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Abstract—A co-offending network is a network of offenders
who have committed crimes together. Recently different re-
searches have shown that there is a fairly strong concept of
network among offenders. Analyzing these networks can help
law enforcement agencies in designing more effective strategies
for crime prevention and reduction. One of the important tasks
in co-offending network analysis is central actors identification.
In this paper, firstly we introduce a data model, called unified
crime data model to bridge the conceptual gap between abstract
crime data level and co-offending network mining level. Using
this data model, we extract the co-offending network of five years
real-world crime data. Then we apply different variations of
centrality methods on the extracted network and discuss how
key player identification and removal can help law enforcement
agencies in policy making for crime reduction.

I. INTRODUCTION

Computational Criminology is an emerging interdisciplinary
research field promoting the use of computational methods and
mathematical models in advanced studies of social phenomena
related to crime and other forms of illegal activities such
as terrorism. Research in computational criminology shows
promising results [1], [2], [3] that underscore the enormous
potential for serving practical needs in crime analysis and
prevention, namely as instruments in crime investigations, as
an experimental platform for supporting evidence-based policy
making, and in experimental studies to analyze and validate
theories of crime [4], [5]. The work presented here explores
properties of criminal networks in large data sets and as been
inspired by practical experience with mathematical modeling
and computational analysis techniques in the study of crime
events, spanning a wide range of criminal activities, including
opportunistic and violent serial crimes [6], [4], [7].

This paper addresses the problem of locating central actors
in co-offending networks. Identifying the key actors of a
network is a common problem studied in social networks.
Central actors are potentially more important and also have a
higher influence on other actors [8]. Recognition and removal
of these nodes from the network is an aspect of fundamental
importance in the study of crime, especially organized crime,
for splitting a network and for making it dysfunctional [9].
Despite the importance of this problem for law enforcement
agencies, to the best of our knowledge, there is no widespread
research on centrality analysis in large scale co-offending
networks to show if and how this kind of analysis can help

in crime reduction and prevention or other efforts aiming at
destabilizing the co-offending network structure. The lack of
research in this field can be explained with the sensitivity of
crime data, not permitting public real-world crime data sets.

Based on a research memorandum of understanding be-
tween ICURS1 and “E” Division of Royal Canadian Mounted
Police (RCMP) and the Ministry of Public Safety and Solic-
itor General, five years of real-world crime data was made
available for research purposes. This data was retrieved from
the RCMP’s Police Information Retrieval System (PIRS), a
large database system keeping information for the regions of
the Province of British Columbia which are policed by the
RCMP (cf. Section V). The data set is based on arrest-data.

The research presented here uses five important centrality
measures and compares different experiments on the extracted
co-offending networks. Specifically, we try to answer two
questions: First, what is the effect of central actors removal
on the crime rate reduction and how does this change the
co-offending network structure; second, how does centrality
analysis and central actors elimination work in the dynamic
and time-varying co-offending network. These two questions
are answered in detail in Section V.

Besides mining and analyzing crime data sets to identify
potentially useful patterns, another main step is modeling the
data. We propose here a comprehensive crime data model,
called unified crime data model, and use this model as the
basis for our co-offending network extraction and analysis. We
contend that central aspects considered in the work discussed
here carry over to a wide range of large data sets studied
in intelligence and security informatics to better serve law
enforcement and intelligence agencies.

The paper is organized as follows. Section II discusses
related work. Section III defines the unified crime data model
and explains how the co-offending network model is derived.
Concepts of centrality and their meaning in co-offending
networks are presented in Section IV. Next, Section V gives
a general characterization of the crime data set and also
presents and discusses the experimental results, and Section
VI concludes the paper.

1The Institute for Canadian Urban Research Studies (ICURS) is a university
research centre at Simon Fraser University.



II. RELATED WORKS

With academic and societal awareness of the importance of
social networks increasing, law enforcement and intelligence
agencies have come to realize the value of detailed knowledge
of criminal, or co-offending networks. A co-offending network
is a network of offenders who have committed crimes together
[13]. Groups and organizations operating within this network
to engage in conspiracies, terrorist activities and crimes like
drug trafficking typically operate in a concealed fashion, trying
to hide their illegal activities, but also their associations. In
analyzing such activities, investigation does not only focus
on individual suspects but also attempts to uncover criminal
groups.

Thus, it is important to identify criminal networks in data
resources readily available to investigators, such as police
arrest data and court data, and study them using social network
analysis methods. In turn, social network analysis can provide
useful information about individuals as well. For example,
investigators could determine key players, and make subject
them to closer inspection. In general, knowledge about co-
offending network structures provides a basis for law enforce-
ment agencies to make strategic or tactical decisions. In this
section, we review the related studies in co-offending network
analysis in general, and then home in on research relevant to
locating central actors in co-offending networks.

Several empirical studies that use social network analysis
methods to analyze co-offending or terrorist networks have
focused on the stability of associations in such networks.
Reiss [13] concludes that the majority of co-offending groups
are unstable, and their relationships are short-lived. This is
corroborated by McGloin et al., [15] who showed that there
is some stability in co-offending relationships over time for
frequent offenders, but in general, delinquents do not tend
to reuse co-offenders. Reiss et al. [14] also found that co-
offenders have many different partners, and are unlikely to
commit crimes with the same individuals over time. However,
Reiss [13] also states that high frequency offenders are “active
recruiters to delinquent groups and can be important targets for
law enforcement.” It should be noted that the findings of these
works were obtained on very small datasets: 205 individuals
in [14], and 5600 individuals in [15], and may therefore not
be representative.

These studies just analyzed co-offending networks. Smith
[18] widened the scope of crime network analysis, enhancing
the network by including extra information, particularly for
the purpose of criminal intelligence analysis. For example,
nodes of the network could be offenders, but also police
officers, reports, or anything that can be represented as an
entity. Links are associated with labels which denote the
type of the relationship between the two entities, such as
’mentions’ or ’reported by’. A similar approach was taken
by Kaza et al., [19] who explored the use of criminal activity
networks to analyze information from law enforcement and
other sources to provide value for transportation and border
security. The authors defined the criminal activity as a network

of interconnected criminals, vehicles, and locations based on
law enforcement records, and concluded that including espe-
cially vehicular data in criminal activity network is important,
because vehicles provides new investigative points.

A slightly different take on widening the scope of crime
network analysis was taken by Xu et al. [17], who employed
the idea of a ’concept space’ in order to establish the strength
of links between offenders. The frequency of co-offending,
but also event and narrative data were used to construct
an undirected but weighted co-offending network. The goal
was to identify central members and communities within the
network, as well as interactions between communities. By
applying cluster analysis in order to detect subgroups within
the network they were able to detect overall network structures
which could then be used by criminal investigators to further
their investigations.

COPLINK [16] was one of the first large scale research
projects in crime data mining, and an excellent work in
criminal network analysis. It is remarkable in its practicality,
being integrated with and used in the workflow of the Tucson
Police Department. Xu et al. [10] built on this when they
created CrimeNet Explorer, a framework for criminal network
knowledge discovery incorporating hierarchical clustering,
SNA methods, and multidimensional scaling. The authors
further expanded the research in [17] and designed a full-
fledged system capable of incorporating outside data, such
as phone records and report narratives, in order to establish
stronger ties between individual offenders. Their results were
compared to the domain knowledge offered by the Tucson
Police Department, whose jurisdiction the data came from.

The success of integrating crime network analysis with
police workflow depends crucially on its ability to reduce
crime level. With regard to this, Liu et al. [21] proposed a
game-theoretic framework for key player identification. They
defined key players as the offenders who, once eliminated,
generate the highest possible reduction in aggregate crime
level. The authors showed that key players are not necessarily
the most active criminals in a network.

Identification of key players in a social network is a well-
established research problem in the form of node centrality
analysis, the measurement the structural importance of actors
in an entire network [27], or within a group. As Liu showed,
detecting key players is an important task in co-offending
network analysis, the results of which may help law enforce-
ment agencies design new crime reduction and prevention
policies. For instance, in combating the activities of criminal
organizations, law enforcement agencies often need to identify
the key members of groups of criminals or identify principal
vulnerabilities in criminal networks [20].

Based on best of our knowledge, no research has yet given
adequate attention to the centrality analysis in large scale co-
offending networks. In this work we show how centrality
analysis relates to the work of law enforcement agencies,
and may help articulate more effective crime reduction and
prevention policies.
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Fig. 1. Hyperedge in the crime data model

III. CRIME DATA MODEL

This section proposes a unified formal model of crime data
serving as the semantic framework for defining in a concise
and unambiguous way properties of interest in the analysis of
crime networks and their constituent entities. Specifically, the
formal model aims at bridging the conceptual gap between
data level, mining level and interpretation level, and facilitates
separating the description of data from the details of data
mining and analysis. By gradually transforming and reducing
the unified model to more specific views, the co-offending
network model is obtained as one such view.

A. Unified Crime Data Model

Crime data is modeled in terms of a finite graph structure as
an attributed tripartite hypergraphH(N , E) with a set of nodes
N and a set of hyperedges E . The set N is partitioned into
three subsets, A = {a1, a2, . . . , aq}, I = {i1, i2, . . . , ir} and
R = {r1, r2, . . . , rs}, representing actors such as offenders,
victims, witnesses, suspects and bystanders; incidents referring
to crime events of a certain type; and resources used in a
crime, like mobile phones, tools, vehicles, weapons or bank
accounts. A hyperedge e of E is a non-empty subset of nodes
{n1, n2, . . . np} ⊆ N such that the following three conditions
hold: |e ∩ I| = 1, |e ∩A| ≥ 1 and |e ∩R| ≥ 1.

Each data record in the crime data set refers to a different
crime incident. Thus, for any e, e′ ∈ E with e ∩ I = e′ ∩ I , it
follows that e = e′. Intuitively, a hyperedge e of H associates
a set of one or more actors {ai1 , ai2 , . . . , aij

} ⊆ A and a
set of resources {ri1 , ri2 , . . . , ril

} ⊆ R with a crime incident
ik ∈ I , that is e = {ik, ai1 , ai2 , . . . , aij

, ri1 , ri2 , . . . , ril
}, as

illustrated in Figure 1.
Finally, with each node n ∈ N we associate some finite list

of attributes 〈(αn,1, βn,1), (αn,2, βn,2), ...., (αn,l, βn,l)〉 where
αn,i is a unique identifier and βn,i is the value associated
with αn,i. Attributes of actors, for instance, include the name
and address information, while attributes of events include
the crime type, the location where, and the time when, this
incident occurred, among other data and information.

For analyzing and reasoning about co-offending networks,
as well as other specific aspects of crime data sets that can be
described in terms of entities and their relations, the unified
crime data model defined by the hypergraph H is transformed
in several steps into simpler graph structures as follows.

From the original graph structureH, we derive a hypergraph
H′(N , E ′), where N is identical to the node set of H and
E ′ = {{a, i, r}| ∃e ∈ E : {a, i, r} ⊆ e, a ∈ A, i ∈ I, r ∈ R}.
Note thatH′ has the same attributes asH. Now,H′ can further
be decomposed in a straightforward way into three bipartite
graphs that respectively model the relations between actors
and incidents (graph AI), actors and resources (graph AR), and
incidents and resources (graph IR).

B. Co-offending Network Model

A co-offending network consists of one or more connected
components of offenders who have committed crimes together.
Co-offending networks constitute a widespread form of social
networks that is of considerable interest in crime investigations
and in the study of crime. For instance, this is relevant for law
enforcement agencies and criminal justice agencies to better
understand organized crime and also in evidence-based policy
making aiming at crime reduction and prevention.

1) Co-offending Network: Starting from the graph AI , we
define a co-offending network as a graph GO(VO, EO), where
VO represents the subset of offenders within the set of actors.
Two nodes am, an ∈ VO are connected in GO whenever there
is a node ik ∈ I of type crime incident such that {am, ik} and
{an, ik} are both edges in AI . To indicate multiple co-offenses
committed by the same two offenders, a value strength is
associated with every edge e of EO, where strength(e) ∈ N
with strength(e) ≥ 1.

Assuming k offenders and m crime events (k,m > 1), we
define a k × m matrix M such that muv = 1, if offender
ou is involved in event iv , and “0” otherwise. This way, we
can express the co-offending network as a k × k matrix N =
MMT and therefore have

nu,v =
k∑

x=1

nuxnxv (1)

This matrix links offenders involved in the same crime
events. For any two given offenders, the strength of a link is
the number of co-offenses. The diagonal of this matrix shows
for each offender the number of related crime events.

2) Probabilistic Co-offending Network: The crime data
studied here is police arrest data containing only partial infor-
mation of offender collaborations and their social interactions.
Also, co-offenders often try to conceal their connections.
Hence, one can expect that besides the links based on explicit
facts in the crime data additional links can be derived by
analyzing and mining the crime data using link prediction
methods. Such links, called hidden links, are probabilistic in
nature as they are based on information that is considered
uncertain. Hidden links have an attribute confidence, a positive
real number in the interval [0, 1], rather than a strength. A
confidence value of “0” means that no link exists.

Figure 2 illustrates an example for deriving a hidden link
in terms of a criminal activity graph identifying three offender
nodes a1, a2, a3 for which it is known that a1, a2 and a1, a3

have jointly committed multiple crimes (some of which are
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Fig. 2. Criminal activity graph with hidden links

not explicitly shown here). Assume that in all three of the
crime incidents i1, i2, i3 a common resource, say a particular
vehicle, was used by one of the offenders a1, a2, a3. From this
information, one can derive a hidden link (a2, a3) with some
probability as stated by the value of the attribute confidence.

Our work on co-offending networks ultimately focuses on
probabilistic co-offending networks. In this paper, we restrict
on the analysis of explicit links. Note that the concepts of
centrality as discussed in Sect. IV need to be extended in
order to also include probabilistic links.

IV. CENTRALITY

One of the important problems in studying social networks
is identifying the key actors of a network. The importance
of actors normally correlates with the centrality of nodes
[28], [27]. Central nodes in a social network refer to those
nodes that potentially have the highest influence on other
nodes [8]. Apparently, recognition and removal of these nodes
in/from a co-offending network are of interest from two points
of view: splitting the network and its dysfunctionality [9].
This section first reviews important centrality measures and
then discusses the application of the centrality analysis to co-
offending networks.

A. Centrality Measures

Intuitively, centrality measures identify the actors with the
greatest structural importance in a network. These actors often
play a central role. The existing centrality measures can be
divided into three groups based on how they are calculated:
node degree, shortest path and actor ranking methods. Node
degree based methods, like indegree and outdegree measures,
are local measures that only use the information of the first-
level relationship. Methods which use the shortest path length,
such as closeness and betweenness, are working based on the
shortest path from a node to all other nodes, and therefore
are global measures. But the important point is that in these
methods centrality of a node is calculated regardless of the
position of other nodes in the network. In contrast, actor
ranking measures, like eigenvector and PageRank, are also
global, but in the process of calculating the centrality of a
node the centrality of other nodes is taken into account too.

1) Degree Centrality: Node degree centrality is based on
the number of outgoing links of the actors. Each actor that
has more links obtain the greater degree centrality value.
Therefore, this measure focuses on the most visible actors
in the network. An actor with a high degree is in direct
relationship or is neighbor to many other actors. Such actors
should be recognized by other actors as a main channel of
information spreading, indeed, a crucial cog in the network,
occupying a central position [22]. In contrast, actors with
low degrees are obviously peripheral in the network and
these actors are not active in the connection process. Degree
centrality of the actor x is [22]:

CD(v) =
dv

N − 1
(2)

where dv is the number of first level neighbors of v, and N
is the total number of actors in the network.

2) Closeness Centrality: The main idea behind the close-
ness centrality is that actors that can contact quickly other
actors in the network, take the central position. The closeness
centrality of an actor in a social network is the inverse of
the average shortest path distance from the actor to any other
actor in the network. This measure shows how much each
actor is efficient in spreading information to all other actors.
The larger the closeness centrality of an actor, the shorter
the average distance from the actor to any other actor, and
therefore the better position the actor has in the network to
spread information to the other actors. Closeness centrality of
the node v is computed as [23]:

Cc(v) =
N − 1∑

u∈V d(u, v)
(3)

3) Betweenness Centrality: The betweenness centrality is
defined as the number of shortest paths between pairs of nodes
that pass through the given node. This centrality measure is
based on the idea that an actor is central if it lies between
many other actors pairs and it would be traversed by many of
the shortest paths connection pairs of actors. The betweenness
centrality of the node v is defined as [24]:

Cc(v) =
∑

u,w∈V
u 6=w 6=v

σuw(v)
σuw

(4)

where σuw(v) represents the total number of shortest path
between each pair of nodes like u and w that pass through
node v and σuw denotes the total number of shortest path
from u to w.

4) Eigenvector Centrality: The eigenvector method is an
effort to recognize the central actors in terms of the global
structure of the network and to pay less attention to local
properties. Eigenvector centrality is defined as the principal
eigenvector of the adjacency matrix representing the network.
The eigenvector of a network is computed using equation [28]:

λv = Av (5)



where A is adjacency matrix of the network, λ is a constant
(eigenvalue), and v is the eigentvector. The idea behind
this approach is that actors are central if they have central
neighbors. So centrality of an actor does not only depends on
the number of its neighbors, but also on their centrality in the
network.

5) PageRank Centrality: PageRank method [25] is a variant
of the Eigenvector centrality measure which basically is used
for ranking the web pages. PageRank models the behavior of a
surfer of the web pages and tries to propose a ranking of web
pages based on his behavior. The surfer starts at a random page
and move from per page to another page using the outgoing
links. For jumping from a page to another one, the outgoing
links are selected uniformly at random. Also the surfer with
a probability can jump to any other page.After many iteration
a probability for hitting each page is calculated which shows
its chance of being visited by the surfer. This method also can
be applied on social networks to rank actors. PageRank of the
node u is computed as:

Cp(u) =
1− d
N

+ d(
∑
∀v:v→u

Cp(v)
N(v)

) (6)

where N is the number of nodes in the network, Nv is
the set of all nodes connecting to v and d is the probability
of continuing the process of moving on the network and not
jumping to a random page which is generally set around 0.85.

B. Centrality in Co-offending Networks

Key players of co-offending networks are not essentially
the most active offenders. Offenders removal from the co-
offending network has direct and also indirect effects. As a
direct effect, fewer offenders contribute to the aggregate crime
level. The indirect effect is the modification of the network
topology. Then this network structure modification can change
the criminal efforts of the remaining offenders and may reduce
the level of happening crimes.

Structure of the networks is the key factor in the measure
of affect of central players elimination. In the covert crimes
network such as terrorist networks, key players elimination
is not counted as an efficient network destabilization tactic.
Since these networks structure are not like typical hierarchical
organizations. Indeed, key feature of these networks is that
they are cellular and distributed [26]. But clearly, destabilizing
a hierarchical network would be relatively easy compared to
a distributed decentralized one.

Now, let’s look at the centrality analysis of a real co-
offending network. Figure 3 shows the second largest com-
ponent of the extracted co-offending network. Table I lists
the ranks of the key nodes A to L according to the chosen
centrality measure. The numbers within the table indicate the
ordering of the Top 5 offenders identified by each measure.
For example, offender E was identified as the second most
important offender by eigenvector centrality, but only 4th with
betweenness centrality.

Although all the different centrality measures tended to
identify different individuals in varying order, all but one

Fig. 3. Visualization of the second largest component

Measure Offenders
A B C D E F G H J K L

Degree 1 3 4 5 2
Betweenness 1 3 5 4 2

Closeness 2 4 1 3 5
Eigenvector 1 5 3 2 4

TABLE I
CENTRALITY MEASURES ON THE SECOND LARGEST COMPONENT

measure agreed that offender A was most important. This
strong result was somewhat surprising given that in total 11
offenders were identified to be in the Top 5 by different
measures. Offender A does seem to be an important offender
in the network, as this offender has the largest number of
edges, is involved in 3 cliques of at least size 5, and would
fragment the network into 4 pieces if removed. Without this
information, a police force could capture multiple offenders,
not realizing that specifically targeting only offender A in the
network would have a huge impact on the network and remove
by far the most important offender. It is also interesting to see
that the above 4 measures identified quite a few offenders
along the shortest path between the two furthest nodes. This
path travels through offenders K, C, A, F, G, H and J.

In the section V, the results of applying these centrality
methods on the complete co-offending network and different
comparison experiments outputs are discussed.

V. EVALUATION EXPERIMENTS

We believe network centrality analysis can help law en-
forcement agencies develop strategies for crime reduction and
prevention. The current strategy is trivial, from a network
perspective: remove those offenders that are most active (nodes
with high degree) or commit the most severe crimes. Reiss’s
argument some offenders actively recruit new offenders, [13]
combined with Liu et al.’s finding that key players (assumed to
be the recruiters) are not necessarily the most active criminals
in a network [21] warrants a close look at key player iden-
tification in co-offending networks. The hiddenness of links
and the time-varying structure of these networks necessitate
thorough analysis and experimentation to extract the facts to
base law enforcement policy on.



Several experiments were conducted to evaluate the appro-
priateness of various centrality measures (degree, closeness,
betweenness, eigenvector and PageRank) for identifying im-
portant actors in co-offending networks. Ideally, one would
test the hypothesis that removal of central actors reduces crime
rate. The data required for testing this hypothesis is currently
not yet available, and reconstructing the crime rate from
the co-offending network (clique finding) is computationally
prohibitive. It is, however, possible to investigate the effects
of removal of central nodes on the network structure.

The crime rate and network structure are intricately linked.
In particular if nu,v is taken as the multiplicity of edges
between offenders u and v, the degree of an actor is equal
to the number of crimes this offender committed. The overall
crime rate, however, is not equal to the total number of
links in the network, since every event involving k offenders
translates to a complete graph of size k in our co-offending
network. Thus, characteristics of network structure may give
some intuition about our original question, a connection which
we will revisit in discussing our first experiment.

We also investigate the effects of removing central nodes
selected using the static network (all two, three, or four
years worth of data combined) and those selected using a
dynamic network (one network for each year). The thought
is to account for possible (lack of) persistence in the co-
offending network, possibly putting more emphasis on more
recent crimes in determining if a person is likely to commit
new crimes. Priority given to more recent crimes reflect a real-
world bias/predilection/skew of assigning more importance
to more recent crimes in determining the criminality of an
offender. A small difference between the selections from the
static and dynamic networks would lend credibility to the
hypothesis that important offenders do not change their game.
A larger difference would mean the co-offending network is
to some extent transient: offenders cease activity, and other,
new offenders start.

All figures below are of offender removal experiments:
the top 1%, 5%, 10% and 20% of nodes according to each
centrality measure is removed from the network, and a line
plot of a statistic on the resulting network is shown. A thick
dotted line indicates the reference level of the statistic, being
either the expected value of the statistic given the number of
offender that are removed, or the value of the statistic over
the whole network if its change due to node removal cannot
be forecast.

A. Data Set

The below experiments were conducted on a data set made
available by the “E” Division of the Royal Canadian Mounted
Police (RCMP), as a result of a research memorandum of
understanding between ICURS, the RCMP and the Ministry
of Public Safety and the Solicitor General. The data contains
five years (2001-2006) of real-world crime data was made
available for research purposes. This data was retrieved from
the RCMP’s Police Information Retrieval System (PIRS), a
large database system keeping information for the regions

Metric Value
# Co-offenders 157274
Average Degree 4
Exponent (λ) 2.29
Average Distance 12.2
Diameter 36
Effective Diameter 16.87
Average Clustering Coefficient 0.39

TABLE II
STATISTICAL PROPERTIES OF THE STUDIED NETWORKS

of the Province of British Columbia which are policed by
the RCMP. PIRS contains information about all reported
crime events (≈4.4 million) and all persons associated with a
crime (≈9 million), from complainant to charged. In addition,
PIRS also contains information about vehicles used in crimes
(≈1.4 million), and businesses which were involved in crimes
(≈1.1 million). Of this dataset, only those offenders that were
charged, chargeable, or had a charge recommended, were
extracted and used for the following analysis. Being in one of
these categories implies that the police were serious enough
about the persons involvement in a crime as to warrant calling
them ’offenders’. Statistical properties of the co-offending
network extracted from these data are listed in Table II.

B. Central Nodes Removal Effects

It is common practice that the network in which centrality
is measured is the same as the network in which the effects of
removal of most central nodes are measured (see 4, provided
here for reference). Most of the results are as one should
expect: cutting by degree centrality has the largest effect
on average degree, cutting by betweenness has the largest
effect on the largest component size, exactly what these
centrality measures were designed for. One highlight of these
figures is the reasonable efficacy of degree centrality-based
node removal, the selection method used by law enforcement
agencies, for breaking up the network (4(c)), an important
feature under our assumption that at least some crime is
socially stimulated or facilitated. Other methods (eigenvector
and betweenness centrality) can do better, though, partly
validating our current research question.

In a crime prevention scenario, and any network that
changes over time, this is of course not appropriate: removal
happens based on information collected prior to the time of
removal, and affects the network after the time of removal.
Therefore, we split up the data into 5 networks, one for each
year’s worth of data, and tested the effects of intervention
(central node removal) after the first year, second year, third
year and fourth year, identifying central nodes in the network
of the previous years and removing those from the network of
the following years. For reference, we also include the whole
network analysis, in which central nodes were identified in the
same (whole) network as they were removed from.

In this experiment, the top offenders according to each
centrality measure computed over the network preceding the
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(e)

Fig. 4. Network statistics for the whole network (2001-2006) after removal
of the top x% of offenders, according to different centrality measures.

intervention were removed from the network at the interven-
tion. Since these offenders are assumed to be dominant actors
in the network, causing others to offend, other offenders who
only commit crimes with (one of) these top offenders are
also removed. The effect on the resulting networks after the
intervention is illustrated in 5. Only the number of offenders
is reported, but the results for other network statistics are quite
similar, showing only marginal change.

The decrease in the number of offenders in the resulting
network is smaller than would be expected (represented by
the dashed line). This points to an important feature of the
network: transience. III shows the overlap, computed using
the Jaccard index

J (S1, S2) =
S1 ∩ S2

S1 ∪ S2
(7)

between offender sets of subsequent years, and of pre- and
post-intervention networks, and it re-affirms the transient na-
ture of the network.

This transience should be interpreted with caution. One
could infer that the majority of offenders come into contact
with the police only very infrequently, and this is indeed
the case. This does not, however, imply that such offenders
are incidental criminals; they may have been arrested, and
thereby removed from any opportunity to recurr in the data.
We currently do not have access to data that would allow us to
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(d)

Fig. 5. Post-intervention number of offenders for interventions at different
points in time.

J(2001–2002,2002–2003) 0.0972
J(2002–2003,2003–2004) 0.1627
J(2003–2004,2004–2005) 0.1853
J(2004–2005,2005–2006) 0.1976
J(2001–2002,2002–2006) 0.0471 (0.0455)
J(2001–2003,2003–2006) 0.1118 (0.1255)
J(2001–2004,2004–2006) 0.1654 (0.2073)
J(2001–2005,2005–2006) 0.2040 (0.2807)

TABLE III
OVERLAP BETWEEN OFFENDER SETS IN SUBSEQUENT YEARS, AND
OVERLAP BETWEEN PRE-INTERVENTION AND POST-INTERVENTION

OFFENDER SETS. IN BRACKETS: THE AVERAGE REALISED JACCARD INDEX
OF THE SETS OF MOST IMPORTANT OFFENDERS, AS EXPLAINED IN THE

TEXT.

distinguish between the two, but incidental criminality suppos-
edly being the result of coincidence (as a form of randomness),
incidental criminals should be less likely identified as central
nodes.

This supposition is supported by III, where the aver-
age realised Jaccard index is listed in brackets after J(pre-
intervention,post-intervention). The realised Jaccard index is
the Jaccard index of the selected set of most important offend-
ers of the pre-intervention network and the set of all offenders
in the post-intervention network, divided by its theoretical
maximum (when all most important offenders recur in the
post-intervention network). III shows that, as the amount of
historical information included in the selection of important
offenders (the pre-intervention network) increases, the selected
most important nodes from the pre-intervention network are
more likely to occur in the post-intervention network (p < 0.01
for J(2001-2005,2005-2006)). Thus, we have shown that
centrality in the co-offending network in the past is at least
somewhat informative about criminality in the future, getting
back to our original hypothesis.



2001-2002 2002-2003 2003-2004 2004-2005 2005-2006
2001-2002 1.0000 0.0972 0.0798 0.0675 0.0569
2002-2003 0.0972 1.0000 0.1627 0.1570 0.1248
2003-2004 0.0798 0.1627 1.0000 0.1853 0.1803
2004-2005 0.0675 0.1570 0.1853 1.0000 0.1976
2005-2006 0.0569 0.1248 0.1803 0.1976 1.0000

TABLE IV
OVERLAP BETWEEN OFFENDER SETS IN DIFFERENT YEARS, MEASURED AS

THE JACCARD INDEX.

C. Centrality in Time

With the five years worth of data batched into individual
years, it would seem rather naı̈ve to assign equal importance to
events that happened in the first year and events that happened
in the last year. This is supported by the overlap between the
offender sets of the different years, measured by the Jaccard
index in IV. The overlap between two ‘time slices’ decreases
as the amount of time between them increases. This points yet
again to the previously mentioned network transience. It also
hints at the fact that if we wish to find offenders who will be
important after a certain time, we may do well to discount the
distant past over the near past.

It may therefore be possible to improve on the previous
results by taking into account time, and we compared several
time-weighting schemes w:
• none (aggregate network over all years)
• uniform:

wu(Cx, vi) =
5∑

t=1

cx(vi ∈ Gt)

• linear:

w`(Cx, vi) =
5∑

t=1

t · cx(vi ∈ Gt)

• exponential:

we(Cx, vi) =
5∑

t=1

cx(vi ∈ Gt)t

where cx(vi ∈ Gt) computes centrality x for actor vi in the
network of year t.

If time-weighting changes the set of offenders selected for
removal, the structural characteristics of the post-intervention
network should also change. The effect on the resulting
networks after the intervention is illustrated in 6 as change
with respect to the (unweighted) baseline. A positive outcome
indicates that the weighting approach was able to further
reduce the number of offenders, as compared to the baseline
static network. A negative outcome means that the weighting
approach actually performed more poorly than without time-
weighting. Consistently with the foregoing, only the number
of offenders is reported. It is clear that centrality measures
measuring more transient features (shortest paths) benefit from
taking time into account. Quite counterintuitively, uniform
weighting appears to champion the others, suggesting that if
historically more important offenders remain important, it does
not matter when in history they were important.
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(c)

Fig. 6. Performance of weighting schemes compared with no weighting
scheme (positive values indicate more offenders removed, and hence better
performance than unweighted; negative values indicate fewer offenders re-
moved and poorer performance)

VI. CONCLUSION

Centrality analysis is a well-established field of research
in social network analysis, and although its applicability in
crime prevention is clear, and its potential impact large, it
has not gotten the attention it deserves in recent studies
of co-offending networks. This is likely due to the limited
accessibility of large-scale data sets, leading researchers to
focus on either quite theoretical work [21] or limit their
analysis to a relatively small sample [20].

In this paper we present results of centrality analysis on
a co-offending network extracted from five years of crime
data of British Columbia, Canada. The ultimate goal was
to select offenders such that an intervention entailing their
removal would reduce crime rate. Because explicit crime rate
information is not available we analyzed the structure of the
resulting post-intervention co-offending networks, particularly
the number of offenders consequently (un)available to commit
crimes.

Although the efficacy of the investigated centrality measures
was limited because of the high transience in the network
(offenders ceasing activity and new offenders appearing), we
could show that offenders identified as central (by any mea-
sure) were more likely to commit further crimes. This effect
grew stronger as the amount of information (time observed)
used to select central offenders was increased.

Armed with this intuition that time does indeed matter,
we compared the performance of centrality measures when
computed not over the pre-intervention network as a whole,
but over each pre-intervention year individually. We compared
several weighting schemes over the centralities per year with
unweighted whole-network centrality and found that centrality
measures that capitalize on transient characteristics of the
network (shortest paths) benefit, whereas centrality measures



that rely on more time-stable features of the network did not
benefit, or even lost some efficacy. Counterintuitively, equal
weighting of all years seemed to be better than discounting
the distant past over the near past.

We believe this initial investigation gives rise to many in-
teresting and challenging questions. Future research directions
from this could include, in no particular order, an explanation
of the reason behind uniform time-weighting coming out on
top, analysis of the overlap between the sets of offenders
selected by different centrality measures, and exploration of
the correspondence between central offenders in different
crime type subnetwork.
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[7] P. L. Brantingham, U. Glässer, P. Jackson, B. Kinney and M. Vajihollahi.

Mastermind: Computational Modeling and Simulation of Spatiotemporal
Aspects of Crime in Urban Environments. In L. Liu, J. Eck (eds.),
Artificial Crime Analysis Systems: Using Computer Simulations and
Geographic Information Systems, IGI Global, 2008.

[8] D.M.A. Hussain, D. Ortiz-Arroyo. Locating Key Actors in Social
Networks Using. Bayes’ Posterior Probability Framework. LNCS 5376,
pp. 2738, 2008.

[9] S.P. Borgatti, Identifying Sets of Key Players in a Social Network. Com-
putational and Mathematical Organization Theory. 12(1):2134, 2006.

[10] J.J. Xu, H. Chen, CrimeNet Explorer: A Framework for Criminal Net-
work Knowledge Discovery. ACM Transactions on Information Systems,
Vol 23 No 2. pp. 201-226, 2005.

[11] R. Adderley and P. Musgrove, Modus operandi modelling of group
offending: a data-mining case study. International Journal of Police
Science and Management. 5(4): 265-276, 2003.

[12] A. Malm, G. Bichler, and S. Van de Walle, Comparing the ties that bind
criminal networks: Is blood thicker than water?. Security Journal 23,
5274. 2010.

[13] A. J. Reiss, Co-offending and criminal careers. Crime and Justice: A
Review of Research, 1988.

[14] A. J. Reiss, and D. P. Farrington, Advancing knowledge about co-
offending: Results from a prospective longitudinal survey of London
males. Journal of Criminal Law and Criminology 82 (2), 1991.

[15] J. M. McGloin, C. J. Sullivan, A. R. Piquero, and S. Bacon, Investigating
the stability of co-offending and co-offenders among a sample of
youthful offenders. Criminology 46 (1), 2008.

[16] R. V. Hauck, H. Atabakhsh, P. Ongvasith, H. Gupta, H. Chen, Using
Coplink to analyze criminal-justice data. IEEE Computer, Vol. 35, No.
3: 3037, 2002.

[17] J.J. Xu, and H. Chen, Untangling Criminal Networks: A Case Study.
ISI 2003 pp. 232-248, 2003.

[18] M.N. Smith, P.J.H. King, Incrementally Visualising Criminal Networks,
iv, pp.76, Sixth International Conference on Information Visualisation
(IV’02), 2002.

[19] S. Kaza , and H. Chen, Effect of inventor status on intra organizational
innovation evolution. Hawaii International Conference on System Sci-
ences (HICSS-42), Big Island, HI, 2009.

[20] M. K. Sparrow, The application of network analysis to criminal intelli-
gence: An assessment of the prospects. Social Networks 13: 251-274.
1991.

[21] X. Liu, E. Patacchini, Y. Zenou and L-F. Lee, Criminal networks: Who
is the key player?. CEPR Discussion Paper No. 8185. 2011.

[22] S. Wasserman and K. Faust, Social network analysis: methods and
applications. Cambridge University Press, 1994.

[23] G. Sabidussi, The centrality index of a graph. Psychmetrica 31(4), 1966.
[24] P. Carrington, J. Scott and S. Wasserman, Models and methods in Social

Network Analysis. Cambridge University Press, Cambridge, 2005.
[25] S. Brin, and L. Page, The Anatomy of a Large-Scale Hypertextual Web

Search Engine. Computer Networks and ISDN Systems, 30(1-7):107-
117, 1998.

[26] K. M. Carley, J. Reminga and N. Kamneva. Destabilizing Terrorist
Networks. NAACSOS Conference Proceedings, Pittsburgh, PA, 2003.

[27] L.C. Freeman. Centrality in social networks: Conceptual clarification.
Social Networks 1:215239, 1979.

[28] P. Bonacich, P. Factoring and weighting, approaches to clique identifi-
cation. Journal of Mathematical Sociology. 2, 113120, 1972.


