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ABSTRACT
Riquier Bases for systems of analytic pde are, loosely speak-
ing, a differential analogue of Gröbner Bases for polynomial
equations. They are determined in the exact case by apply-
ing a sequence of prolongations (differentiations) and elimi-
nations to an input system of pde.

We present a symbolic-numeric method to determine Riquier
Bases in implicit form for systems which are dominated by
pure derivatives in one of the independent variables and have
the same number of pde and unknowns.

The method is successful provided the prolongations with
respect to the dominant independent variable have a block
structure which is uncovered by Linear Programming and
certain Jacobians are non-singular when evaluated at points
on the zero sets defined by the functions of the pde. For
polynomially nonlinear pde, homotopy continuation meth-
ods from Numerical Algebraic Geometry can be used to com-
pute approximations of the points.

We give a differential algebraic interpretation of Pryce’s
method for ode, which generalizes to the pde case. A major
aspect of the method’s efficiency is that only prolongations
with respect to a single (dominant) independent variable
are made, possibly after a random change of coordinates.
Potentially expensive and numerically unstable eliminations
are not made. Examples are given to illustrate theoretical
features of the method, including a curtain of Pendula and
the control of a crane.

Categories and Subject Descriptors: G.1.8 General

Terms: Algorithms, Design

Keywords: Partial Differential Equation, Riquier Bases,
Linear Programming, Numerical Algebraic Geometry, Jet
Spaces, Ranking, Implicit Function Theorem.

1. INTRODUCTION
Differential elimination algorithms apply a finite number

of differentiations (prolongations) and eliminations to un-
cover obstructions to formal integrability. Exact differen-
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tiation elimination algorithms that apply to exact polyno-
mially nonlinear systems of pde are given in [2, 7, 14, 22,
17, 16]. Such methods enable the identification of all hid-
den constraints of pde systems and the computation of ini-
tial data and associated formal power series solutions in the
neighborhood of a given point. Algorithmic membership
tests (specifically in the radical of a differential ideal) can
be given [2, 7]. They can ease the difficulty of numerical
solution of ode systems.

A major problem in these approaches is the exploding
size of prolongations for more than one independent vari-
able. In symbolic approaches much effort has been devoted
to control the growth of this size by developing redundancy
criteria (for integrability conditions), and making strong use
of elimination with respect to rankings to decrease the size
of the prolongations [1, 27]. However symbolic elimination
can also cause expression swell, and even in the case of one
independent variable, for constrained ode problems arising
in multi-body mechanics, it is a significant problem [26].

Very little work has been done on the corresponding prob-
lems for symbolic-numeric methods. Techniques which are
helpful for the symbolic case are often unstable for the ap-
proximate case, since rankings (the differential analogue of
term orders) can cause pivoting on small quantities and re-
sultant instability.

In this paper we make some progress on this problem for
a certain class of pde. For this class, only prolongations
with respect to one independent variable are needed. Para-
doxically rankings are important in our approach but don’t
cause instability since no eliminations are made. Hence we
also avoid the expression swell due to the eliminations men-
tioned above. A suitable ranking is determined by solving
an integer linear programming problem to uncover a block
structure in the pde system.

Another main idea in our paper is that such prolongations
are essentially ode like enabling us to generalize ode tech-
niques to the pde case. In our case we generalize a method
of Pryce for ode in the framework of Riquier Theory. How-
ever we might imagine this being also used as a bridge for
other ode techniques (e.g. that of Sedoglavic [21]).

In particular, we give methods for computing approximate
implicit Riquier Bases for square systems of analytic pde.

There already exist exact methods for computing Riquier
Bases for non-square polynomially nonlinear pde together
with an input ranking of derivatives [18]. However these
exact methods may not succeed if the intermediate systems,
can not be solved explicitly for their leading derivatives.

For polynomially nonlinear pde, our approximate Riquier
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Basis method uses an approximate method, homotopy con-
tinuation, to by-pass this difficulty. From a given set of
solutions of a system of similar structure, homotopy paths
converge to points on the zero set of the functions in the
prolongations of the pde system. It is these points that are
used to verify the conditions of the Implicit Function Theo-
rem, allowing the implicit solution of the given functions for
their leading derivatives. For background on the homotopy
methods, constituting the new area of Numerical Algebraic
Geometry, please see the book [24].

In addition our method yields the method of Pryce [13]
for systems of differential algebraic equations as a special
case. Prolongation will usually introduce more equations as
well as more (jet) variables, but this is not always true. If
some equations after differentiation do not introduce new
variables for whole system, then there is the possibility that
the dimension of the system is lowered, since generically
the system’s dimension is the number of its variables minus
the number of its equations. Pryce [13] proposed a method
to detect such “chances” that minimize the dimension by
taking advantage of the special structure of some systems.
Pryce’s method was the generalization of a method devel-
oped by Pantiledes. Ilie et al [6] show Pryce’s method, can
be extended to give a polynomial cost method for numerical
solution of differential algebraic equations.

2. ZERO SET OF PDE
Let F be a field (R or C in this paper), x = (x1, · · · , xn)

be the independent variables and u = (u1, · · · , um) be the
dependent variables for a system of pde. The usual com-
mutative approaches to differential algebra and differential
elimination theory [18, 2] consider a set of indeterminates
Ω = {vi

α | α = (α1, · · · , αn) ∈ Nn, i = 1, · · · , m} where each
member of Ω corresponds to a partial derivative by:

vi
α ↔ (Dxn)αn · · · (Dx1)

α1ui(x1, · · · , xn) := Dαui(x1, · · · , xn) .

Formal commutative total derivative operators are intro-
duced to act on members of Ω by a unit increment of the
i-th index of their vector subscript: Dxiv

k
α := vk

α+1i
where

α + 1i = (α1, ..., αi + 1, ..., αn). The usual total derivatives
Dxi act on functions of {x} ∪ Ω by:

Dxi =
∂

∂xi
+
X
v∈Ω

(Dxiv)
∂

∂v
(1)

where ∂
∂v

are the usual partial derivatives.
A q-th order differential system with ` equations is asso-

ciated with a locus (or zero set) of points

Z(f) := {(x, vi
α) ∈ Jq(Fn,Fm) : fk(x, vi

α) = 0, k = 1, ..., `}
(2)

where Jq(Fn,Fm) ' Fn × Fm × Fm1 × ... × Fmq is the jet
space of order q and fk : Jq(Fn,Fm) → F, k = 1, ..., ` are
the maps defining the differential equations. Here mr := m·`

r+n−1
r

´
is the number of jet variables corresponding to r-th

order derivatives.
One class of systems considered in this paper will be dif-

ferential polynomials in F[x1, ..., xn; vi
α : |α| ≥ 0], the ring of

all polynomials over F in the infinite set of indeterminates
{x} ∪ Ω, where |α| = α1 + · · ·αn. The other case is that
where the fk are F-analytic functions in a neighborhood of
a point (x0, (vi

α)0) which by our finiteness restriction can be
taken in Jq. We restrict to fk being functions of finitely

many indeterminates. We alert the reader that although we
occasionally use Jet notation, we always work locally over
some F-Euclidian space. So we don’t use the more global ge-
ometric features of Jet Geometry, such as bundles, contact
structures, etc (see [22]).

The pendulum is a simple example of differential equa-
tions (commonly called differential algebraic equations or
dae) that arise frequently in applications. As a matter of
terminology, throughout this paper we will use the term ode
to include dae. Such systems are ubiquitous in multi-body
dynamics. From CAD like graphical descriptions of links,
joints, motors, etc, there are several software packages (e.g.
Adams, Dads and WorkingModel [23]), that automatically
produce the equations of motion, using Lagrangian mechan-
ics formulations.

EXAMPLE 2.1. [The Pendulum] For the pendulum of
unit mass, under constant gravity, we have

Xtt + λX = 0,

Ytt + λY = −g, (3)

X2 + Y 2 = 1.

Here

Z(f) = {(t, X, Y, λ, Xt, Yt, λt, Xtt, Ytt, λtt) ∈ J2 :

Xtt + λX = 0, Ytt + λY + g = 0, X2 + Y 2 − 1 = 0}
is a 7 dimensional submanifold of F10 ' J2.

3. RANKINGS OF DERIVATIVES
A detailed formal treatment of this subject, and the clas-

sification of all such rankings are given in Rust et al. [18].
Rankings are fundamental in Differential Algebra [8].

Definition 3.1 (Ranking [18]). A positive ranking ≺
of Ω is a total ordering on Ω which satisfies:

vi
α ≺ vj

β ⇒ vi
α+γ ≺ vj

β+γ , (4)

vi
α ≺ vi

α+γ , (5)

for all α, β, γ ∈ Nn.

Let hdf denote the greatest member in Ω in f with respect
the ranking ≺.

EXAMPLE 3.1. An example of a ranking for the Pen-
dulum system given in Example 2.1 is:

X ≺ Y ≺ λ ≺ Xt ≺ Yt ≺ λt ≺ Xtt ≺ Ytt ≺ λtt ≺ · · · (6)

It is easily seen that (6) is invariant under differentiation,
so (4) is satisfied. In addition any derivative of a member
is greater than itself, so (5) is satisfied. In this ranking
hd(Xtt + λX) = Xtt, hd(Ytt + λY − g) = Ytt, and hd(X2 +
Y 2 − 1) = Y .

There are many ways to specify a ranking. In this paper
we use a matrix representation following Riquier and Rust
[18, 19]. First we introduce a map ψ from Ω to Zm+n:

ψ :
∂α1+···+αnuj

∂xα1
1 · · · ∂xαn

n
7→ (0, · · · , 0, 1, 0, · · · , 0, α1, · · · , αn)t

(7)
where the “1” appears in jth coordinate.

An ordering of the elements in Zm+n denoted by < is
defined by lexical order (comparing the values at the first
coordinate, then the second coordinate, and so on).
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Figure 1: Pendulum Curtain

Definition 3.2. [Ranking by Matrix] Suppose M is an
l× (m+n) matrix with nonnegative integer entries and sat-
isfies: θ 6= τ ⇒ M ·ψ(θ) 6= M ·ψ(τ). We define ≺M to be a
ranking with respect to M , if θ, τ ∈ Ω, we have θ ≺M τ ⇔
M ·ψ(θ) < M ·ψ(τ). Here M called a matrix representation
of this ranking. And θ ¹M τ means θ ≺M τ or θ = τ .

4. SIGNATURE MATRIX OF T-DOMINATED
SYSTEMS USING RANKINGS

The methods developed in this paper are applicable to a
class of pde that are dominated by pure derivatives in one
of their independent variables.

Examples of such pde include those of Cauchy-Kovaleskya
type such as hyperbolic equations (e.g. the wave equation
utt = c2uxx). Equations of parabolic type, such as the clas-
sical Heat equation ut = uxx are also included. In these
cases the dominating variable, is the time t. pde of elliptic
type are included in this class, such as the Cauchy-Riemann
equations: {ux = vy, vx = −uy}.

Our main illustrative example is:

EXAMPLE 4.1. [Pendulum Curtain] Consider a curtain
made of many pendula hanging under gravity g as shown
in Figure 1. The Pendula are restricted to move on the
surface of the cylinder and in planes perpendicular to the s-
axis displayed in Figure 1. The pendula form a continuous
curtain in the limit. For small deviations from the vertical
equilibrium position the equations for X(t, s), Y (t, s) and
Lagrange multiplier λ(t, s) for the continuous curtain are:

Xtt + λX = κXss

Ytt + λY + g = κYss (8)

1

2
(X2 + Y 2 − 1) = 0

Note that when κ = 0 this reduces to the simple pendulum
equations given in Example 2.1.

By a pure derivative with respect to an independent vari-

able xi, we mean a derivative of form
“

∂
∂xi

”k

uj where k ∈
N. By Definition 4.1 given later, a pde system which is dom-
inated by pure derivatives with respect to an independent
variable xi, must at least contain such a derivative in each
of its equations. The Pendulum Curtain system (8) satisfies
this requirement with respect to t. A physically important
class of pde which are dominated by pure derivatives in time
consists of evolution pde. In that case the time derivatives
can be expressed as functions of spatial derivatives.

For two independent variables t, x and for each uj , a rank-
ing consistent with such systems should satisfy:

uj ≺ uj
x ≺ uj

xx ≺ · · · ≺ uj
t ≺ uj

tx ≺ · · · (9)

It is easy to extend this (partial) ranking to the case when
x is a vector (e.g. using lexical order on x).

For the pendulum curtain example, the differential order
of t is more important than spatial derivatives. More gen-
erally, we can focus on a special independent variable xk

and for notational convenience denote xk by t. However we
warn the reader that t may not represent time for some phys-
ical t-dominated systems. For example the elliptic Cauchy-
Riemann equations (ux = vy, vx = −uy) are x-dominated.

We hide the details about the differential order of the
other independent variables by defining a weight map ϕ :
Ω → R as follows:

ϕ(vi
α) :=


αk, if αp = 0, for any p 6= k ;
αk + ε, otherwise.

(10)

The leading derivative of each equation Ri with respect
to each uj using the ranking (9), is denoted by ld(Ri, u

j).
Applying (10) to the leading derivatives of R, we obtain an
` ×m matrix (σi,j) which is called the signature matrix of
R (see Pryce [13] for the ode case):

(σi,j)(R) :=


ϕ(ld(Ri, u

j)), if Ri depends on uj ;
−∞, otherwise .

(11)
It is easy to show that (σi,j)(DtR) = (σi,j)(R) + 1`×m,

where 1`×m is a matrix with all entries equal to 1.
We define the leading class of derivatives by

lcd(R) := {ld(R, uj) : 1 ≤ j ≤ m} .

These are the highest derivatives of uj appearing in R.
If for each equation of R, the leading class of derivatives

are pure t-derivatives, then regarding the other independent
variables as parameters the pde has an ode-like structure.
Then we can consider the other independent variables as
parameters to regard the pde as ode. To study the pde
with this structure, we introduce a new concept:

Definition 4.1. [t-Dominated System] We say R is dom-
inated by pure derivatives in the independent variable t if
there is no ε appearing in (σi,j)(R). For notational simplic-
ity, we also call R a t-dominated system.

Such t-dominated systems are not as special as they appear.

Proposition 4.2. [Genericity of t-dominated Systems]
A generic F-analytic or polynomially nonlinear pde system
R with order k is t-dominated. Any F-analytic or polyno-
mially nonlinear pde system R with order k is t-dominated
after a random linear coordinates transformation in the in-
dependent variables with coefficients in F.

Proof. Let R be a generic pde. So each Ri contains all
pure t derivatives with order k, which are the leading class
of derivatives with respect to Ranking (9). For any non-
linear pde R, after a random linear coordinate change, any
derivative with order k becomes a linear combination of all
the kth order derivatives. So R contains all pure kth order
t derivatives which are the leading class of derivatives. ¤

Remark 4.3. A symbolic random linear coordinates trans-
formation often destroys the sparsity of the original system,
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which causes a dramatic increase in size of the system if
subsequent eliminations are applied. However our numeric
transformation in fixed precision lessens expression growth.
Also, as we will show, no eliminations are involved in our
method.

5. GENERALIZING PRYCE’S
PROLONGATION METHOD TO PDE

Let R be a square (i.e. #equations = #unknowns) and
t-dominated system. From Section 4, the signature matrix
(σi,j)(R) contains information on differential order and ig-
nores details on the degrees and coefficients of a system R.
We introduce a fast method based on (σi,j)(R) to differen-
tiate (prolong) R with respect to t. Pryce’s prolongation
method for square ode is a special case. It yields a local
existence and uniqueness result (equivalently all local con-
straints in initial conditions for R are determined). We ob-
tain a local existence and uniqueness result for square pde
which is given in Section 6.

If we consider R as ode (the only independent variable
is t). Pryce’s method [13] finds all the local constraints for
a large class of square ode using only prolongation. We
generalize this construction to pde. To be precise, the de-
scription of this construction is given in this section, but
the detailed justification of its properties under certain con-
ditions is given in Section 6. Suppose Ri is differentiated
ci times (ci ≥ 0). The new system after differentiation is
denoted by Dc

tR. Suppose the highest order of uj appear
in Dc

tR is dj . From the definition of (σi,j), clearly dj is the
largest of ci + σij , which implies that

dj − ci ≥ σij , for all i, j (12)

Obviously there are at most
P

dj + m pure t-derivative
jet variables and

P
ci + m equations in Dc

tR (considering
independent variables and all non-t-derivatives as parame-
ters). We can embed Dc

tR into a
P

dj + m dimensional
space. If each equation drops the dimension of the zero set
of Dc

tR by one, then the dimension of Dc
tR is

P
dj −

P
ci.

Roughly speaking, to find all the constraints is equivalent to
minimizing the dimension of Dc

tR. This can be formulated
as an integer linear programming problem in the variables
c = (c1, ..., cm) and d = (d1, ..., dm):

8
<
:

Minimize z =
P

dj −
P

ci,
where dj − ci ≥ σij ,

ci ≥ 0
(13)

The computation of c and d which only involves the infor-
mation on differential order and is consequently very fast.

Remark 5.1. However this linear programming problem
may not have solution. If we consider its dual problem in
the sense of linear programming, which is an Assignment
Problem. The task is to choose just one element in each row
and column of the signature matrix, then maximize the sum
of these m elements. The maximum is called the Maximal
Transversal Value. If this value exists, then (13) has finite
solution. Like Pryce’s method [13], we always assume that
the maximal transversal value exists in this paper.

EXAMPLE 5.1. Note that Example (4.1) is t-dominated
(and also s-dominated). Thus we can apply the method above
for pde. The signature matrix for the above system with

B0 B1 · · · Bkc−1 Bkc

R
(0)
1 R

(1)
1 · · · R

(c1−1)
1 R

(c1)
1

R
(0)
2 · · · R

(c2−1)
2 R

(c2)
2

...
...

...

R
(0)
m · · · R

(cm)
m

Table 1: The triangular block structure of Dc
tR.

For 0 ≤ i < kc, Bi has fewer jet variables than Bi+1.

columns corresponding to X, Y and λ from left to right is:

(σi,j) =

0
@

2 −∞ 0
−∞ 2 0
0 0 −∞

1
A

Recall that ci means the i-th equation needs to be differenti-
ated ci times (ci ≥ 0) and dj is the highest order of uj after
the prolongation. Then (13) is
8
>>><
>>>:

Minimize z = d1 + d2 + d3 − c1 − c2 − c3,
where d1 − c1 ≥ 2, d1 − c2 ≥ −∞, d1 − c3 ≥ 0,

d2 − c1 ≥ −∞, d2 − c2 ≥ 2, d2 − c3 ≥ 0,
d3 − c1 ≥ 0, d3 − c2 ≥ 0, d3 − c3 ≥ −∞,
c1 ≥ 0, c2 ≥ 0, c3 ≥ 0

Solving this integer linear programming problem by LP-
Solve in the Optimization package of Maple10, we obtain

c1 = 0, c2 = 0, c3 = 2; (14)

d1 = 2, d2 = 2, d3 = 0. (15)

After we obtain the number of prolongation steps ci for
each equation, we can construct the partial prolonged sys-
tem Dc

tR using c.
We also point out that Dc

tR has a favorable block tri-
angular structure which enables us to compute points on
Z(Dc

tR) more efficiently. Without loss of generality, we as-
sume c1 ≥ c2 ≥ · · · ≥ cm, and let kc = c1, which is closely
related to the index of system R (see [13] for more details
about the index). Then we can partition Dc

tR into kc + 1
parts (see Table 5).

For each Bi, 0 ≤ i ≤ kc, we denote the leading class of
variables by Ui := lcd(Bi) and define the Jacobian Matrix

Ji :=

„
∂Bi

∂Ui

«
. (16)

Proposition 5.2. Let J (Dc
tR) := {Ji} be the set of Ja-

cobian matrices of {Bi}. For any 0 ≤ i < j ≤ kc, Ji is a
sub-matrix of Jj. Moreover, if Jkc has full rank, then any
Ji also has full rank.

Proof. The first result is by the chain rule and the fact
that if θ is the leading variable of a pde F then θt is the
leading variable of DtF .

Because Jkc is an m × m full rank, each row is linearly
independent. Since Ji is a sub-matrix of Jkc , we can assume
it consists of the first p rows and first q columns of Jkc ,
where q is the number of elements in Ui. If q = m, then
rank(Ji) = p. If q < m, then the entries in first p rows and
last m− q columns must be 0. So rank(Ji) = p. ¤

In the following section we will show that the output of
the t-prolongation implicitly yields a Riquier Basis for which
an associated existence theorem is available.
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6. THE FORMAL RIQUIER EXISTENCE
THEOREM

In this section, we state Theorem 6.5 for the existence
and uniqueness of formal power series solutions of a Riquier
Basis. This theorem is the result of a Gröbner style devel-
opment and extension of Riquier’s classical existence results
for pde. The details can be found in the works of Rust et
al. [19, 18]. The corresponding exact symbolic differential
elimination algorithms were implemented [27] in distributed
Maple; which also refers to applications of the algorithms.

Given a ranking of partial derivatives, such bases are in
solved form with respect to leading derivatives. They are
symbolically determined by successively including integra-
bility conditions and performing eliminations on the result-
ing systems. The solved form requirement means that in the
exact case they are essentially restricted to pde which are
linear in their highest derivatives. Closely related to Riquier
Bases are Schwarz’s Janet Bases [20].

We say that f is ≺-monic with respect to a ranking ≺ if
f has the form f = hdf + g, with hdg ≺ hdf . For example
the equation X2 + Y 2 − 1 = 0 of the Pendulum system of
(3) is not ≺-monic with respect to the ranking given in (6)
since it is nonlinear in Y , its highest derivative.

Definition 6.1. [M, V] In the remainder of the paper,
fix a finite set M of ≺-monic functions of which are F-
analytic functions on some subset V of Jr(Fn,Fm) for some
finite r. The subset is connected and open in the usual F-
Euclidean topology.

Definition 6.2. [Principal and Parametric Derivatives]
The principal derivatives of M are defined as

PrinM := {v ∈ Ω|∃f ∈M and α ∈ Nn with v = hdDαf}
The parametric derivatives of M, which we denote ParM,
are those derivatives that are not principal.

The parametric and principal derivatives enable us to spec-
ify initial data, that will be important in the existence and
uniqueness theorem.

Definition 6.3. A specification of initial data for M is
a map

φ : {x} ∪ Par M→ F

For x0 ∈ Fm, we say that φ is a specification at x0 if

φ(x) := (φ(x1), φ(x2), · · · , φ(xm)) = x0.

For an analytic function g on jet space, let φ(g) be the
function of the principal derivatives obtained from g by eval-
uating x and the parametric derivatives using φ:

φ(g) := g(φ(x), (φ(v))v∈ParM).

Definition 6.4. [Riquier Basis] M is called a Riquier
Basis if for all α, α′ ∈ Nm and f, f ′ ∈ M with hdDαf =

hdDα′f ′, the integrability condition Dαf −Dα′f ′ is reduced
to zero by a sequence of one-step reductions by members of
M.

See [19] for the definition of one-step reduction used above.
Recall that M and V are as given in Definition 6.1.

Theorem 6.5 (Formal Riquier Existence Theorem).
Let M be a Riquier Basis such that each f ∈ M is polyno-
mial in the principal derivatives. For x0 ∈ Fn, let φ be a
specification of initial data for M at x0 such that φ(f) is
well-defined for all f ∈ M. Then there is formal power
series solution u(x) ∈ F[[x − x0]]n to M at x0 such that
Dαui(x0) = φ(vi

α) for all vi
α ∈ ParM. Furthermore, every

formal power series solution to M at x0 may be obtained in
this way for some φ.

Note that the set of integrability conditions given by Def-
inition 6.4 is generally infinite. This infinite number of con-
ditions is shown in [18] to be a consequence of a finite set of
integrability conditions given below; thus enabling finite im-
plementation [27]. Further more refined redundancy criteria
for integrability conditions are given in [27].

Definition 6.6. Let f, f ′ ∈ M with hdf = Dαui and

hdf ′ = Dα′ui′ , and β be the least common multiple of α and
α′. Then if i = i′, define the minimal integrability condition

of f and f ′ to be ic(f, f ′) = Dβ−αf − Dβ−α′f ′. If i 6= i′,
then ic(f, f ′) is said to be undefined.

See [19] for the definition of reduction used below.

Theorem 6.7. Suppose that for each pair f, f ′ ∈M with
ic(f, f ′) well-defined we have ic(f, f ′) is reduced to 0 by a
sequence of one-step reductions. Then M is a Riquier Basis.

6.1 Implicit Riquier Existence Theorem
We know that for ode if the Jacobian matrix is non-

singular, Pryce’s method can successfully construct the unique
local solution at a given consistent initial point. Now let us
consider the pde case. We show that if J is non-singular
at some point p, which satisfies system Dc

tR, then any or-
der derivative of each uj is determined by p. So the Taylor
series coefficients of the solution passing through p can be
computed to arbitrary order.

For each dependent variable we have a ranking of type
(9). To apply the Riquier Existence Theorem, we need to
merge these partial rankings (9) to a total ranking which is
consistent with all the partial rankings.

Proposition 6.8. Let the leading class derivatives of R
be {θ1, ..., θm} and let B be the set of all the other derivatives
of R. Then there exists a positive ranking ≺ which satisfies
the partial ranking (9) and θ1 Â θ2 Â · · · Â θm and each θi

is greater than any b ∈ B.

Proof. Case 1: m ≥ n. Suppose the dependent variable
index of θi is i and t = x1. If the dependent and inde-
pendent variable indices do not satisfy this condition, then
it can be satisfied after a permutation of the variables. Let„

Im×m

Xn×m

«
= (ψ(θ1), ..., ψ(θm)). And suppose c is the max-

imum entry of X. Then let M ′ = c · 1m×m −
„

X
0

«m×m

.

Finally we construct an (m + 1) × (m + n) matrix M =„
M ′ In×n

v 0

«
, where v = (m, m − 1, · · · , 1). All the en-

tries of M are non-negative. Suppose θ, τ ∈ Ω and θ 6= τ .
One case is they have different dependent variables, then
at least the last coordinates of M · ψ(θ) and M · ψ(τ) are
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different. The other case is that they have the same depen-
dent variable. Then their ranks are determined by the last
n columns of M , which is the lexical order over independent
variables. In this case, M · ψ(θ) 6= M · ψ(τ). So M is a
matrix representation of a ranking which satisfies Ranking
(9).

Suppose i < j, we can check θi Â θj . Since

„
γi

m− i + 1

«
=

M · ψ(θi) > M · ψ(θj) =

„
γj

m− j + 1

«
, where γj = M ′

j +
„

Xj

0

«
= c · 1m×1 = γi.

Suppose τ ∈ B with dependent variable ui, we can show
θj Â τ , for any j. Since ≺M satisfies Ranking (9),„

γτ

m− i + 1

«
= M · ψ(τ) < M · ψ(θi) =

„
γi

m− i + 1

«
,

which implies γτ < γi. So γτ < γj = γi, for any 1 ≤ j ≤ m.
Therefore, M ·ψ(τ) < M ·ψ(θj), which implies for any θj

and any τ ∈ B we have τ ≺M θj .

Case 2: m < n. In the proof, we only need to change
the construction slightly by setting M ′ = c · 1n×m − X.
Similarly we construct an (n + 1) × (m + n) matrix M =„

M ′ In×n

v 0

«
. ¤

Lemma 6.9. Let C =

„
An×m

B`×m

«
and n+ ` ≤ m. If C is

a full rank matrix, then any rank n square sub-matrix of A
can be extended to a rank n + ` square sub-matrix of C.

Proof. Because C is a full rank matrix and n + ` ≤ m,
rank(C) = n + `. Suppose the first n columns of A form
a full rank matrix, so the first n columns of C are linearly
independent. A set of linearly independent columns can be
extended to a basis of the column space of C. Hence we can
find ` columns which generate a basis for the column space
of C together with the first n columns. ¤

Lemma 6.10. Let R be a square F-analytic system of pde.
Suppose the maximal transversal value of (σij)(R) exists.
Let Dc

tR be the system obtained by the t-prolongation method
of Section 5. If Jkc is nonsingular at some point p in
Z(Dc

tR), then there exists a positive ranking ≺ that deter-

mines a local solved form w(i) = f (i)(z) for each block Bi,

such that Dtw
(i−1) ⊆ w(i).

Proof. Because Jkc is nonsingular at p, each Ji is full
rank by Proposition 5.2. So B0 is full rank and we can
find an invertible sub-matrix M0 of J0, and solve for the
corresponding leading variables w(0) locally, which are t-
derivatives of the dependent variables, by using the Implicit
Function Theorem. Let the solved form be w(0) = f (0)(z).

Let S0 be the set of the dependent variables of w(0). For the
next block B1 we can choose an invertible sub-matrix M1 of
J1 which contains M0 by Lemma 6.9. Let Si is the set of
dependent variables of w(i) \(S0 ∪ · · · ∪ Si−1).

Continue the process until the last block Bkc . And we can
check the union of all Si is the set of all dependent variables.

Suppose that Ukc = {θ1, · · · , θm} and (after appropriate
re-indexing) satisfies the condition: for any 1 ≤ i < j ≤ m,
if the dependent variables of θi and θj belong to Sp and Sq

respectively then p ≤ q. We can define a positive ranking ≺

by the Proposition 6.8 such that the solved term is leading
variable for each solved form in {w(i) = f (i)(z)}. ¤

For background on the Implicit Function Theorem and
related results needed on what follows please see [5, 9]. Let
w0 ∈ Fk, z0 ∈ F` and U ⊂ Fk × F` be a neighborhood of
(w0, z0).

Let F : U → Fk be an analytic function with F (w0, z0) =
0 and rank ∂F

∂w
= k at (w0, z0) ∈ U . That is, the Jaco-

bian of F has maximal rank with respect to w at (w0, z0).
Then by the Implicit Function Theorem there exists an an-
alytic function f : F` → Fk, such that the zero set of
{(w, z) : F (w, z) = 0} is equivalent to {(w, z) : w = f(z)} in
a neighborhood of N of (w0, z0).

We have the following simple consequence.

Remark 6.11. There exists a neighborhood of N of (w0, z0)
and an analytic function H : N → Fk×k such that

F (w, z) = H(w, z)(w − f(z)) (17)

and H(w, z) is invertible in N .

Theorem 6.12. Let R be a square F-analytic system of
pde. Suppose the maximal transversal value of (σij)(R)
exists. Let Dc

tR be the system computed by t-prolongation
method. If Jkc is nonsingular at some point p in Z(Dc

tR),
then Dc

tR is an Implicit Riquier Basis.

Proof. By Proposition 6.8, there is a ranking in which all
leading derivatives are pure t-derivatives. And by Lemma
6.10, there exists a solved form w = f(z) of Dc

tR in a suffi-
ciently small neighborhood Np, where w is the union of all
w(i) defined in Lemma 6.10. We will show that w = f(z) is
a Riquier Basis in Np. First note that the principal deriva-
tives of w = f(z) are given by w. Thus w = f(z) is certainly
polynomial in w as required by Theorem 6.5. Secondly, it re-
mains to prove that the integrability conditions of w = f(z)
are satisfied. So without loss of generality, we consider two
particular equations ŵ − f̂(z) = 0 and w̃ − f̃(z) = 0 with
(Dt)

γŵ = w̃. By Theorem 6.7, the corresponding integra-

bility condition is (Dt)
γ(ŵ− f̂(z))−(w̃− f̃(z)). By the more

refined redundancy criterion given in Corollary 5.3.2 of [18],
this can be reduced to case γ = 1:

Dt(ŵ − f̂(z))− (w̃ − f̃(z)) (18)

where ŵ − f̂(z) = 0 and w̃ − f̃(z) = 0 are two particular

equations out of the solved forms w(i−1) = f (i−1)(z) and

w(i) = f (i)(z) respectively, with Dtŵ = w̃.

Remark 6.11 implies that w(i)− f (i)(z) = H−1
i ·Bi in Np.

Thus w̃ − f̃(z) = h̃ · Bi in Np, for some analytic function

vector h̃. Similarly ŵ − f̂(z) = ĥ · Bi−1 in Np, for some

analytic function vector ĥ. Then (18) is

Dt(ĥ ·Bi−1)− h̃ ·Bi (19)

which has the general form

Dtĥ ·Bi−1 + ĥ ·DtBi−1 − h̃ ·Bi (20)

Because DtBi−1 ⊆ Bi, (18) is zero on Np ∩ Z(Dc
tR), which

is equivalent to {(w, z) : w = f(z)} ∩ Np. So (18) is zero
when w = f(z) in Np, which means (18) can be reduced to
zero by w = f(z) (due to properties of analytic functions).
Therefore Dc

tR is an implicit Riquier Basis in Np. ¤

382



Remark 6.13. Suppose the maximal transversal value of
a signature matrix exists. Then the prolongation step vec-
tor c is determined only by the signature matrix rather than
the algebraic degree and coefficients. So a signature matrix
corresponds to a class of t-dominated pde. For a square
polynomially nonlinear pde system R in such a class, if the
coefficient of each term is generic, then at a generic point
in the variety defined by Dc

tR in Jet space, the Jacobian
matrix Jkc is non-singular. This means the t-prolongation
method can be applied to a large class of pde together with
Proposition 4.2.

7. APPROXIMATING POINTS ON ZERO
SETS OF PDE

The method we have developed depends on finding a point
p on the zero set Z(R) of the pde system R to test that the
relevant Jacobian’s are non-singular. Their non-singularity
at a point (and thus in a neighbourhood) ensures that the
conditions for local existence and uniqueness are satisfied
for Theorem 6.12.

We consider polynomially nonlinear pde as polynomial
systems in Jet space. Our tool to numerically solve polyno-
mial systems is homotopy continuation. In [24], a new field
“Numerical Algebraic Geometry” was described which led
to the development of homotopies to describe all irreducible
components (all meaning: for all dimensions) of the solution
set of a polynomial system by witness sets. These methods
have been implemented in PHCpack [25].

Following Pryce’s idea in [13], we can compute p ∈ Z(R)
by exploiting the triangular block structure of the pde sys-
tem after the partial prolongation (see Table 1).

Remark 7.1. In the case of ode, we can compute the wit-
ness points of B0, which is the projection of the variety to the
subspace, then substitute the solutions into B1 to extend the
solutions to higher dimensional space. Continuing this pro-
cess, we can find the the witness points of non-singular com-
ponents. This way is more efficient than solving the whole
polynomial system directly. Let R be a polynomially ode
{R1, ..., Rm} with total degree d. Then the Bezout bound of
Dc

t(R) in Jet space is dCdm, where C =
P

ci. However if
we solve it by bottom up substitution it only has at most dm

homotopy continuation paths to track, since any nonlinear
equation will be linear with respect to highest Jet variables
after prolongation.

Usually applications involve finding real solutions. For
real differential polynomial systems using our approach, we
need to find points on a real variety. Real algebraic geometry
is a rapidly developing area with many recent developments
detailed in the book [3]. There are several techniques for
compact varieties while approaches are less well-developed
in the non-compact case. Lu [12] uses homotopy continua-
tion in C to decompose varieties first over C, then obtains
points on the real curves embedded in the 1-dimensional
complex components. In our experiments, we heuristically
selected some proper real linear equations to slice the variety
to obtain real points on the zero set of the pde.

8. EXAMPLES
The t-prolongation procedure for ode and pde was im-

plemented in Maple10. The integer linear programming in-
volved using Maple10’s LPSolve command. As a feasibility

Figure 2: Control of a Crane

test we applied the code to a Test Set of Visconti [26] con-
taining 27 dae representing diverse applications, with index
ranging from 1 to 6. The procedure successfully identified
index consistent with Visconti’s results for 21 of the dae.
The LP problems were solved in less, and often much less,
than one second. Our 6 failures were due to: 3 non-square
system; 3 systems with singular Jacobians. Like other stan-
dard dae approaches, Visconti required the user to supply
an initial guess for a consistent initial point, and then Gauss-
Newton iteration was applied. An example is given below.

EXAMPLE 8.1. [ODE for a Crane] This model which is
illustrated in Figure 8.1, is discussed in [4]. The problem is
to determine the horizontal velocity u1(t) of a winch of mass
M1, and the angular velocity u2(t) of the winch so that the
attached load M2 moves along a prescribed path.

The equations of motion are given by [4] and also by Vis-
conti [26] with unknowns {x, x′, z, z′, d, d′, r, r′, θ, τ, u1, u2}:

xt − x′ = 0, zt − z′ = 0, dt − d′ = 0, rt − r′ = 0

M2 x′t + τ sin(θ) = 0, M1 d′t + C1 dt − u1 − τ sin(θ) = 0

M2 z′t + τ cos(θ)−mg = 0, J r′t + C2 rt + C3 u2 − C3
2τ = 0

r sin(θ) + d− x = 0, r cos(θ)− z = 0

H1(x, z, t) = 0, H2(x, z, t) = 0.

The prescribed path of the mass M2 is described by an alge-
braic equations {H1 = 0, H2 = 0}. The winch has moment
of inertia J and is attached with a cable of length r(t), mak-
ing an angle θ(t) to the vertical.

Substitute sin(θ) and cos(θ) by s(t) and c(t) respectively
to convert the ode to an algebraic differential system, and
introduce an extra equation s(t)2 + c(t)2 = 1. Applying the
t-prolongation method and our Maple program, we obtain

d1 = 4, d2 = 3, d3 = 4, d4 = 3, d5 = 2, d6 = 1, d7 = 2,

d8 = 1, d9 = 2, d10 = 0, d11 = 0, d12 = 2, d13 = 2;

c1 = 3, c2 = 3, c3 = 1, c4 = 1, c5 = 2, c6 = 2, c7 = 0,

c8 = 0, c9 = 2, c10 = 2, c11 = 4, c12 = 4, c13 = 2.

Since d10 and d11 are equal to zero, we need to prolong one
more time to reduce the system to ode. For this example we
have index 5 in agreement with Visconti. Note that the re-
sult does not depend on the coefficients and degrees of H1, H2
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since the signature matrix only requires the differential or-
ders of H1, H2 which are both 0.

To simply illustrate how to use the output, we choose a
path {H1 = 0, H2 = 0} of the mass M2 which is described
by a parameterized system x (t) = 1− t2, z (t) = 1− t. After
the partial prolongation we obtain 13 ode and 39 algebraic
constraints. The total Bezout degree of the constraints is
65536, however it has block triangular structure which enable
us to solve it by bottom up substitution.

Let the initial time t be .396, we obtain 4 witness points
using PHCpack. We choose one as the initial point which
is x(.396) = .843, z(.396) = .604, d(.396) = .601, s(.396) =
.371, c(.396) = .928, r(.396) = 0.650. Note that if the degree
of H1, H2 is d, there are at most 4d2 witness points during
the computation by Remark 7.1. The computational diffi-
culty of this problem for the symbolic differential elimination
algorithm Rifsimp explosively increases with the degree d of
H1, H2 in comparison with the t-prolongation method.

Finally we numerically solve the ode together with this
initial condition using dsolve in Maple10 with its implicit
option. The integral curve of x(t), z(t) is very close to the
curve (1− t2, 1− t).

EXAMPLE 8.2. [Pendulum Curtain PDE] Applying the
t-prolongation method to Example 5.1 gives:

c1 = 0, c2 = 0, c3 = 2; (21)

d1 = 2, d2 = 2, d3 = 0. (22)

The main point, is that the analysis for this pde exam-
ple, is virtually identical to that for the classical pendulum
(see Pryce [13] for those details). Essentially the analysis,
indicates that the constraint should be differentiated twice to
yield an implicit Riquier Basis:

Xtt + λX = κXss

Ytt + λY + g = κYss

XXtt + Y Ytt + X2
t + Y 2

t = 0 (23)

XXt + Y Yt = 0

X2 + Y 2 − 1 = 0.

The top block B2 of the system is the first three equations of
(23). The blocks B1 and B0 are the 4th and 5th equations
of (23) respectively.

Then the system has Jacobian matrix with respect to Xtt,
Ytt, λ which is full rank. This is also obvious by inspection,
without using the generalization of Pryce’s method. We in-
clude it here, so that the reader can see it working on an ex-
ample, which is closely related a one of the fundamental ex-
amples of dae theory. We note that a change of coordinates
to cylindrial coordinates X = sin(θ(s, t)), Y = − cos(θ(s, t)),
considerably simplifies the problem. However, in general,
such coordinate changes cannot be algorithmically made to
eliminate all constraints for pde.

In summary we obtain an explicit hyperbolic system on
a system of constraints. Just as an explicit ode is uncov-
ered in the analysis of the classical pendulum, an explicit
Hyperbolic System of pde is obtained in the Pendulum Cur-
tain example. We solved this system using Wittkopf’s finite
difference code in Maple10. We performed experiments with
various initial and boundary conditions and values of κ. One
of these was for an exponential bump located in the middle of
the s-range, where the curtain is released from rest. As ex-
pected this forms two waves, moving in opposite directions.

If the coefficient κ of the Xss and Yss terms are set close
to zero (i.e. κ ≈ 0) then as expected the pendulum motion
rather than the wave motion dominates.

EXAMPLE 8.3. [Changing the Coordinates] The equa-
tion below is both x and y dominated. However for small ε1,
ε2, the resulting Jacobians in our method are poorly condi-
tioned.

ε1uxx + uxy + ε2uyy = 0 (24)

The problem is well conditioned after a coordinate change
(see Proposition 4.2).

9. DISCUSSION
A significant problem in the development of symbolic-

numeric differential elimination methods is to create meth-
ods to control the growth of prolongations. Although much
progress has been made on the symbolic case [1], little has
been done for symbolic-numeric case.

In the current work we define a class of systems, for which
only prolongations with respect to a single independent vari-
able t are needed.

We generalized Pryce’s technique in the framework of
Riquier Bases. Riquier’s classical approach has fallen out
of favor in recent times, since for a purely symbolic imple-
mentation, it is limited to systems linear in their highest
derivatives and modern symbolic alternatives now exist [2,
27]. However in our article, Riquier’s approach makes a
comeback, by using the Implicit Function Theorem, which
requires points on the zero set of the system. For systems
of differential polynomials over C, we can use homotopy
methods from Numerical Algebraic Geometry to compute
approximations to such points [24]. For systems of differ-
ential polynomials over R, there are also rapidly evolving
methods [12, 3]. For analytic systems, methods are less sys-
tematic but progress can be made using Gaussian-Newton
iteration from initial guesses close enough to a solution.

It may seem strange that such implicit representations
could be useful, especially since the representations given
by such symbolic elimination methods as [2] provide output
systems in much closer to explicit solved or triangular form.
However such eliminations can often cause severe expression
swell. The Pryce method, appears to find a balance between
working implicitly, while at the same time uncovering and
exploiting the block structure of a system. Finally we note
that such implicit representations, are usually the choice in
the numerics community. Solving a constant matrix system,
at the intermediate steps of a numerical integration, is often
preferred over first symbolically inverting, then evaluating
the explicit solution at those intermediate steps.

The disadvantages of our method, include its limitation
to square and t-dominated systems. It also has the dis-
advantage, that its a local method, and not a universal
method and does not pursue all singular cases as is pos-
sible using [2, 7]. For example when the method is applied
to (ut)

2 + tut − u = 0 it locates a generic initial point, and
does not identify the fact that this equation has a singular
solution. In addition a linear combination of the input sys-
tem will destroy the sparse structure of the signature matrix.
However this can be detected by a rank test and the hidden
equations can be constructed by the methods we give in [28].

The implicit Riquier Bases obtained by our method are
a type of formally integrable system. Such bases only give
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local, and sometimes, unnatural boundary and initial con-
ditions. We direct the reader to Krupchyk et al. [10, 11] for
very interesting work on linking formal properties (such as
formal integrability and involutivity) to elliptic BVP.

Our method provides a bridge between ode techniques
and pde techniques. In this paper we generalized a method
of Pryce and Pantiledes, to pde. An obvious future work,
is to attempt the same with other ode methods. We are
investigating pde models arising as more realistic cases of
dae system, for which our t-prolongation method promises
to be practically useful.
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