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Abstract. We study online classification of isolated handwritten symbols using
distance measures on spaces of curves. We compare three distance-based mea-
sures on a vector space representation of curves to elastic matching and ensem-
bles of SVM. We consider the Euclidean and Manhattan distances and the dis-
tance to the convex hull of nearest neighbors. We show experimentally that of
all these methods the distance to the convex hull of nearest neighbors yields the
best classification accuracy of about 97.5%. Any of the above distance measures
can be used to find the nearest neighbors and prune totally irrelevant classes,
but the Manhattan distance is preferable for this because it admits a very effi-
cient implementation. We use the first few Legendre-Sobolev coefficients of the
coordinate functions to represent the symbol curves in a finite-dimensional vec-
tor space and choose the optimal dimension and number of bits per coefficient
by cross-validation. We discuss an implementation of the proposed classification
scheme that will allow classification of a sample among hundreds of classes in a
setting with strict time and storage limitations.

1 Introduction

Distance measures play a central role in most pattern recognition problems. The choice
of the distance measure affects the accuracy, as well as the time and space complexity
of the classification algorithms. The latter aspect is particularly important for online
handwriting recognition, since it is desirable to perform this task in real time and on
inexpensive hardware.

We are particularly interested in developing methods for recognition of handwritten
mathematics suitable for implementation on mobile devices. Such devices have already
become widespread and provide an excellent opportunity for communicating mathe-
matics. Developers of computer algebra systems are already actively targeting mobile
applications [2]. Unfortunately, however, the existing software for recognizing hand-
written mathematics does not cover a sufficiently wide range of subjects and/or is not
sufficiently fast and accurate, and therefore is hardly ever used in mobile user interfaces.

The problem of recognition of handwritten mathematics is substantially different
from that of handwritten text. The mathematical alphabet is larger than that of Eu-
ropean languages by an order of magnitude. Mathematical expressions have a two-
dimensional layout. Moreover, there is no fixed vocabulary of formulae, and frequencies
of various subformulae strongly depend on the area of mathematics [25]. On the other
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hand, mathematical expressions are often hand-printed, rather than being hand-written,
which means mathematical symbols are generally better segmented. These properties
render the methods developed for handwritten natural language recognition ineffective
in a mathematical context. They also suggest that recognition of isolated handwritten
mathematical symbols is a central and well-posed problem. Of course, there are other
important issues, such as character segmentation and rotation/slant correction. These
problems are essentially context-dependent, and mainly for this reason are beyond the
scope of this paper. As mentioned above, exact repeated contexts are rare in mathe-
matical expressions, which means that contextual information is mostly statistical. One
possible approach to incorporating such information into the classifier, via confidence
measures, has been proposed in [8]. The rotation/slant correction problem has been
recently addressed in [9].

The objective of this paper is to compare the accuracy and computational complex-
ity of various distance measures and choose the most suitable one for the purpose of
recognition of handwritten mathematical symbols. The distance measures considered
in this paper are briefly described below.

Among the distance measures used for classifying handwritten mathematical sym-
bols, the elastic matching distance [22] is known to be one of the most accurate. This
distance, however, has several drawbacks.

First, the size and position of the symbol must be normalized before the distance is
computed. This means that the computation cannot begin until the entire symbol curve
is traced. Directional features, e.g., approximations of the first and second derivatives
at each point, are translation-invariant, but size normalization is still required. It is quite
difficult to construct local scale- and position-invariant features that would be resistant
to noise, as they would involve higher-order derivatives or their ratios. Perhaps for this
reason, to our knowledge, scale- and position-invariant local features have not been used
in online character recognition. The Legendre-Sobolev coefficients of the coordinate
functions, which we use as features in this paper, are not translation- or scale-invariant,
but can be instantly normalized with respect to these transformations as discussed in
Section 2.

Second, the elastic matching algorithm is sensitive to the number of points sampled
from the curve, and therefore is device-dependent, which means that, in practice, the
points must be re-sampled. Also, the complexity of the elastic matching algorithm is
quadratic in the number of points. The number of re-sampled points is an arbitrary
parameter which must be tuned experimentally. There exist modifications of the elastic
matching algorithm of subquadratic complexity (also considered in this paper), which
involve additional arbitrary parameters. However, even with all parameters carefully
chosen, the elastic matching distance remains several times slower than the Euclidean
distance (described below).

Third, and more importantly, the elastic matching distance is not a metric, as it is
not symmetric and does not satisfy the triangle inequality. Therefore, it is difficult to use
this distance in conjunction with other methods that rely on the properties of the vector
space. We will show that faster and more accurate distance measures can be obtained
by utilizing such properties.
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One useful metric distance is the integral of the Euclidean distance between curves.
This can be computed directly, from the point sequences. However, there is a much
more efficient and device-independent way, based on the representation of the curve by
the coefficients of the truncated series of its coordinate functions, with respect to an
orthogonal functional basis [1]. There are actually many different Euclidean distance
measures in the space of parametric curves, which are induced by various functional
inner products. Among them, Chebyshev, Legendre, and Legendre-Sobolev inner prod-
ucts are widely used in signal processing [15]. It has been shown [4] that the Legendre-
Sobolev distance provides the most accurate comparison of handwritten symbol curves,
among the Euclidean distance measures.

The Legendre-Sobolev coefficients can be computed by an on-line algorithm [3], as
the curve is written, and allow fast normalization of the size of the symbol after the pen
is lifted. Moreover, as we shall see, only a few coefficients (10–12) and a few bits per co-
efficient (7–8) yield a sufficiently accurate representation of the curve. It turns out that,
once the Legendre-Sobolev coefficient vectors are computed, it does not matter much
which distance is used to compare them. The Manhattan distance is especially attrac-
tive, because it allows for an efficient implementation in about 50 machine instructions,
or 20 nanoseconds on a modern PC.

The accuracy of nearest neighbor classification based on the Euclidean distance
measures is lower than that of elastic matching. However, a refined method, based on
the distance to the convex hull of several nearest neighbors [7, 24], performs signifi-
cantly better than elastic matching. This method effectively takes advantage of the local
convexity [14] of the curve classes (see Section 4.4). The distance to the convex hull
of a few points can be computed fast [7, 18]. More importantly, this needs to be done
only for a few most relevant classes, which can be reliably determined using nearest
neighbor ranking with Manhattan distance.

The choice of the parameterization of the curve is also known to significantly affect
the classification accuracy. It has been shown [4] that, for any of the above distance
measures, parameterization by the Euclidean arc length yields best results when com-
pared to parameterization by time or affine arc length.

To summarize the main results, among the distance measures we have considered, a
combination of Manhattan and Euclidean distances gives the best performance in terms
of classification accuracy, time and space complexity. The best curve representation is as
vectors of Legendre-Sobolev coefficients of the coordinates, as functions of arc length.
The Euclidean distance to the convex hulls of nearest neighbor classes (representing
curves as described) gives the best classification accuracy. The Manhattan distance to
select candidate classes for consideration (using Euclidean distance to convex hulls, as
described) gives the fastest classification.

This paper is organized as follows. In Section 2, we introduce the representation
of a parametric curve by the Legendre-Sobolev coefficient vector and show how to
compute this vector on-line, as the curve is written. In Section 3, we describe the dataset
used in our experiments. In Section 4, we present the results of comparison of various
distance measures by cross-validation and choose the optimal distance measure, taking
into account classification accuracy, time, and space complexity. Section 6 concludes
the paper.
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2 Representation of parametric curves

Most existing methods of curve classification are based on the representation of a para-
metric curve by a sequence of points. This representation is readily available from the
digital pen, which samples points from a curve with a certain frequency and outputs
the sequence of their coordinates in real time. We disregard the additional informa-
tion about the curve such as, for example, pen tip pressure or angle, in order to remain
device-independent. Since the sampling frequency and resolution also depend on the de-
vice, the sequence must be size-normalized and resampled, in order to obtain a device-
independent representation. Because the size and length of the curve are unknown until
the entire curve is traced, these operations must be postponed until pen-up. Thus, the
time of computing a device-invariant representation of the curve by a sequence of points
inevitably depends on the device (and on the curve). Therefore, we propose to use an-
other representation, which is also device-independent and can be computed mostly
on-line, as the curve is written, with a small constant-time overhead after pen-up.

Let x(λ) and y(λ), λ ∈ [0, L], be the coordinate functions of a parametric curve.
We will represent the curve by the first d + 1 Legendre-Sobolev coefficients of the
coordinate functions. Note that the idea is very similar to that of Fourier coefficients,
the only difference being the choice of the functional inner product. The Legendre-
Sobolev inner product is a natural choice, for the following reasons:

1. Chebyshev, Legendre, and Legendre-Sobolev series show similar convergence rates [1,
3, 4].

2. Legendre and Legendre-Sobolev inner products are the easiest ones to compute and,
unlike the other inner products with non-linear weighting functions (e.g., Cheby-
shev or Fourier), can be computed on-line, as the curve is written (see [3] for Leg-
endre and [4] for Legendre-Sobolev).

3. Classification accuracy improves when we replace Legendre inner product by Legendre-
Sobolev, because the latter better incorporates the information about the derivatives
of the coordinate functions, i.e., the directional features of the curve.

The Legendre-Sobolev inner product of two functions f (λ) and g(λ) on [0, L] is
defined as

〈 f (λ), g(λ)〉 =

∫ L

0
f (λ)g(λ) dλ + µ

∫ L

0
f ′(λ)g′(λ) dλ,

where µ is a real parameter (which we assume to be fixed). Consider the orthonormal
polynomial basis B0(λ), B1(λ), B2(λ), . . ., with deg Bi(λ) = i, which is uniquely deter-
mined by the inner product and can be obtained through Gram-Schmidt orthonormal-
ization of the monomial basis 1, λ, λ2, . . .. Then any function satisfying suitable smooth-
ness conditions can be represented by its infinite Legendre-Sobolev series

f (λ) =

∞∑
i=0

fiBi(λ),

where the Legendre-Sobolev coefficients fi are given by the inner products

fi = 〈 f (λ), Bi(λ)〉.
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Then the truncated Legendre-Sobolev series of order d

f̃ (λ) =

d∑
i=0

fiBi(λ)

is a polynomial of degree at most d, which can be thought of as the projection of the
function f (λ) on the subspace of polynomials of degree at most d.

If the function is sufficiently smooth and has a small number of extrema, then it
can be well approximated by a polynomial of a low degree, and so the projection on
a low-dimensional polynomial subspace will be a close approximation to the function.
The coordinate functions of symbol curves, as functions of time, do look smooth (even
where the curve has cusps or corners) and have few extrema (at most 10–15). It is not
surprising therefore that they can be accurately approximated by truncated series of
order about 10, to the extent that the approximation error is unnoticeable to a human
eye. When the curve is parameterized by arc length, the coordinate functions are no
longer smooth, and the approximation will tend to “cut” cusps and corners; however,
truncation order 10–15 still appears to be sufficient to approximate most symbol curves
so that they can be recognized unambiguously by a human reader [3, 4]. Multi-stroke
symbols can also be accurately approximated by the truncated Legendre-Sobolev series,
after consecutive strokes are joined [5].

Let x0, x1, . . . , xd be the first d + 1 Legendre-Sobolev coefficients of x(λ), and simi-
larly for y(λ). Since B0(λ) = 1 (for any inner product), point (x0, y0) can be thought of as
the curve’s center, and therefore we can normalize the curve’s position by simply omit-
ting these coefficients. To complete normalization, we consider size as any non-zero
linear dimension of the symbol, such as width, height, length, diameter, or perimeter. In
our context, this definition of size up to a constant factor is sufficient. The norm of the
vector formed by the remaining coefficients,

(x1, . . . , xd, y1, . . . , yd)

is proportional to the size of the symbol and therefore we can normalize size by nor-
malizing this vector. The resulting normalized vector represents the curve by a point in
a 2d-dimensional vector space and will be used for classification.

We next turn our attention to a fast method for computing the Legendre-Sobolev
coefficients [3, 4]. As the curve is written and a sequence of points is sampled from it,
accumulate the moment integrals

mi(x, L) =

∫ L

0
x(λ)λi dλ, mi(y, L) =

∫ L

0
y(λ)λi dλ, i = 0, . . . , d.

As pointed out in [3], general-purpose numerical integration schemes, such as the trape-
zoidal rule, fail to approximate higher-order moments with sufficient precision. Instead,
on each sub-interval, we compute the integral of λi exactly and multiply the result by
average value of the coordinate function at the end points; see [3, Section 3] for details.

Consider the Legendre-Sobolev inner product on [0, 1] and apply integration by
parts:

〈 f (λ), Bi(λ)〉 =

∫ 1

0
f (λ)Bi(λ) dλ + µ f (λ)B′i(λ)

∣∣∣∣∣1
0
− µ

∫ 1

0
f (λ)B′′i (λ) dλ.
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Fig. 1. Approximations of symbol ‘3’ (solid) by Legendre series, degree 8 (dots) and 17 (dashes).

We observe that since Bi(λ) are polynomials, the Legendre-Sobolev coefficients of f (λ)
can be obtained as linear combinations of the moments of f (λ) and values of f (λ)
at λ = 0 and λ = 1. The matrix of the linear transformation from moments to the
Legendre-Sobolev coefficients can be computed in advance. For the particular case of
µ = 0, which corresponds to the Legendre inner product, the explicit expressions for its
entries are given in [3, Section 6].

If f (λ) is defined on an interval [0, L], rather than [0, 1], we can first apply a linear
substitution λ 7→ λ/L to the moments, i.e., divide mi(x, L) and mi(y, L) by Li. Note that
both the substitution and the linear transformation require a number of operations that
depend only on the truncation order. As we have seen earlier, the truncation order has
a small value, intrinsic to the character set (in our experiments we try different values
from 6 to 12) so methods with quadratic complexity are perfectly acceptable. A thor-
ough analysis of the approximation accuracy is carried out in [1, 3]. For an illustration
of the convergence, please refer to Figure 1. Thus, the time spent to compute the rep-
resentation after pen-up can be neglected, even on the most inexpensive hardware. The
remaining challenge is therefore to classify the curve fast among several hundreds of
classes.

Note that the truncated Legendre-Sobolev coefficient vector contains nearly com-
plete information about most characters, because a human can easily recognize the
character by looking at its approximation. Arguably, since there is no substantial loss
of information at the representation stage, classification algorithms based on this rep-
resentation should perform well. Another important property of the representation is
that, mathematically, it is just a linear projection of the parametric curve onto a finite-
dimensional subspace of truncated Legendre-Sobolev series. Under projections, the im-
ages of convex sets remain convex and, as is shown in Section 4.4, convexity is a useful
property in our problem. Ultimately, a numerical representation that preserves essential
information about the characters and allows high classification accuracy should give a
new insight into the processes of handwriting recognition and generation as performed
by humans.
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Sym #
a 507
b 431
c 642
d 484
e 463
f 460
g 359
h 361
i 697
j 440
k 392
l 443
m 382
n 789
o —
p 410
q 1704
r 347
s 841
t 825
u 483
v 694
w 456
x 967
y 555
z 520

Sym #
A 50
B 54
C 642
D 48
E 30
F 74
G 69
H 44
I 52
J 134
K 294
L 60
M 53
N 55
O —
P 183
Q 76
R 71
S 773
T 148
U 626
V 602
W 408
X 768
Y 152
Z 477

Sym #
A 14
B 51
C 87
D 26
E 164
F 10
G 17
H —
I 134
J —
K 47
L 66
M 25
N 12
O 43
P —
Q —
R 43
S —
T 13
U —
V —
W —
X —
Y —
Z 14

Sym #
R 14
∅ 415

~ 33
` 376
∞ 221

1 2508
2 2784
3 2042
4 1887
5 1833
6 1785
7 1800
8 1773
9 2070
0 2675

Sym #
α 184
β 95
γ 166
δ 125
ε 164
ζ 57
η 100
θ 336
ι 67
κ 65
λ 81
µ 89
ν 174
ξ 80
o —
π 249
ρ 168
σ 74
ς 64
τ 69
υ 177
φ 95
χ 205
ψ 164
ω 170

Sym #
A —
B —
Γ 115
∆ 82
E —
Z —
H —
Θ 71
I —
K —
Λ 197
M —
N —
Ξ 73
O —
Π 327
P —
Σ 407

T —
Υ —
Φ 183
X —
Ψ 209
Ω 102

Table 1. Letter and digit classes used in the experiments.

3 Experimental setting

For our experiments we have assembled a dataset of 50,703 handwritten mathemati-
cal symbols from 242 symbol classes. 26,139 samples were collected at the Ontario
Research Centre for Computer Algebra, 14,802 samples (of digits) were borrowed
from the UNIPEN handwriting database [10], and 9,762 samples from the LaViola
database [16], which includes digits, Latin letters, and a few common mathematical
symbols. The data was converted to a uniform InkML format [11] and stored in a single
file. For each symbol, the number of strokes and the x and y coordinates of the sample
points are available; for some symbols, we also have information about the timing, pen
pressure, pen-up strokes, and context (a MathML description of the formula containing
the symbol), which was disregarded in the present experiments. The classes (chosen ac-
cording to the MathML labelling standard, when possible), with the number of samples
available for each class, are listed in Tables 1 and 2.

All samples were visually inspected in order to correct accidental labelling errors.
Manual relabeling was necessary in order to obtain more accurate error rates for the
classifiers. Indeed, for samples that are hardly recognizable by a human as members of
the assigned class, the expected output of classification is essentially undefined, there-
fore such samples do not provide any valuable information and only increase the vari-
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( 780
{ 248
[ 56
〈 26
d —
b 10

∈ 143
⊂ 127
⊆ 100
@ 74
v 76
< 324
≤ 104

� 100
≺ 44
4 20
a 56
/ 142

→ 138
⇒ 93
 55
↪→ 77

 65
↗ 69
↘ 63

) —
} 37
] 64
〉 23
e 26
c 16

3 70
⊃ 111
⊇ 96
A 75
w 76
> 351
≥ 84

� 101
� 51
< 14
` 68
\ 88

← 70
⇐ 87
f 41
←↩ 56
� 54
↖ 55
↙ 80

= 578
≡ 102
≈ 88
� 95
∼ 51
' 91

< 76
1 66
* 59
@ 68
≮ 61
6≤ 73

⊥ 58
∴ 17
± 116
⇑ 58
↑ 66
∩ 153
u 65
∧ 186

, 323
. 71
0 61
� 27
/ 77
; 69

= 69
2 74
+ 79
A 61
≯ 74
6≥ 82

> 135
∵ 17
∓ 81
⇓ 68
↓ 73
∪ 173
t 80
∨ 462

ā 10
ã 10
ä 10
ȧ 10

+ 937
− 1212
× 555
÷ 89

! 106
? 44
: 44
; 17

∀ 35
∃ 27

� 77
⊕ 71
⊗ 84
] 63

⇔ 91
↔ 86
7→ 14

� 81
∼
, 23
- 44

| 1809
‖ 130

∠ —
∝ 194
. . . 44
% 11

∂ 413
∇ 11∫

412
√ 397∐

13

′ 62
? 23
∗ 18
† 10
X 33

Table 2. Special mathematical symbol classes used in the experiments.

ance in the resulting error rates. Thus, samples that appeared totally unrecognizable
were discarded. Samples that belong to more than one class, as determined by visual
inspection, were attributed with all applicable labels (see Figure 2 for examples). Some
classes were so similar (i.e., had no examples of symbols that certainly belong to some
but not all of them) that it was decided not to attempt to distinguish among them. Exam-
ples of such groups of similar classes include “Capital O, little o, omicron, zero”, capital
Greek letters with Latin analogues, and certain calligraphic letters without clearly pro-
nounced calligraphic features. All samples of such classes were labeled with the same,
most commonly used, label. Whenever a class contained at least one symbol that is
clearly a member of this, and no other, classes, we retained the label. As a result, we
obtained 38,493 samples belonging to a single class, 10,224 samples to 2 classes, 1,954
samples to 3 classes, 19 samples to 4 classes, and 13 samples to 5 classes.

We also included the number of strokes in the class labels. This decision was based
on an experiment described in [5], where including the number of strokes in the class
label yielded better classification results than using it as an entry in the feature vector.
This is the case despite the fact that the number of classes raises to 378, as we include
the number of strokes in the label. The reason why the number of strokes is not a good
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Fig. 2. Ambiguous symbols labeled with multiple class labels.

candidate for a coordinate in the feature vector is that, unlike the other features we
consider, it violates the property of convexity, which we discuss below in Section 4.4.

We furthermore noticed that some symbols could be written in more than one way.
It is reasonable to assume that a symbol can be classified correctly only if sufficiently
many instances of this symbol form are available in the database. Therefore, we dis-
carded all symbol forms which had fewer than 9 instances. However, we do not use al-
lomorph labels in the classification. The classes of small symbols “dot” and “comma”,
as well as class “rpar” (closing parenthesis) which has a large overlap with the class of
commas, were not considered. Arguably, small symbols should be classified separately,
using a method that takes into account their relative size. All methods discussed in this
paper apply size normalization before classification. The quoted results apply to the
data set described.

The normalized Legendre-Sobolev coefficient vectors were pre-computed for all
samples, with the value of the Legendre-Sobolev parameter µ set to 1/8 (it has been
determined earlier [7] that this value yields good results for various classification meth-
ods).

In order to evaluate the performance of various classification methods, we used
a 10-fold cross-validation. The entire dataset of 50,703 symbols was randomly parti-
tioned into 10 subsets, preserving the proportions of class sizes. Then, samples from
each subset were classified, using the samples from the other 9 subsets as training data.
A sample was considered to be classified correctly if the composite label attributed to
it by the classification algorithm overlapped with the ground truth composite label. For
example, if the sample is labelled “4” and the classifier outputs “4 or y”, the sample
is correctly classified. We allow such ambiguous output from the classifier, because in
many cases there is no meaningful way to assign a single label to a symbol. For exam-
ple, a human cannot decide “4” or “y” for elements of “4 or y” and the ambiguity can
only be resolved by taking into account contextual information. Then, the percentage of
mis-classified samples was calculated. Note that each mis-classified symbol contributes
about 0.002% to the overall error rate.

Our experiments were performed on a PC with a 2.4 GHz Intel Dual Core processor,
2GB of RAM, running Ubuntu Linux 8.04. The algorithms were implemented in C++.
The distances to the convex hulls were computed with the help of the linear algebra
library Lapack++, release 2.5.3.
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4 Classification

In this section we present the results of nearest neighbor classification using the follow-
ing distance measures:

– elastic matching distance,
– Euclidean distance on Legendre-Sobolev coefficient vectors,
– Manhattan distance on Legendre-Sobolev coefficient vectors, and
– Euclidean distance to the convex hull of several nearest neighbors.

We compare the cost and accuracy these measures and present a combination that is
efficient in both time and space. Our goal is to identify a classification method that
is as fast, compact and accurate as possible in principle. We recognize that there are
trade-offs between these objectives, so for concreteness we take our reference mobile
processor as one with a clock of 100 MHz for 32 bit operations and at most 1 megabyte
of memory available for use by recognition.

4.1 Elastic matching

The square elastic matching distance [19–22] from a point sequence A = a1, . . . , an to
a point sequence B = b1, . . . , bn (of equal length) is defined as the minimum over all
non-decreasing functions r : {1, . . . , n} → {1, . . . , n} of the square Euclidean distance

n∑
i=1

||ai − br(i)||
2

It can be computed in O(n2) operations using a dynamic programming algorithm [22]. A
sliding window version of elastic matching [13, 23] is often used, in which a parameter
q, 1 ≤ q ≤ n is introduced, and the values r(i) are restricted to the interval [i − q, i + q],
for each i = 1, . . . , n. With this restriction, the distance can be computed in O(nq)
operations.

It has been established earlier [4] that the elastic matching distance yields best re-
sults when the points a1, . . . , an are sampled from the curve so that the arc lengths
between the adjacent points are equal. It has been also established [4, Table 6] that
1-nearest neighbor (NN) classification yields better results than 3-NN or 5-NN when
many small classes (with about 10 samples per class) are present, which is our case.
This applies to elastic matching and euclidean distance-based classification, therefore,
we restrict our analysis to 1-NN in what follows.

By cross-validation, we determined that the lowest error rate of 1-nearest neighbor
classification, equal to 3.0%, is obtained for n = 30 and q = 2. The error rates for
other values of n and q are shown in Table 3. Observe that the optimal value of q is
proportional to n and approximately equal to n/15. There is no improvement observed
for n > 30.

The algorithm for computing the elastic matching distance with the sliding window,
in the special cases of small values of q, admits an efficient implementation with no
dynamic memory allocation and completely inlined code. For example, the computation
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@
@@q

n
10 12 14 16 18 20 22 24 26 28 30 40 50 60

1 5.1 4.7 4.1 3.7 3.6 3.5 3.4 3.4 3.3 3.4 3.4 3.7 3.9 4.0
2 5.3 5.0 4.5 4.2 3.8 3.8 3.4 3.4 3.2 3.1 3.0 3.2 3.3 3.4
3 5.4 5.1 4.7 4.4 4.0 4.1 3.8 3.7 3.5 3.5 3.4 3.2 3.1 3.1
4 3.5 3.2 3.1
5 3.4 3.2

Table 3. Elastic matching error rates in %.

of a single distance for n = 20 and q = 1 takes 0.25 microseconds on our experimental
PC. Assuming that the maximal affordable delay is 100 milliseconds and our reference
mobile processor to be up to 50 times slower than our experimental PC, we obtain that
about 8,000 models can be processed. We conclude that the elastic matching distance
is not accurate enough and not fast enough for our purposes and proceed to the study of
alternatives.

4.2 Euclidean distance

In this and the following sections, we consider the distance measures that are perhaps
among the fastest possible. As we shall see, these distances are less accurate than the
elastic matching distance. However, they are perfectly suitable for selecting the top
T candidate classes, as well as finding the nearest neighbors in each class. Then, the
distance to the convex hull of these neighbors will be used to select from among the
top T .

Using the usual formula for the square Euclidean distance, we obtain an algorithm
that computes the distance in 3D − 1 arithmetic operations, or 0.12 microseconds (for
dimension D = 24, with floating point arithmetic). This is twice faster than elastic
matching, but still not fast enough, as it will allow to process about 16,000 samples
on our reference mobile processor (see end of previous section for the calculations).
Therefore, a faster distance is needed.

A significant improvement can be achieved by using integer arithmetic. This is par-
ticularly useful on mobile devices, many of which do not support floating point instruc-
tions. It turns out that Legendre-Sobolev coefficients can be computed with a very low
precision, without compromising the correct retrieval rates. As Table 5 suggests, 7 bits
per coefficient are enough. However, the computation of the squares in the Euclidean
distance requires each coefficient to be stored in a separate machine word, which makes
it difficult to take full advantage of the low precision. For this reason, we consider the
Manhattan distance as an alternative.
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4.3 Manhattan distance

The Manhattan distance, or L1 distance, between two coefficient vectors a and b is the
sum of the lengths of the projections of a − b on the coordinate axes:

||a − b||1 =

D−1∑
i=0

|ai − bi|.

We show how to compute the Manhattan distance quickly by operating on several
coordinates at once in a machine word. Here we give the details for 32-bit words and
simply note that the same approach can be applied with words of other sizes.

In our setting we can assume that the number of coefficients D = 4m is a multiple
of 4 and that each coefficient is an integer number between −63 and 63, inclusive. Then
D coefficients can be stored in m 32-bit words as follows. For k = 0, 1, 2, 3, use bits
8k, . . . , 8k + 6 to store a coefficient using ones’ complement binary representation, in
which negative numbers are represented by the bitwise complement of their absolute
values. Bits 8k + 7 are assumed to be zeroes.

With this representation the Manhattan distance can be efficiently computed as fol-
lows. Consider word 0, in which coefficients for i = 0, 1, 2, 3 are stored. Assume that
all four of ai, i = 0, 1, 2, 3 are stored in a 32-bit word, as described above, as are −bi,
and let a and b denote these two words, respectively. Note that the negations −bi can be
pre-computed in advance. Then the word containing |ai − bi|, for i = 0, 1, 2, 3, can be
computed as shown in Figure 3. Note that the resulting absolute values again occupy at
most 7 bits in each byte. To accumulate their sum, we can first compute

w = (w + (w � 8)) & 0x00FF00FF

for each word, then add the m words and, finally, apply

w = (w + ((w � 16)) & 0xFFFF

to the result. The total number of instructions is 6m + 3m + (m − 1) + 3 = 10m + 2.
In comparison, the Euclidean distance requires 3D − 1 = 12m − 1 operations. The

timings for the Euclidean and Manhattan distances on 32-bit and 64-bit machines are
shown in Table 4. Note that the real speed-up is much greater than 12/10: the Man-
hattan distance turns out to be about 3 times faster on a 32-bit machine and about 4–5
times faster on a 64-bit machine. This speed-up is largely due to the effects of pack-
ing, which ensures that the computation of the Manhattan distance proceeds in machine
registers, while the Euclidean distance requires retrieval of data from memory. The tim-
ings suggest that, on our reference mobile processor, we can compute the Manhattan
distance from a test sample to more than 80,000 training samples, for dimension 24,
in under 100 milliseconds. This rough estimate suggests that, with the proposed meth-
ods, recognition speed is not an issue even on mobile devices, and the main concern
becomes the memory required to store the samples. We propose various methods for
compact representation in Section 4.4.

As Table 5 shows, the error rates of nearest neighbor classification with Manhat-
tan distance are very similar to those with the Euclidean distance. These error rates are
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Procedure 1
I:

Two 32-bit words, a and b, storing ai and −bi, i = 0, 1, 2, 3 in sequential 8-bit regions.

O:
One 32-bit word, w, storing ai − bi, i = 0, 1, 2, 3 in sequential 8-bit regions.

M:
1. w = a + b (where + denotes unsigned integer addition)

2. s = (w & 0x80808080) � 7 (mask carries and shift them to position 0)

3. w = w + s (values of |ai − bi| in ones’ complement)

4. p = s ∗ 0xFF (propagate carries to the higher bits, for each byte)

5. w = w ⊕ p (⊕ denotes bitwise exclusive or).

Fig. 3. Parallel absolute differences with bit fields

Distance\ Dimension 12 14 16 18 20 22 24
Euclidean (double), 32 bit 96 108 127 142 164 183 201
Euclidean (integer), 32 bit 61 68 76 82 92 99 107
Manhattan, 32 bit 20 24 28 34
Euclidean (double), 64 bit 79 86 93 99 106 113 121
Euclidean (integer), 64 bit 65 69 73 76 79 82 85
Manhattan, 64 bit 13 17 20 24

Table 4. Timings of the Euclidean and Manhattan distances in nanoseconds.

higher by about 0.5% than the best rate for the elastic matching distance, but the accu-
racy is sufficient to determine the top 3 classes. In order to break the ties among these
most relevant classes, we will employ a more accurate distance, as described below.

4.4 Convex hull of nearest neighbors

It has been observed earlier [5–7] that classes of handwritten symbol curves satisfy the
following property of convexity. Consider two curves that belong to the same class. If we
gradually morph one curve into the other, using a linear homotopy, then the intermediate
curves are expected to belong to the same class as well, as shown in Figure 4.

This means that, whenever two points belong to a curve class in the infinite-di-
mensional space of parametric curves, the entire straight line segment connecting these
points is contained in this class. In other words, curve classes are convex sets. This
property may fail to hold if the two curves are different allomorphs of the same symbol;
such counter-examples can be found in [7]. However, it is safe to assume that, if the
two curves from the same class are sufficiently close to each other (e.g., in terms of the
Euclidean distance), then linear homotopy between them will always produce similar
curves.
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Distance (dimension)\ # bits 6 7 8 9 10 12
Euclidean (12) 6.2 5.1 5.0 4.9 4.9 4.9
Manhattan (12) 6.6 5.5 5.3 5.3 5.2 5.2
Euclidean (16) 4.9 4.1 4.1 3.9 4.0 4.0
Manhattan (16) 5.3 4.5 4.3 4.2 4.2 4.2
Euclidean (20) 4.4 3.8 3.6 3.5 3.5 3.6
Manhattan (20) 5.1 4.2 3.9 3.8 3.8 3.8
Euclidean (24) 4.4 3.7 3.6 3.5 3.5 3.5
Manhattan (24) 5.0 4.1 4.0 3.9 3.8 3.8
Euclidean (12, top 2) 1.6 1.4 1.3 1.3 1.3 1.3
Manhattan (12, top 2) 1.6 1.4 1.2 1.1 1.2 1.1
Euclidean (24, top 2) 1.0 0.9 0.9 0.9 0.9 0.9
Manhattan (24, top 2) 0.5 0.3 0.3 0.3 0.3 0.3
Euclidean (12, top 3) 0.1 0.2 0.2 0.2 0.2 0.2
Manhattan (12, top 3) 0.2 0.2 0.2 0.2 0.2 0.2
Euclidean (24, top 3) 0.1 0.1 0.1 0.1 0.1 0.1
Manhattan (24, top 3) 0.1 0.0 0.0 0.0 0.0 0.0

Table 5. Euclidean and Manhattan distance error rates in % vs coefficient size in bits.

Fig. 4. Linear homotopy between two class members stays within the class.

The fact that the property of convexity holds only locally for the curve classes has
implications for the choice of the classification method. Indeed, if the classes were
globally convex, then they would be linearly separable (provided that the classes do
not overlap). For such classes, classifiers based on linear support vector machines are a
natural choice [5, 6]. On the other hand, for classes that do not exhibit any convexity,
linear support vector machines get outperformed by distance-based nearest neighbor
classification. The disadvantage of the latter family of methods is that they essentially
bypass the learning stage and require very large training sets. The distance to the convex
hull of nearest neighbors [7, 24] can be viewed as a combination of the two approaches,
which is particularly suitable for classifying among locally convex classes.

When the number of points is less than the dimension of the vector space their
convex hull is a simplex (provided that the points are in generic position). The distance
from a point to a simplex can be computed by an efficient algorithm [7, 18] presented
in Figure 5.

It has been shown experimentally [7] that, for the purpose of curve classification,
the optimal number of nearest neighbors in the convex hull is indeed smaller than the
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Procedure 2
I:

Point x and vertices {s1, . . . , sk} of a simplex.

O:
Distance from x to the simplex.

M:
1. if k = 1 then return ||x − s1||

2. Find v =
∑k

i=1 αi si such that 〈v − x, v − si〉 = 0, i = 1, . . . , k.

3. if αi ≥ 0 for all i = 1, . . . , k then return ||v − x||

4. Let S + = { si | αi ≥ 0, i = 1, . . . , k }
return DistToSimplex(x, S +)

Fig. 5. Algorithm to compute the distance to a simplex.

dimension. Given that the number of neighbors is small and the classes are locally
convex, it is unlikely that convex hulls of nearest neighbors from different classes will
overlap (unless the classes themselves overlap, which is again unlikely in the presence
of multiple labels). An exact measurement of the volume of these overlaps, however,
would require rather sophisticated computations, which are beyond the scope of this
paper.

It has been also shown [7] that the distance to the convex hull of nearest neighbors
successfully breaks the ties among the top few classes produced by a support vector
machine classifier. We present the results of experiments, which demonstrate that the
pre-classifier based on support vector machines can be replaced by the nearest neighbor
classification with Manhattan distance. The latter method is advantageous in three re-
spects: it does not require convexity of classes, and hence allomorph labels (which are
very tedious to obtain), is faster, and requires less storage.

To summarize our combined classification method, we list all the steps and parame-
ters involved in Figure 6. In order to reduce the time complexity and space requirements,
one can use a certain subset of training samples in steps 2 and 3. Intuitively, the samples
on the boundary of classes play a more important role than those in the interior. The sig-
nificance S of a training sample X from a class C can be estimated by computing the
number of samples from the other classes, for which X is the nearest neighbor, among
the samples from C. It turns out that discarding the samples of low significance does not
diminish classification accuracy and allows to reduce the size of the training set almost
by a factor of 2.

Figure 8 shows the error rates of the combined classification method for various
values of the parameters D, b, and S , together with the corresponding storage require-
ments. It has been established earlier [7] that the value of k = 11 yields best results
for the distance to the convex hull of nearest neighbors. The error rates also reach their
minimum for T = 10 (3.9% for T = 1, 2.6% for T = 5, 2.5% for T ≥ 10). The reason
why we need T higher than 3, even though the top-3 error rate for the Manhattan dis-
tance is close to zero, is because, in the presence of overlaps, it is sometimes beneficial
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Procedure 3
I:

A test curve C.
Positive integer parameters b, k, D and T .
A set of classified points DB ⊂ Cl × ZD

b , where Cl is the set of classes and Zb is the set
of integers with b or fewer bits.

O:
The classification of C (i.e. a member of Cl.)

M:
1. Compute the D-dimensional normalized vector of Legendre-Sobolev coefficients of the coor-

dinate functions of C. Store each coefficient as a b-bit integer.

2. Apply nearest neighbor classification and select the closest T classes using the Manhattan
distance.

3. In each of the top T classes choose k nearest neighbors and find the Euclidean distance from
the test point to their convex hulls. Output the class for which this distance is minimal.

Fig. 6. Curve classification by convex hull of nearest neighbors (CHNN)

Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 Top-8 Top-9 Top-10
21.75% 6.25% 2.96% 2.33% 2.07% 1.94% 1.80% 1.76% 1.68% 1.62%

Table 6. Error rates when class labels are chosen randomly from a multi-class output.

to leave among the top T classes more than one intersection of the correct class with a
neighboring class.

Note that the above rates were computed in the presence of multi-class labels. That
is, a test symbol was considered to be correctly classified, if its multi-class label has at
least one class in common with the multi-class label returned by the classifier. In the
setting where we are going to apply this classifier, such ambiguities will be resolved
by taking into account statistical contextual information. However, it could possibly
be used in other settings, where a single class is needed on the output. In that case,
when multiple classes are returned, we can choose the correct one at random, with
the probabilities weighted by the corresponding numbers of samples per class. The
resulting error rates, for test symbols labelled with their original single-class labels
as presented to the writers, are shown in Table 6 (the parameters are the same as the
ones that yielded 2.5% error rate for multi-class labels). The high top-1 error rate of
about 20% is not very surprising, given that the classification is based on inherently
ambiguous multi-class labels and a random choice to disambiguate them, and that about
20% of all samples are labeled with at least two classes.

We examined the mis-classified symbols in order to characterize them. We found
that in about 70% of the “misclassified” symbols, the symbol was unrecognizable out of
context, even by a person. These could be viewed as labelling errors — that the symbol
should have had multiple labels. Examples of these are shown in Figure 7 (a)–(o).
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(a) X×x⇒ Yy (b) r⇒ √ (c) Zz⇒ 7 (d) h⇒ L (e) e ⇒ 7

(f) †+⇒ t (g) n⇒ Uu (h) 〉 ⇒ > (i) √ ⇒ Vv (j) ζ ⇒ h

(k) Vv⇒ uu (l) γ⇒ V∨v (m) Cc⇒ e (n) 0⇒ 6 (o) 0⇒ θ

(p) j⇒ i (q) { ⇒ Eε (r) 4⇒ Ψψ (s) q⇒ Eε (t) ρ⇒ ζ

(u) r⇒ m (v) 1⇒ t (w) ∼ ⇒ νυ (x)→⇒← (y) ∓ ⇒ ,

Fig. 7. Examples of mis-classified symbols. Label⇒ assigned classification.

About 30% of of the misclassified symbols (30% of 2.5% = 0.75% overall) were
genuine mis-classifications. Some of these were attributable to deficiencies in the train-
ing set, others would be correctly classified if baseline information were provided, some
appear to arise when significant parts of the symbol are retraced, and others appear to
be well formed symbols that were mis-identified. Typical examples of these are shown
in Figure 7 (p)–(y).

The time needed to compute the distances to the convex hull of 11 points 10 times
can be neglected (for any device). Therefore, on a modern PC or a more powerful mobile
device, the entire available data set can be easily used, with the maximal dimension
(24) and 7 bits per coefficient (there is no improvement for b > 7 when the dimension
equals 24). For an inexpensive mobile device, on which storage is precious, we can use
Figure 8 to choose the optimal values of D, b, and S , given the desired error rate and
storage limitations. In order to be able to compute the Manhattan distance fast, one has
to leave 1 empty bit for the carries, by reserving 1 byte but actually using 7 bits per
coefficient. Taking into account this detail, a convenient choice of the parameters for a
mobile device could be D = 20, b = 7, and S = 4, which yields an error rate of 2.8%
with less than 30,000 samples, requiring less than 600 KB of storage. Experiments with



18

Error rate Storage Dimension #bits Significance #Training samples
2.52% 958 KB 24 7 1 45,607
2.60% 693 KB 24 7 3 33,012
2.65% 616 KB 24 7 4 29,313
2.70% 586 KB 20 8 4 29,313
2.80% 513 KB 20 7 4 29,313
2.85% 470 KB 20 7 5 26,874
2.90% 440 KB 20 6 4 29,313
3.00% 403 KB 20 6 5 26,874

Fig. 8. Minimal storage to achieve given error rate with µ = 1/8, k = 11, T = 10.

fast compression utilities suggest that the storage can be further reduced to about 450
KB. With these settings, classification is expected to take less than 50 milliseconds on
our reference mobile processor.

Even though it is natural to ignore classes with few samples to improve classification
accuracy, this approach presents a practical concern: in a real system, it may often
happen that a user enters a new symbol which is not in the data set. In this case, the
system may have to ask the user to provide additional samples, in order to be able
to reliably identify members of the new class. This may be inconvenient to the user;
however, since a particular writer is likely to use a particular allomorph of each symbol
most of the time, it will only be necessary for the writer to provide about 10 samples of
the new symbol, in order for the system to learn it well, so the burden does not appear
to be too high.
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Fig. 9. Homotopy between different writing directions leads outside the class.

Top-1 Top-2 Top-3 Top-5 Top-10
4.0% 1.7% 1.0% 0.6% 0.3 %

Table 7. Error rates for linear SVM, µ = 1/8 and SVM regularization constant C = 10.

5 Comparison with linear support vector machines

As mentioned above, symbol classes are linearly separable, but only to some extent.
In fact, linear separability is consistently violated by the presence of allomorphs, i.e.,
different ways of writing the same symbol. There is no reason why linear homotopy
between two different allomorphs should stay within the same class and, indeed, as
Figure 9 illustrates, it often does not.

Linear support vector machines, naturally, will fail to distinguish between classes
that are not linearly separable. One certain, albeit tedious, way to achieve linear sepa-
rability is to label the allomorphs and use linear SVM to classify among the allomorph
classes, rather than the original ones. This inevitably increases the number of classes
and decreases the number of available training samples per class, but the classes be-
come simpler. There are two reasons that influenced our choice of the distance to the
convex hull of nearest neighbors in favor of an ensemble linear SVM: the latter clas-
sification method is based on pairwise classifiers and therefore its complexity grows
quadratically in the number of classes (this is also the reason why we found ensembles
of non-linear SVM impractical); the former also shows slightly lower classification rates
(see Table 7 for comparison). Nevertheless, we do consider linear SVM as a competitive
approach, which could be combined with the distance-based methods, for example, via
measures of confidence, which are available in both cases [8]. For a detailed description
of experiments with linear SVM, please refer to [7].

6 Conclusion

The analysis of various distance measures carried out in this paper suggests that a care-
ful assessment of the quality of a distance measure cannot be based solely on the mea-
surement of error rates produced by the corresponding nearest neighbor classifier. In the
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case of handwritten symbol recognition, the elastic matching distance has been shown
to yield a noticeably lower nearest neighbor classification error rate than the Euclidean
distance in the space of curves. Yet we have shown that a more accurate classifier can
be built using the vector-space-based representation, by working in a space with more
structure and using its additional properties. By integrating a very fast pre-classifier
based on the Manhattan distance with a more accurate tie-breaker based on the Eu-
clidean distance to the convex hull of nearest neighbors, we have obtained a combined
method that is clearly superior to elastic matching in terms of classification accuracy,
time and space complexity. We have shown that this method allows classification of
a test sample among several hundred classes with a high accuracy and is suitable for
implementation in systems with very strict speed and memory requirements.
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