’s
multiprecision code for two-dimensional integrals [6, 11, 14], which confirmed, to more than
100 decimal places, the correctness of derivations of (215), (231) and other identities. Here
we offer a brief description of this scheme.

7.1. Multi-dimensional quadrature

Bailey’s 1D and 2D schemes, as well as the one-dimensional intnum procedure in Pari-GP,
employ the tanh–sinh quadrature algorithm, which was originally discovered by Takahasi
and Mori [67]. It is rooted in the Euler–Maclaurin summation formula [4, p 285], which
implies that for certain bell-shaped integrands f (x) on [0, 1], where the function and all
higher derivatives rapidly approach zero at the endpoints, approximating the integral of f (x)

by a simple step-function summation is remarkably accurate. This observation is combined
with the transformation x = tanh((π/2) sinh t), which converts most ‘reasonable’ integrand
functions on (−1, 1) (including many functions with singularities or infinite derivatives at one
or both endpoints) into bell-shaped functions with the desired property.

In particular, we can write, for an interval length h > 0,∫ 1

−1
f (x) dx =

∫ ∞

−∞
f (g(t))g′(t) dt ≈ h

N∑
j=−N

wjf (xj ), (232)

where g(t) = tanh((π/2) sinh t), xj = g(hj),wj = g′(hj), and N is chosen large enough
that |wjf (xj )| < ε for |j | > N . Here ε = 10−p, where p is the numeric precision level
in digits. Note that the resulting quadrature formula (232) has the form similar to Gaussian
quadrature, namely a simple summation with abscissas xj and weights wj , both sets of which
can be pre-computed since they are independent of the integrand function. For many integrand
functions, once h is sufficiently small, reducing h by half yields twice as many correct digits
in the result (although all computations must be performed to at least the level of precision
desired for the final result, and perhaps double this level if the function is not well-behaved at
endpoints). Additional details of efficient implementations are given in [6, 14].

One of the numerous applications of one-dimensional tanh–sinh quadrature in this study
was the verification of our final conjecture given in (220). This was done using Bailey’s
implementation of the one-dimensional tanh–sinh algorithm, together with the ARPREC
extreme-precision software package [13]. Evaluation of the Bessel function I0(t) was
performed using a hybrid scheme where formula (9.6.12) of [1] was used for modest-sized
values and formula (9.7.1) for large values. Evaluation of K0(t) was performed using (9.6.13)
of [1] for modest-sized values and (9.7.2) for large values. Note however that formula (9.6.13)
for K0(t) must be implemented using a working precision that is roughly twice the level desired
for the final result, due to the sensitive subtraction operation in this formula. Also note that
when m = 0 in (220), this combination of formulae is not satisfactory, because for large t the
function I0(t) is exceedingly large, and K0(t) is exceedingly small, and even though the product
is of modest size, overflows and underflows are possible in intermediate function evaluations,
even when using high-precision software that has an enormously extended dynamic range.

41



J. Phys. A: Math. Theor. 41 (2008) 205203 D H Bailey et al
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Figure 1. Plot of c5,0 integrand function in (233).

(This figure is in colour only in the electronic version)

For such cases (m = 0 and t large), we employed formula (9.7.5) of [1], which gives an
asymptotic series for the product I0(t)K0(t). We had differently addressed this issue in the
special case of (222).

Armed with an efficient implementation of these schemes, we were able to verify (220) for
all (n, k) pairs, where 1 � k � �n/2� and 4 � n � 12 (there are 43 such pairs), in each case
to over 340-digit accuracy. In addition, we verified (220) for a variety of larger (n, k) pairs,
including (15, 7), (20, 10), (25, 11), (30, 12), (37, 13) and (41, 14), again to over 340-digit
accuracy in each case.

The tanh–sinh quadrature algorithm can also be performed in two or more dimensions
as an iterated version of the one-dimensional scheme. Such computations are many times
more expensive than in one dimension. For example, if roughly 1000 function evaluations are
required in one dimension to achieve a desired precision level, then at least 1000 000 function
evaluations are typically required in two dimensions, and 1000 000 000 in three dimensions.
Additionally, the behaviour of multi-dimensional tanh–sinh quadrature on integrand functions
with singularities or infinite derivatives on the boundaries of the region is not as predictable
or well understood as in one dimension.

Nonetheless, we were able to use 2D tanh–sinh quadrature to successfully evaluate
a number of the double integrals mentioned in this paper, after making some minor
transformations. As one example, consider the integral mentioned above for c5,0, namely

c5,0 = π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ)K(sin φ)√
cos2 θ cos2 φ + 4 sin2(θ + φ)

dθ dφ. (233)

Note that this function (see figure 1) has singularities on all four sides of the region
of integration, with particularly troublesome singularities at (π/2,−π/2) and (−π/2, π/2).
However, after making the substitutions s ← π/2 − s, t ← π/2 − t and r ← s/t , and taking
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advantage of the symmetry evident from figure 2, we obtain

c5,0 = 2π

∫ π/2

0

∫ 1

0

tK(cos(rt))K(cos t) dr dt√
sin2(rt) sin2 t + 4 sin2(t (1 + r))

+ 2π

∫ π/2

0

∫ 1

0

tK(cos(rt))K(cos t) dr dt√
sin2(rt) sin2 t + 4 sin2(t (1 − r))

, (234)

which is significantly better behaved (although these integrands still have singularities on
two of the four sides of the region). As a result, we were able to compute c5,0 with this
formula to 120-digit accuracy, using 240-digit working precision. This run required a parallel
computation (using the MPI parallel programming library) of 43.2 min on 512 CPUs (1024
cores) of the ‘Franklin’ system at the National Energy Research Scientific Computing Center
at the Lawrence Berkeley National Laboratory. The final result matched the value that we had
previously calculated using (5) (see [9]) to 120-digit accuracy.

This same strategy was successful for several other 2D integrals. For example, we
computed c6,0 to 116-digit accuracy, which again matched the value we had previously
computed, in 64.8 min on 1024 cores of the Franklin system. In the case of c6,1, the
transformation described above for c5,0 converted the integrand function of (229) into a
completely well-behaved function, without any singularities. As a result, we were able to
compute c6,1 to 120-digit accuracy using only an Apple Intel-based workstation with four
computational cores in 28 min. As before, the result matched the earlier calculation.

As already noted, complex numbers are avoided in integral (217) by writing it as

s6,1 =
∫ 1

3

0
D(y)

∫ 1
2

0

4zf (A−/A+)

A+

√
1 − 4z2

dz dy, (235)

where

f (x) :=
⎧⎨⎩

arctanh(
√

x)/
√

x for x > 0
1 for x = 0
arctan(

√−x)/
√−x for x < 0

yields positive real numbers within the rectangle of integration. We were able to confirm that
the double integral (235) yields the first 120 of the 1200 decimal places obtained, far more
easily, from the single integral (224).

8. Conclusions

Despite notable progress in discovering and proving many new results, we are left with eight
outstanding conjectures13. Of these, five have their first instances in equations (94) to (97)
and equation (101) of section 5.1, with three outliers, in equations (120), (212) and (220).

Conjecture (94) lies deep in four-dimensional quantum field theory, but it is reasonable to
suppose that it might be derivable from the two-dimensional conjectures (95)–(97), together
with their proven sign-changed variants in (98)–(100).

The conjectural integer relations (120) and (125) may be provable by adding rational data
such as (121) to a set of recursions richer than those considered in [26, 60].

The real challenge is set by the remarkable sum rule (209), with a dispersive presentation
(210), a non-dispersive presentation (211) and a kindergarten analogue (212).

13 Conjecture ?[8], as given in (101), has now been proven by contour integration (see [27]), and conjecture ?[11], as
given in (220), has also now been resolved.
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