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Abstract

Companion matrices of matrix polynomials L(\) (with possibly singular leading co-
efficient) are a familiar tool in matrix theory and numerical practice leading to so-called
“linearizations” AB — A of the polynomials. Matrix polynomials as approximations to
more general matrix functions lead to the study of matrix polynomials represented in a
variety of classical systems of polynomials, including orthogonal systems and Lagrange
polynomials, for example. For several such representations, it is shown how to con-
struct (strong) linearizations via analogous companion matrix pencils. In case L(\)
has Hermitian or alternatively complex symmetric coefficients, the determination of
linearizations AB — A with A and B Hermitian or complex symmetric is also discussed.

1 Introduction

An s x s matrix polynomial P(\) of degree n has s? entries, each of which is a scalar
(complex) polynomial in A with degree not exceeding n. Grouping like powers of
A together determines the representation P(A\) = 377, N Aj, where the coefficients
Aj € C°*% and A,, # 0. Clearly, the polynomial could also be uniquely determined by
n + 1 samples of the function: P; := P(z;), where the points zy, 21,...,2, € C are
distinct.

The process of gathering the n + 1 matrices of coefficients of the successive pow-
ers of A\ could be described as “interpolation by monomials”. Indeed, the matrices
Py, Pi,..., P, may be samples of a function P()\) of a more general type; analytic, for
example, and one may be interested in how the interpolant P()\) approximates ]5()\)

We consider only matrix polynomials which are regular in the sense that the deter-
minant, det P()\), does not vanish identically. Practical and algorithmic concerns with
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such polynomials frequently involve the determination of eigenvalues; namely, those
Ao € C for which the rank of P()\g) is less than s. Thus, the eigenvalue multiplicity
properties (geometric and algebraic) have a role to play.

It is natural to study spectral properties of the polynomial via the associated pencil
ACy — Cp, where (when n = 4, for example)

I 00 0 00 0 —A

o1 0 0 T 00 -4
Ci=logo71 o | ©= 01 0 —Ay |- 1)

00 0 Ay 0 0 I —As

This has been extensively used and recognised; see [12] and [13], for example, among
many other sources. The vital property of this pencil is that it forms a “strong”
linearization of P()) in the sense that it reproduces the multiplicity structures of the
eigenvalues of P(A), both finite and infinite. An infinite eigenvalue is said to exist when
detA, = 0 (see [12] and [18], in particular).

A major objective of this paper is to consider the analogous problems which arise
when P()) is represented in other bases (i.e. other than monomials) for the linear space
of scalar polynomials with degree not exceeding n. Applications of matrix polynomials
in other bases occur in Computer-Aided Geometric Design (where Bernstein bases are
used) and in the Lagrange basis (see e.g. [4]). In this present paper, analogues of (1)
are to be formulated, and the property of strong linearization is to be investigated, i.e.
linearizations which preserve the invariant polynomials of both P()\) and its reverse
PE(N) := A"P(1/)).

The details of this program depend on a particular property of the polynomial basis
employed: whether it is degree-graded (consists of polynomials of degrees 0,1,2,...,n
(like the monomials)), or whether all polynomials have the same degree (as with the
Lagrange interpolating polynomials). The paper is organised accordingly: Sections 2
and 3 are concerned with degree-graded bases. Sections 4 and 5 discuss interpolation
with Bernstein and Lagrange bases, respectively.

It will be seen that the strategy adopted below (as in [1]) involves the determination
of A-dependent (triangular) LU-decompositions of \C; —Cj (and its various analogues).
We remark that in some algorithms (especially of Rayleigh-quotient type) it is necessary
to solve linear systems (AoC1 — Cp)xr = b (with a fixed \gp) many times. The LU
decompositions used here can also play a useful role in this algorithmic context. There
is an exhaustive study of these LU factorization in [3].

Bases other than the monomials find many applications. For problems in computer-
aided geometric design, the Bernstein-Bézier basis and the Lagrange basis are most
useful (see [10], for example). There are problems in partial differential equations
with symmetries in the boundary conditions where Legendre polynomials are the most
natural. Finally, in approximation theory, Chebyshev polynomials have a special place
due to their minimum-norm property (see e.g. [22]).

2 Degree-graded polynomial bases

2.1 Linearization

Real polynomials {¢,(\)}o2, with ¢,()\) of degree n which are orthonormal on an
interval of the real line (with respect to some nonnegative weight function) necessarily



satisfy a three-term recurrence relation (see Chapter 10 of [8], for example). These
relations can be written in the form

Api(N) = ajdjr1(N) + Bidi(N) +vi05-1(0),  G=1,2,..., (2)

where the o, §;, v; arereal, _1(X) = 0, ¢o(A) = 1, and, if k; is the leading coefficient
of (f)j ()\),
kj

07504]‘ = kj+1

) 7=0,1,2,.... (3)

The choices of coefficients «j, 3;, «; defining three well-known sets of orthogonal
polynomials (asociated with the names of Chebyshev and Legendre) are summarised
in Table 1. Such orthogonal polynomials have well-established significance in mathe-
matical physics and numerical analysis (see e.g. [11]). More generally, any sequence of
polynomials {¢; () 72 with ¢j(A) of degree j is said to be degree-graded and obviously
forms a linearly independent set; but is not necessarily orthogonal.

Table 1: Three well-known orthogonal polynomials

Polynomial T (x) P, () Cp(x)
Name of polynomial Chebyshev(1st kind) | Legendre(Spherical) | Chebyshev(2nd kind)
Weight function (1—2a2)" 2 1 (1—a2)"2
Orthogonality interval [—1,1] -1,1] [-1,1]
Leading coefficient k,, on—1 21(12(2252 2n
o T T AT
n 2 2 2n+1
Bn 0 0 0
Tn 1 1 Sl

An s x s matrix polynomial P(\) of degree n can now be written in terms of a set
of degree-graded polynomials:

P(A) = Apdn(N) + An—10n-1(A) + - + A11(A) + Agdo(A). (4)

For convenience, let us assume n = 5 and the generalizations for all positive n will
be clear. Define block-matrices

Bols mls 0 0 —k4Ap
apls pils v2ls 0O —k4 Ay
Co = 0 oails Bols 3l —ky Ao , (5)

0 0 gl 6313 —k4 Az + k574A5
0 0 0 Ozgfs —k4A4 + k5,84A5

C1= (6)

~N o oo
oo oo

s

0 5A5

oo O o
oo oMo
(=N el le o)

(and observe how the matrices of (1) fit into this scheme). This construction is essen-
tially that of a “comrade” matrix introduced by Barnett; see Chapter 5 of [5] and [6].




A little computation shows that

[ b0 Is o1V 2N d3(MIs da(MNIs J(AC1=Co) =[0 0 0 0 ksP(N) .

(7)
The first n — 1 row-into-column products simply reproduce some of the relations (2).
For the last such product use equations (2), (3), and (4). In the more suggestive
notation of [21] this equation reads: 2

(@7 (\) @) (AC1 — Cp) = k1€l @ P(N)

where ®7(\) = [po(N), p1(N), ..., Pn_1(N)].

Now suppose that g is an eigenvalue of P(\) with left eigenvector g, i.e. y P(\g) =
0 (where the superscript () denotes the Hermitian (complex-conjugate) transpose of
a matrix or vector). Then evaluating (7) at A\g and premultiplying by v gives:

[ 200y d1(Xo)y™ d2(Mo)y™ d3(Mo)y™ da(Xo)y™ ] (AoCi—Co) =0. (8)

This shows that every finite eigenvalue of P()) is also an eigenvalue of A\C; — C and
also shows how left eigenvectors of A\C; —Cy can be generated from those of P(A). (This
is a generalization of part(ii) of Theorem 5.2 of [5]; special cases have appeared in [1].)
The left eigenvectors do not have special role in this discussion. A similar explicit
characterization of the relationship of a right eigenvector w of P()) corresponding to
finite eigenvalue A with a right eigenvector of the pencil AC'1 —Cj can be made (see [1]).
This argument shows that P(\) and A\C; — Cj have the same spectrum, but more
is true. To establish this a Lemma on linearizations is required. A linearization of the
regular matrix polynomial P()) is generally defined to be an sn x sn pencil AA — B
for which ; 0
n(s—1
EOOA-B)F) = | e A ©
for some unimodular matrix polynomials F(\) and F()\). We need a more general
characterization of a linearization as follows:

Lemma 1 If (9) holds for functions E(\) and F(\) which are unimodular and analytic
on a neighbourhood of the spectrum of P(X), then NA — B is a linearization of P(X).

Proof: A linearization AA — B can be characterized by the property that all of its
eigenvalues and their partial multiplicities (including the eigenvalue at infinity if A, is
singular) are the same as those of P(\) (Theorem A.6.2 of [13], for example). The fact
that these properties are preserved by the more general matrix functions, E()\) and
F(\), follows immediately from Theorem A.6.6 of [13]. O

Remark. Let Z; be the set of all zeros of ¢1(A), -+, ¢p—1(A). This set is necessarily
finite. We will see that to use the above lemma correctly, we will have to block pivot
whenever A is in a small enough neighbourhood of any of these zeros. It follows from
the work of [1, 3] that this can always be done.

2The authors thank a helpful reviewer for pointing out the connections with work of [16] and [21]. This
equation shows a clear connection with the ‘left ansatz’ of [21, eq. (3.9)]. This analogy suggests that, as
n [21], for each polynomial basis ®(\) two vector spaces of linearizations may be defined, and that, as
in [16], these vector spaces may be explored for linearizations that preserve structure, or are particularly
well-suited for the task at hand. These considerations deserve further study.
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Theorem 2 Let P(\) be a matriz polynomial of degree n and {¢n(N)}52, be a degree-
graded system of polynomials satisfying the recurrence relation (2). Then the pencil
ACy — Cy defined by (5) and (6) is a strong linearization of P(\).

Proof: First, assume that Z;, the set of all zeros of ¢1(A), -, ¢n—1(A) does not
intersect the set of all eigenvalues of P(A). In [3] the A-dependent block LU factors
of \C; — Cy for a pencil of the form (5)— (6) and of degree n are explicitly given as
follows:

I
__¢0(A)]; I,
y=| "0 T , (10)
dn—2(N)
e ls s
Qg zégig Iy —mis Uin(A) ]
UA) = an,gi::§§A§ I, —Anody  Upan(\) |- (A1)
n—1(A
On—2 $n7;EA§ I Unfl,n()\)
_ Unn(V)
where
k‘n_le,) 1=
kn_1A;_1+ 32_72()\U'71’n(/\), 1= 2:(n — 2)
Uzn()\) _ ; 73(}\)%71()\) J . (12)
' kn—1An—2+ ¢272(/\8 Un—2,n()\) —knn-14n, i=n-1
$o(N) .
Goman-z)en L (- i=n

Clearly, L(\) is nonsingular for all A € Z,. For such A, det(L())) = 1. Thus, U(X)
is singular at the eigenvalues of P(\). If we define U(\) to be the same as U(\) except
for its last block entry which is replaced by

Tn(V) = Po(N)

(G0~ tna) B (V) (13)

then U()) is also nonsingular and det(U(\)) = 1. Now, we can construct the unimod-

ular matrices E(\) = L= and F(\) = U~! as follows:

I,
do(N)
2T s
0 1
EN=| sl  aHol s , (14)
e 00) 1 b
sl aoamls o ls Is |



( i1 (A . .
Al i=j=Ln-1)
Pt g an2)I;, i=j=n

B _ Yi=16j—1(N) 1 S i O\ s — (g
FZJ ()‘) - I WFz,]—l(A)7 Z - 1(n 2)7.7 - (’L +
- O¢0(;)_2 (k;nfl Zk:() Akﬁbk()‘) - kn'YnflAnQZ)an()‘))v t=n—1;7=n

g Q-2 kn—1¢n—1(A i— =5 . .
—oomtnoz bacy oot @) S L Ak + Fin(V),  i=(n—2)155=n

where

Aoyl fren@, i=n—l
in - ’Yi);;%)(\;‘) i+17n(A)7 1 = (n — 2)1

Now a straightforward computation shows that:

[ o s p?» } = EQ)(AC1 — Co)F(V) 1"

and, using Lemma 1, this shows that AC; — Cj is a linearization of P(\).

To show that this linearization is strong, we must show that unimodular matrices
H()\) and K ()) exist such that:

[ I(n61>s Pﬁ?A) ] = H(\)(C1 — ACo)K(N) (18)

where P#(A) = A"P(3). In fact, considering the LU factors of ACy — Cp, we can write
the LU factors of the reverse pencil C7 — ACy as follows:

Ll(A):L(i) and Ul()\):)\U(i). (19)

Now we can let H(\) = L7 '(\) = L7Y(1) = E(}) where E()) is given in (14), and
K\ =U; ! where U; is the same as U; except for the very last block entry which is

replaced by:

~ ¢o(3)
Unn(A) = 5 (20)
7 (aO T anf2))\n71¢n71(%)
Using (15), we can construct K () as follows:
Fij(3) . i
KZJ()\): nilj)\)‘ ,1 Z—l(n—l),j —’L(TL—].) (21)
AT Fa(5x), i=1n;j=n

and now it can be verified that (18) holds.

If instead A* € Zy, then, from the results of [1, 3], there exists a unimodular block
pivot matrix II, a neighbourhood B. of A\*, and matrices F()\) and F(\) analytic in
B:(X*) such that all the factorings above may be computed mutatis mutandis. O



2.2 Symmetrizing the linearization

If the data matrices Ag, Ay, ..., Ay, are Hermitian, then the resulting polynomial P())
is Hermitian for real A. Although the symmetry appears to be lost in the pencil
ACy — Cp, it can be recovered in the monomial case (when A, is nonsingular) on
postmultiplication of the companion matrix

CoCyt =

oo ~Oo
o~OoOo
~ o o o
|

BN

[\]

BN

|

_

by the Hermitian “symmetrizer”,

A Ay Az Ay
A2 A3 A4 0
A3 Ay 0 O
Ay 0 0 O

HO = (22>

In this way the eigenvalue problem for the Hermitian matrix polynomial P()) can
be examined in terms of the Hermitian pencil AHy — (CoCy 1)Ho. This also works if
the data matrices are not Hermitian but rather complex symmetric AJT = A;. Such
matrices occur in practice, for example with the symmetric Bezout matrix of a pair of
bivariate polynomials with complex coefficients. In either case, the block symmetries of
such a pencil can provide computational advantages and, as well, there is an extensive
theory for problems of this kind developed in [13].

It turns out that, in some cases, this symmetrizing property extends to the pencils
generated by other bases. Indeed, the following proposition is easily verified:

Proposition 3 Let {¢,(N\)}72 be a degree-graded system of polynomials satisfying a
recurrence relation (2) in which aj = o # 0, G5 = B, and v; = v for all j. Moreover,
let P(\) be a Hermitian matriz polynomial defined in that basis with A, nonsingu-
lar. Then, when the generalized companion matriz CoCy* (formed by (5) and (6)) of
P(X) is multiplied on the right by the Hermitian symmetrizer (22), the result is also
Hermitian. A similar result holds in the complex symmetric case.

Clearly, under the hypotheses of the theorem AHy — (CoCy YHy is a Hermitian
linearization of P()). For cases when A, is singular Hermitian linearizations can be
found in [16].

3 Special degree-graded bases

As mentioned above, the family of degree-graded polynomials with recurrence relations
of the form (2) include all the orthogonal bases, but is not limited to them. In this sec-
tion, we discuss some well-known non-orthogonal bases of this kind and, consequently,
for which the linearization A\C'y — Cy is strong.



3.1 Monomial basis

If in (2), we let a; = 1 and B = 7; = 0, we get the monomial basis. Plugging these
values into (14) and (15), we get:

I
%IS IIS
EN = »xls 3 I : (23)
>\n171 IS >\n172IS %IS IS i
and
s, i=j=1l(n-1
A, i=j=n
Fij(\) = 0s, i=1l(n—2);7=(>G+1):(n—-1) (24)
—3Pe ANk =n—1;j =
k=0 kA ? n 3] n
AL AR, = (n - 2):155 = n,

and similarly from the fact that H(\) = E(3), we get:

I
PV I
H()\) = I A I , (25)
AT AR N T

and (21) gives K (A). In this case Z, = {0}, and for A near 0 block pivoting must be
used [3].

3.2 Newton basis

Let an s x s matrix polynomial P()) be specified by the data {(z;, P;)}}_, where the
z;’s are distinct. Then, P()) can be expressed in the Newton Basis. This basis has
the following ordered form for k =0,---,n:

k—1

Ne(N) =TT = 2) (26)

j=0

with No(X) = 1. Therefore Zy = {z; }?;01. Then the polynomial can be written in the
form:

P(X) = AoNo(A) + AiN1(A) + -+ - + A Nn (X)), (27)

where the A;’s can be found either by divided differences or, equivalently, by solving
this system:

I A Py

I Nl(zl)l Al Pl

I Ni(z2)I Na(zo)I Ay | = | P . (28)
L I Nl(zn)l N2(Zn)I Nn(zn)l 1 L An ] L Pn i




For more details see [3].

If in (2), we let aj = 1, B; = z; and ~; = 0, we get the Newton basis. Plugging
these values into (14) and (15), we get:

I
1
[E=Dal L
EQ\) = | Ooo-mls oy s L , (29)
1 1: 1
Re e e R e ey O ls I
and
Zifl()\lfzifl)ls’ i=j=1Mn-1)
(20 2n—2)(A—20) - (A — zn—2)1s, i=j=mn
Fij(A) = —(20-+ 2n-2) Xhzg ARNE(Y), i=n—1;j=n
(20 zi—2zi + Zne2) A = 2i) - (A = zn—2) Sy ARNK(N), i = (n—2):1;5 =n
O, otherwise,
(30)
and similarly from the fact that H(\) = E(3), (21) gives K()) and we also have
_ L. -
A
(1_{\220)[8 AIS
H()\) = A== Ls Al I (31)
L Tz0) - Tden ) s Toren) (I hen_2) 15 T Aen o) ts 1s |
3.3 Pochhammer basis
The Pochhammer basis is just a special Newton basis with nodes z; = —(a + j),
7 =0,...,n —1. The Pochhammer basis is used in combinatorial applications and

in the solution of difference equations. Some good sparse polynomial interpolation
algorithms have been developed using this basis (see [20], for example). If in (2), we
let oj =1, j = —(a+j) and v; = 0, then the Pochhammer basis is generated.

4 Interpolating with Bernstein polynomials

Bernstein Polynomials have the form:

forn=1,2,---and j =0,1,---,n, and have good (uniform) convergence properties to
continuous functions on (a,b) (see [8]). They are widely used in geometric computing
(see [9] and [10]) and, clearly, they are not degree-graded. Here Z4 = {a,b} contains
only two elements.

bin(A;a,b) = (32)



4.1 Linearization

An s x s matrix polynomial P()) of degree n can be written in terms of a set of
Bernstein polynomials:

P(A) = Apbpn(Xa,b)+Ap_1bp—1n(Asa,b)+. ..+ A1b1 n(As a,b)+Aogbo n(A;a,b). (33)

For convenience, let us assume n = 5 and the generalizations for all positive n will
be clear. Define block-matrices

22 ] 0 0 0 —52- A
b 4a b
b—aIS 2(b—a)‘[5 0 0 _mAl
Co = 0 bEaIs 3(5ga) I 0 _ﬁfb ) (34)
00 puL gmigl s
L 0 0 bfaIS 5(b—a) As bEaA4
[ 52T, 0 0 0 —4A) ]
1 4 1
vals apals 0 0 —p—ad1
C1= 0 bEaIS 3(bia) I 0 _ﬁA2 (35)
0 0 ﬁfs 4(baa)ls _b%AS
L 0 0 i(JLIS 5(b17a) As I)L‘A4 J

For more details see [17, 23, 1].
A little computation shows that

([ bos(Aia,b) brs(Xsa,b) bas(Aa,b) bss(Aia,b) bas(X;a,b) | @ I)(ACL — Co)

=[0 00 0 2P ].

This is an obvious analogue of equation (7) for degree-graded polynomials. As in that
case, it can be seen that AC; — Cp and P()) have the same eigenvalues. For A € Zy4
again block pivoting can be used; but in this case it turns out that we may cover the
case A = b together with all A\ # a (in practice we would use the block pivoting if A is
near to a, not just equal to it). An analogue of Theorem 2 also holds:

Theorem 4 Let P(X\) be a matriz polynomial of degree n and {b;,(\;a,b)}? , be a
system of Bernstein polynomials. If X = a is not an eigenvalue of P(\), then the pencil
AC1 — Cy defined by (34) and (35) is a strong linearization of P(X\). If A = a is an
etgenvalue, then block pivoting can be used to get a strong linearization.

Proof: The proof is very similar to the proof of Theorem 2, so we give only a brief
outline. In [3], the A\-dependent LU factors of A\C; — Cj corresponding to a pencil of
the form (34)— (35) and of degree n are explicitly given as follows:

I
—b=AL I
n(A—a)~$ s
=] " § , (36)

n—1)(b—A\
_( 2()\)£a) )Is Is

10



U\ = 3(A—a) 37
) -2 Ga)1s o) Un—2,n(A) | > (37)
(n—1)(b—a) Is Unfl,n()\)
I Unn(A)
where

b=2 4, i=1

Uin(A) = { 1=adi1+ %Uj—l,n(/\), i=2:(n—1) (38)
b—a)"~ .
WP()\) 1T="n

As in the degree-graded case (Theorem 2), we now replace the last block entry
of (37) by
_ boaNab)(b— )t (h—a)y?
Unn(A) = — I, = I, 39
nn(A) bo—1n(X;a,b)(b— A1 n(A—a)r17" (39)
Moreover, looking at (15), we only need «j, 7; and k,—; and k, to construct
F(X). By comparison, it turns out that in this case o;(\) = %, v;(A) = 0 and
kpn—1(\) = %. Here, as opposed to (2), « and k,—; are A-dependent, and (3
longer valid. Now, we can compute a unimodular matrix F'(A) analogous to (1
For the reverse case, instead of (20), we now use

1S no

)
5).

—~ (b—a)" !
U AN=——"—"—I,. 40
177,,71( ) n(l _ /\a)"_l S ( )
The rest of the proof is exactly the same as that of Theorem 2. O

4.2 Symmetrizing the linearization

The idea discussed in Section 2.2 applies to the Bernstein case as well. Indeed, the
following proposition is easily verified:

Proposition 5 Let {b; ,(\;a,b)}i be a system of Bernstein polynomials as in (32).
Moreover, let P(\) be a Hermitian matriz polynomial defined in that basis. Then,
when the generalized companion matriz CoCy " (formed by (34) and (35)) of P(\) is
multiplied on the right by the Hermitian symmetrizer (22), the result is also Hermitian.

5 Interpolating with Lagrange polynomials

5.1 Linearization

Lagrange polynomial interpolation is traditionally viewed as a tool for theoretical anal-
ysis; however, recent work reveals several advantages to computation in the Lagrange
basis (see e.g. [7, 15]). As above, suppose that an s x s matrix polynomial P()\) of
degree n is sampled at n + 1 distinct points zp, z1,..., 2z, and write P; = P(z;).
Lagrange polynomials are defined by

G =w; ] .(/\—zj), j=01,...,n (41)



(and so Zy = {2;}7_) where the “weights” w; are

we I1 2o @

Then P()) can be expressed in terms of its samples in the form P(X) = > %, £;(\) P;.
The companion pencil AC; — Cj as formulated in Section 3.2 of [1], or equations
(4.5) of [2], has (when n = 3):

(A — 20)] 0 0 0 —Py
0 ()\ - Zl)I 0 0 —P1
)\Cl — C() = 0 0 ()\ — ZQ)I 0 —P2 . (43)
0 0 0 (A—23) —Ps
’u)oI w1[ wQI w3I 0

The extension to general n is obvious.

Let us define a polynomial P()\) by the (apparently) trivial device of adding terms
in A"*! and A"*2 with zero matrix coefficients to P()\) (see [12]). This introduces
infinite eigenvalues that are defective. The following result then determines the nature
of the infinite eigenvalue of P()\) via that of the zero eigenvalue of P#()).

Proposition 6 Let P(\) = 377 ( A;\; with det (A,) = 0, A, # 0, so that P())
has an infinite eigenvalue. If this infinite eigenvalue of P(\) has partial multiplicities
my > - >my > 0 then t = n — rank(Ay) and P(\) has an infinite eigenvalue with
partial multiplicities mq + 2, -+ ,my + 2, 2,--+,2 (the “2” being repeated n — t times).

Proof: The partial multiplicities of the eigenvalues of P()\) at infinity coincide with
those of the zero eigenvalue of P#(A) = A"P(5). By Theorem A.3.4 of [14]

Pﬁ(A) :EO()‘) dlag[ )‘mla ) )‘mta 1, ) 1 ]FO()\) (44)
for matrix polynomials Ey(\), Fo()) invertible at 0 and since P#(0) = A, it follows

that n — ¢t = rank(A,), or t = n — rank(4,).
For the reverse polynomial of P(\),

, 1 1 1
PHON) = AP(5) = )\"“P(X) = AQ(A"P(X)) = AZPE(N). (45)

It follows from (44) that
PY(\) = Eg(\) diag[ A™*2, .. X200 020 L0 A2 ] Fy()N). (46)

But this is just a Smith form for P#(\) and shows that P()) itself has an infinite
eigenvalue with the multiplicities claimed. O

Theorem 7 The pencil A\C1 — Cy of equation (43) is a strong linearization of P()\)

Proof: Again the proof is very similar to the proof of Theorem 2. Assume first that
Z4 does not intersect the set of all eigenvalues of P()) and P*()).

12



In [3], the A-dependent LU factors of A\C; — Cj corresponding to a pencil of the
form (43) and of degree n are explicitly given as follows:

I
L= , 47
. (an
pud soa-Is I
()‘ - ZO)IS —F
U= (48)
(A — zp) 15 -P,

1
e L

Here, to get U()), we replace the last block entry of (48) by

. 1
+2, +2( ) ()\_ZO)()\_Zn) ( )
It turns out that
- L -
I
E(\) = I , (50)
A A
1 i=j=1Ln+1)
(A=20) (N — zn) s, i=j=n+2
Fij(A) = 3 . .
A=z0) - AN=zi—a)A—2z) - AN—2zp)Pi—1, i=L(n+1);7=n+2
Os, otherwise,
R A (51)
where P; are the values of P()\) evaluated at the nodes.
For the reverse case, we use
~ 1
Utntont2(A) = I, (52)

(1 —=Xz0) - (1= Azp)

instead of (20). As with the other bases, we can use (51) to construct K(\):

Fij(3) .,
Kij(\) = { NI T L+ 1) (53)

The rest of the proof is exactly the same as the proof of Theorem 2 (including the
reference to [3] for the block pivoting case). O

Remark. Computation of the right eigenvectors of the pencil (43) allows one
to recover the right eigenvectors of P(\) in the following manner: the right eigen-
vectors of the pencil (43) are of the form [(o(A)v, 1 (A\)v,...,L,(A)v,0]T, and since
1 = >0 l()), simply adding these subvectors gives v (see [1] for details). The
numerical stability of this procedure has not been established.
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5.2

Symmetrizing the Lagrangian companion pencil

Multiplying ACy — Cy of (43) on the right by the block-diagonal

we obtain

wy'Py 0 0 0
0 w'PL 0 0
A = -1

0 0 wy'P 0

0 0 0o I
220, . 0 0 P
Az p P,
(ACy — Co)A = 0 o 11 )\_0 1
0 0 22p P
PO P1 P2 0

As in Section 2.2, the reason for doing this is that the pencil on the right is now
block-symmetric. This can provide computational advantages, but it is particularly
interesting when, as in many applications, the z; (and hence w;) are real and P, ..., P,
are Hermitian (PJH = P;), or when the data are complex symmetric (P]T =P)).
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