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ABSTRACT
We present algorithms for computing factorizations and
least common left multiple (LCLM) decompositions of
Ore polynomials over �q (t), for a prime power q = pµ.
Our algorithms are effective in �q (t)[D; σ, δ], for any au-
tomorphism σ and σ-derivation δ of �q (t). On input
f ∈ �q (t)[D; σ, δ], the algorithms run in time polyno-
mial in degD(f), degt(f), p and µ.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms

Keywords
Factoring, Ore polynomial, modular, eigenring

1. INTRODUCTION
The Ore polynomials F(t)[D; σ, δ], over a field of ra-

tional function F(t), are the polynomials in F(t)[D] un-
der the usual addition and (generally non-commutative)
multiplication such that

Da(t) = σ(a(t))D + δ(a(t)) for any a(t) ∈ F(t).

Here σ is any automorphism of F(t) and a δ is a σ-
derivation, that is, δ is an F-linear map such that for
a, b ∈ F(t), δ(ab) = σ(a)δ(b)+ δ(a)b. This ring has been
well studied mathematically at least since Ore [1933b];
we draw heavily on the excellent expositions in Cohn
[1985, 1995], as well as Jacobson [1943, 1996] in this
paper. F(t)[D; σ, δ] is a principal left (right) ideal do-
main, and hence admits unique monic least common left
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(right) multiples (LCLMs) and greatest common right
(left) divisors (GCRDs). Efficient algorithms for basic
operations and an introduction to the computational
theory are given in Bronstein and Petkovšek [1994].

We present algorithms for the following two problems
in Ore polynomial domains over �q (t), the field of ra-
tional functions over the finite field �q with q = pµ

elements where p is prime. Given f ∈ �q (t)[D; σ, δ]:

(1) Factorization: find g, h ∈ �q (t)[D; σ, δ] \ �q (t)
such that f = gh, or a certify that f is irreducible
in �q (t)[D; σ, δ] (there is no such factorization).

(2) LCLM-decomposition: find g, h ∈ �q (t)[D; σ, δ]
of positive degree in D such that f = lclm(g, h)
and gcrd(g, h) = 1, or certify that f is indecom-
posible in �q (t)[D; σ, δ] (there is no such decom-
position).

The number of steps required by our algorithms is poly-
nomial in degD(f), degt(f), p and µ.

We consider a general class of Ore polynomials. Over
�q (t), we let σ be any automorphism fixing �q , so σ(t) =
(σ1t + σ2)/(σ3t + σ4), for σ1, σ2, σ3, σ4 ∈ �q such that
σ1σ4 − σ2σ3 �= 0. The σ-derivation δ is arbitrary, and
can be specified completely by δ(t) ∈ �q (t). Standard
canonicalization to the pure shift, pure dilation, and
pure derivation cases will be presented in Section 2. As
well, we summarize the costs and coefficient bounds on
basic operations in Section 2.

The main idea of our algorithms is that the eigen-
ring can be used to factor and LCLM-decompose any
f ∈ �q (t)[D; σ, δ]. A similar idea is employed in Gies-
brecht [1992, 1998] to give efficient algorithms for fac-
toring and LCLM-decomposing Ore polynomials over
�q [D; τ ], where τ is a Frobenius automorphism of �q .
Indeed, this is one of the original settings for Ore poly-
nomials explored by Ore [1933a, 1934]. Properties of the
eigenring, and an efficient algorithm to compute it, are
presented in Section 3. For notational convenience we
will generally write � := �q (t)[D; σ, δ]. Following Ore
[1932, 1933b, 1934], but essentially using the language of
Cohn [1985], we define the idealizer of�f to be I(�f) =
{u ∈ � | fu ∈ �f}. I(�f) is the largest subalgebra of�
in which �f is a two-sided ideal. The eigenring E(�f)
of �f is defined as the quotient E(�f) = I(�f)/�f .
The eigenring is an associative algebra over the field of
constants K = {a(t) ∈ �q (t) : a(t)D = Da(t)}.
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In Section 3, we develop the central theory behind our
algorithms. The first key point, which has been used
in the differential case by van der Put [1996], is that
�q (t) is a finite algebraic extension of K. In particular,
K ∼= �q (T ), for an indeterminate T . We prove here that
this is the case for all rings of Ore polynomials over
�q (t). (This is in contrast to the case over F(t), for a
field F of characteristic zero, where the field of constants
is F.) Over �q (t), the eigenring E(�f) is isomorphic
to a finite dimensional associative algebra (of relatively
small dimension) over K.

The second key point is that every non-trivial zero-
divisor in E(�f) yields a non-trivial factorization of f ,
and f is irreducible if and only if E(�f) is a division al-
gebra. For LCLM-decompositions, we show correspond-
ingly that any pair of orthogonal idempotents in E(�f)
yield a non-trivial LCLM-decomposition of f , and f is
LCLM-decomposable if and only if E(�f) possesses no
such orthogonal idempotents.

Finally, we note that there are efficient algorithms for
the problem of finding zero divisors and idempotents in
finite dimensional associative algebras over K = �q (T ).
Ivanyos et al. [1994] provide an efficient algorithm for
computing the Jacobson radical and primitive orthogo-
nal idempotents in the semi-simple part. We extend this
in a straightforward way to produce orthogonal idem-
potents in the algebra itself (should they exist). That
we can demonstrate our algorithms to require polyno-
mial time relies on the fact that the algorithm of Ivanyos
et al. [1994] requires time polynomial in the dimension
of the input associative algebra and the degree (in T )
of the structure constants.

In Section 4, we employ this correspondence between
zero divisors in the eigenring and factorizations to split
reducible polynomials. Similarly, in Section 5, we use
the correspondence between orthogonal idempotents in
the eigenring and LCLM-decompositions to compute
LCLM-decompositions.

While we do not give the explicit exponents, the dom-
inant cost is the decomposition of the eigenring, and this
requires time about O((degD(f) + degt(f) + p + µ)6).
Note that the algorithm runs in time polynomial in p,
not log p, reflecting the fact the dimension of the eigen-
ring is polynomial in p.

Relation to other factoring methods

The earliest and most famous method for factoring
differential operators goes back to Beke [1894]. Many
factorization algorithms are based on Beke’s algorithm
for computing first order factors and then computing
higher order factors by using the exterior power method.
In many cases these methods are quite expensive in
practice. Recently, a number of authors have pursued
different approaches.

By considering the exponential parts of linear differ-
ential operators, van Hoeij [1997] gives a new efficient
factorization algorithm. Since the existence of hyper-
exponential solutions is equivalent to the existence of
right factors of degree 1, Bronstein and Petkovšek [1996]
describes an algorithm that reduces the problem of fac-
toring in Ore polynomial to finding all the irreducible

right factors of degree 1. Singer [1996] gives a method
to decide if a linear differential operator is reducible
without having to find a factor. He uses the fact that
each differential operator L is associated to a linear alge-
braic group G, its Galois, and the reductive property of
G decides if L is reductive. He shows that factorization
can be reduced to solving an so-called mixed equation
in many cases. Van Hoeij [1996] provides an efficient
method to compute the solutions of this equation.

Most closely related to our work here, van der Put
[1995, 1996, 1997] gives procedures for factoring differ-
ential operators over �(t) and �p (t) by considering the
so-called p-curvature. In principle these techniques can
be generalized to the case of difference operators: see
van der Put and Singer [1997], Sections 5.1 and 5.2.
Very recently, Cluzeau [2003] presents algorithms for
factoring differential systems with coefficients in �p (t).

2. CANONICAL SKEW POLYNOMIAL
RINGS

While Ore’s skew polynomials, with both an auto-
morphism and a derivation, appear quite general, there
are in fact only a small number of representative cases.
In this section we briefly present this well-known re-
duction. Throughout this section we consider the ring
� := �q (t)[D; σ, δ], where σ is an automorphism of �q (t)
fixing �q and δ is a σ-derivation of �q (t). While we state
the results over �q (t), much of what we say will hold over
F(t) for any perfect field F.

2.1 Reducing to the pure automorphism
and derivation cases

It is well known that if �q (t)[D; σ, δ] has both a non-
trivial automorphism σand non-trivial σ-derivation δ,
then, after a change of variables, � is isomorphic to
a ring �′ = �q (t)[D′; σ′] with only an automorphism
(i.e., whose derivation is identically zero) by means of
the substitution:

D → D + δ(t)

t − σ(t)
,

See Cohn [1985], Proposition 3.1, page 498. This change
of variables is computationally efficient. Thus, we need
only consider the pure automorphism case �q (t)[D; σ]
and the pure derivation case �q (t)[D; δ].

2.2 Automorphism classes and the shift and
dilation cases

In this subsection we assume that � := �q (t)[D; σ].
We show that any such ring is isomorphic to a ring
�q (t)[D; σ] of difference operators (i.e., where σ(t) =
t + γ for γ ∈ �q ), or a ring of dilation operators (i.e.,
where σ(t) = ξt for some ξ ∈ �∗q2 ) over a quadratic field

extension. This classification is straightforward (and
well known), and the transformation is computationally
efficient.

Every automorphism of �q (t) which fixes �q has the
property that

σ(t) =
σ1t + σ2

σ3t + σ4
where det

�
σ1 σ2

σ3 σ4

�
�= 0.

128



The automorphisms form a group under composition,
and it is easily proven that Aut(�q (t)) ∼= PGL(2, �q ),
the projective general linear group of invertible 2 × 2
matrices over �q modulo scalar multiples of the identity.
In particular, there is an isomorphism

Aut(�q (t)) → PGL(2, �q ),
σ1t + σ2

σ3t + σ4
�→

�
σ1 σ2

σ3 σ4

�
.

Since every matrix is similar to a matrix in Jordan form,
every s ∈ �2×2

q satisfies either

Case (1) ∃u ∈ �2×2
q2 , such that usu−1 =

�
αq 0
0 α

�
,

for α ∈ �q2 ;

Case (2) ∃u ∈ �2×2
q such that usu−1 =

�
α 1
0 α

�
,

for α ∈ �q .

Note that in Case (1), s generally has distinct eigenval-
ues and hence a generally irreducible minimal polyno-
mial over �q . Thus the eigenvalues, and transformation
matrices to the Jordan form, lie in a quadratic exten-
sion �q2 of �q . In Case (2) s has a repeated eigenvalues,
which must lie in �q .

This notion of normal form is easily extended to the
skew polynomial ring itself. Suppose σ is represented in
PGL(2, �q ) by s ∈ �2×2

q and usu−1 is in Jordan form
as above. Let τ be the fractional linear transformation
corresponding to u. Then

σ := τ◦σ◦τ−1 =

�
ξt, for ξ = αq−1 ∈ �∗q2 , a dilation, or

t + γ, for γ = α−1 ∈ �q , a shift.

The map τ , which is itself an automorphism of �q (t), is
naturally extended to �q (t)[D; σ], by τ (D) = D, whence
�q (t)[D; σ] ∼= �q (t)[D; σ].

To factor an f ∈ �q (t)[D; σ] we may thus factor the
polynomial τ (f). This ring isomorphism is efficiently
computable, and thus we assume from now on that σ is
either a shift or dilation over �q (t), where q is redefined
as appropriate.

2.3 Derivation operators
It is easily observed that the derivation operator, in

the pure derivation ring �q (t)[D; δ], satisfies the stan-
dard algebraic properties of differentiation. In partic-
ular, δ is �q -linear and δ(tn) = ntn−1δ(t). We can
specify the derivation operator completely by specify-
ing the value of δ(t) ∈ �q (t), and for any rational func-
tion r(t) ∈ �q (t), we have δ(r(t)) = r′(t)δ(t), where
r′(t) ∈ �q (t) is the usual first derivative of r with re-
spect to t. For simplicity, we will assume that δ(t) is of
constant degree, and do not consider its degree explic-
itly in our analyses.

2.4 Representation and basic operations
with skew polynomials

To standardize our representation of f ∈ �q (t)[D; σ, δ],
we write

f =
�

0≤i≤n

ai(t)Di,

where the a0(t), . . . , an(t) ∈ �q (t) are always written to
the left of the power of D. Let c ∈ �q [t] be the LCM
of the denominators of coefficients of f . It is obvious
that c · f ∈ �q [t][D; σ, δ], and if c · f = f1f2 · · · fk, for
f1, . . . , fk ∈ �q (t)[D; σ, δ], then f = (c−1 · f1)f2 · · · fk.
There is no necessity that polynomials in �q [t][D; σ, δ]
factor over �q [t][D; σ, δ], and indeed there may be re-
ducible polynomials in �q [t][D; σ, δ] such that every com-
plete factorization involves at least one factor in
�q (t)[D; σ, δ] \ �q [t][D; σ, δ]. We may, however, assume
that our input comes from �q [t][D; σ] or �q [t][D; δ] and
our output is in �q (t)[D; σ] or �q (t)[D; δ] respectively.

Basic operations with skew polynomials are performed
with the polynomials in standard representation. These
basic operations are addition, subtraction, multiplica-
tion, division with remainder, greatest common right
(left) divisor (GCRD), and least common left multiple
(LCLM). Many good algorithms have been developed
for these operations (see, e.g., Bronstein and Petkovšek
[1994], Li [1998], van der Hoeven [2002]) We note the
following crude bounds on the costs of these algorithms
and on the size of the output (see Li [2002]).

Theorem 2.1. Let f, g ∈ �q (t)[D; σ, δ], and h1 =
f + g, h2 = fg, h3 = rem(f, g), h4 = quo(f, g) (i.e.,
f = quo(f, g)g +rem(f, g) for the unique quo(f, g), and
rem(f, g) ∈ �q (t)[D; σ, δ] such that degD(rem(f, g)) <
degD(g)), h5 = lclm(f, g), and h6 = gcrd(f, g)). Then
bounds on the degrees in D for h1, . . . , h6 are as in the
usual polynomial case, while

degt(hi) = O ((degD(f) + degD(g))(degt(f) + degt(g)))

for 1 ≤ i ≤ 6. The cost of computing h1, . . . , h6 is
bounded by

O
�
(degD(f) + degD(g))5(degt(f) + degt(g))2

�
operations in �q .

3. THE EIGENRING OF ORE POLYNO-
MIALS OVER FINITE FIELDS

In this section we describe the centre of the ring of Ore
polynomials �q (t)[D; σ, δ], where � := �q (t)[D; σ] for an
automorphism σ, or � := �q (t)[D; δ] for a derivation δ.
In each case the centre turns out to be the usual poly-
nomial ring �q (T )[Y ], for independent indeterminates
T and Y . Hence the centre is a unique factorization
domain. We then observe that every polynomial in �
has a non-trivial left multiple in the centre, the mini-
mal central multiple. We then describe the eigenring of
a polynomial and give its properties. In particular, how
zero-divisors in the eigenring correspond to factors of
the original polynomial. We also show how to construct
the eigenring efficiently.

An element f ∈ � is invariant if �f = f�. An
invariant element f∗ such that �f ⊇ �f∗ is called a
bound for f , and f is said to be bounded, if there ex-
ists a non-trivial bound. Closely related to the invari-
ant elements in � is the centre � of �, those elements
which commute with every element of �. Every element
f ∈ � has a minimal central left (and right) multiple
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f̂ ∈ �\{0}, the (monic) polynomial of lowest degree in
the centre which is a left (right) multiple of f . Jacobson
[1943], Chapter 3, Theorem 11 shows that the central
left and right multiples are in fact equal. Thus, we refer
to f̂ as simply the minimal central multiple of f .

3.1 The centre in the pure automorphism
case

We first consider the shift and dilation cases. To de-
scribe the centre of �, we must first understand the
constant field K of σ, whose elements are fixed by the au-
tomorphism. Following Ore [1933a], we say an ϕ ∈ �q [t]
is additive if ϕ(α + β) = ϕ(α) + ϕ(β) for any α, β ∈ �q ,
where �q is the algebraic closure of �q . The additive
polynomials in �q [t], where q = pµ, are exactly those of

the form ϕ =
�

0≤i≤µ ϕit
pi ∈ �q [t].

Theorem 3.1. Let K be the constant field of σ.

• If σ(t) = t+γ for some γ ∈ �∗q then K = �q (ϕ(t)),
where ϕ ∈ �q [t] is the additive polynomial of small-
est degree such that ϕ(γ) = 0.

• If σ(t) = ξt for some ξ ∈ �∗q then K = �q (tν),
where ν is the multiplicative order of ξ.

Proof. First observe that σ(ϕ(t)) = ϕ(t + γ) =
ϕ(t) + ϕ(γ) = ϕ(t), so ϕ(t) is invariant under σ, as
is tq − t. Thus �q (tq − t) ⊆ K ⊆ �q (t). By Luröth’s
theorem K = �q (v(t)) for some v ∈ �q [t], and there
exists a u ∈ �q [t] such that tq − t = u(v(t)). Since
tq − t is additive, by Theorem 3.3 of Giesbrecht [1988]
we find u, v are also additive. Letting ϕ be the additive
polynomial of minimal degree with root γ ensures that
K = �q (ϕ(t)).

In the dilation case, h(t) =
�

0≤i≤m hit
i ∈ �q [t] is

fixed by σ when σ(h(t)) = h(ξt) This is true only if
for all i, hi = 0 or ξi = 1, i.e., when h ∈ �q [tν ]. By
Montgomery [1980], Page 71, the only rational functions
which are fixed by σ are quotients of polynomials in K,
and hence K = �q (tν)

For consistency, we will let ν := deg ϕ in the shift
case. Thus, in both the shift and the dilation case we
can write the ground field as an algebraic extension of
degree ν over the constant field K of σ. It should be
noted that in all cases it is straightforward to compute
the constant field.

The centre of � is characterized by the following:

Theorem 3.2. The centre � of a pure automorphism
Ore polynomial ring is characterized as follows.

• Usual: When σ(t) = t, � = �q (T )[Y ] where T =
t and Y = D;

• Shift: When σ(t) = t + γ for γ ∈ �∗q , then � =
�q (T )[Y ], where T = ϕ(t) as in Theorem 3.1, and
Y = Dν ;

• Dilation: When σ(t) = ξt is a dilation, then � =
�q (T )[Y ] where T = tν and Y = Dν , and σ has
multiplicative order ν.

Thus in all cases � is a usual, commutative polynomial
ring.

Proof. For f =
�

0≤i≤n ai(t)Di ∈ � to be in the
centre, t · f = f · t or�
0≤i≤n

ai(t)t·Di =
�

0≤i≤n

ai(t)Di·t =
�

0≤i≤n

ai(t)·σi(t)·Di,

whence either ai(t) = 0 or σi(t) = t. In other words
� ⊆ �q (t)[Dν ; σ].

We note also that D · f = f · D or

D·
�

0≤i≤n

ai(t)Di =
�

0≤i≤n

σ(ai(t))Di+1 =
�

0≤i≤n

ai(t)·Di+1.

Thus, σ(ai(t)) = ai(t), or in other words, ai(t) ∈ K for
0 ≤ i ≤ n.

Combining these two conditions yields the centre, as
specified in the theorem.

There is a close relationship between the centre, the
minimal central multiples and the invariant elements.
In the automorphism case �q (t)[D; σ], Jacobson [1996],
Theorem 1.1.22, shows every invariant element f∗ has
the form f∗ = a(t)Dkf̂ for f̂ ∈ �, a(t) ∈ �q (t) and
k ∈ �≥0.

3.2 The centre and minimal central multi-
ples in �q (t)[D; δ]

In the derivation case, the constant subfield of �q (t)
in �q (t)[D; δ] is K = {a(t) ∈ �q (t) : δ(a(t)) = 0}.

Lemma 3.3. The constant subfield of �q (t)[D; δ] is
�q (tp).

Proof. We first consider the kernel of δ in the poly-
nomial ring �q [t]. Suppose a(t) = antn + an−1t

n−1 +
· · · + a0 ∈ �q [t], and δ(a(t)) = 0. Then

0 = δ(a(t))

= nantn−1δ(t) + (n − 1)an−1t
n−2δ(t) + · · · + a1δ(t)

= (nantn−1 + (n − 1)an−1t
n−2 + · · · + a1)δ(t).

(1)
Since δ(t) �= 0, it follows that

a(t) = amp(t
p)m+a(m−1)p(t

p)m−1+· · ·+aptp+a0 ∈ �q [tp],

where m = n/p ∈ �, or in other words, a(t) ∈ �q [tp].
To identify the kernel of δ in �q (t), Corollary 3.9,

Bergen and Montgomery [1986] implies that the only
fractions in the kernel of δ are fractions of polynomials
in the kernel of δ. That is, the kernel of δ is �q (tp).

We note that �q (t) is an algebraic extension of K =
�q (tp) of degree p. For consistency with the automor-
phism case we let ν = p = [�q (t) : K].

Lemma 3.4. The centre of �q (t)[D; δ] is �q (tp)[Dp].

Proof. This is proven in Amitsur [1957]. See Jacob-
son [1996], Theorem 1.1.32.
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For consistency with the automorphism case, we let
T = tp and Y = Dp, so the centre of �q (t)[D; δ] is the
commutative polynomial ring �q (T )[Y ].

Again there is a close relationship between the cen-
tre, the minimal central multiples and the invariant ele-
ments. In the pure derivation case �q (t)[D; δ], Amitsur

[1957] shows f∗ = a(t)f̂ for f̂ ∈ � and a(t) ∈ �q (t).

3.3 Constructing the eigenring
To completely factor an f ∈ �, we construct a fi-

nite dimensional associative algebra � over the constant
subfield K, with the property that each non-trivial zero
divisor in � yields a non-trivial factorization of f . A
candidate for � might be the quotient �/�f , but it is
in general only an �-module, and not an algebra. While
we could in principle decompose this module directly,
the algorithmic machinery to do so has not been com-
pletely developed. �/�f is only an algebra when �f
is a two-sided ideal in �. To regain some of the desir-
able structure of finite algebras, we follow Cohn [1985],
Section 0.7, and introduce the eigenring. Define

I(�f) = {u ∈ � | fu ∈ �f}
the idealizer of �f . The set I(�f) is the largest sub-
algebra of � in which �f is a two-sided ideal. The
eigenring E(�f) of �f is defined as the quotient

E(�f) = I(�f)/�f,

a finite dimensional K-algebra since � is an K-algebra
and �f a two-sided ideal in I(�f).

The key facts about E(�f), which we shall prove in
the coming subsections, are that it is a division ring if
and only if f is irreducible, and that non-trivial zero
divisors in E(�f) allow us to compute non-trivial fac-
tors of f efficiently. We shall also prove that pairs of or-
thogonal idempotents summing to the identity in E(�f)
correspond to LCLM-decompositions.

Computationally, we will represent the eigenring as a
finite dimensional subalgebra of a matrix ring over K,
where K is the field of constants in �q (t). If deg f = n,
the eigenring E(�f) is isomorphic to the K-algebra

� = {u ∈ I(�f) | deg u < n}
= {u ∈ � | fu ∈ �f and deg u < n} ∼= E(�f)

under addition in � and multiplication in � reduced
modulo f (i.e., each element in E(�f) is represented
by its unique residue modulo f of degree less than n).

To compute a K-basis for �, let W ⊆ � be the set
of all g ∈ � with deg g < n. As a K-vector space W is
isomorphic to �/�f , with K-basis

{tiDj | 0 ≤ i < ν, 0 ≤ j < n},
and dimension nν. Multiplication on the left by f in-
duces an K-linear map Ψ : W → W : if u ∈ W then
Ψ(u) = v, where fu = wf + v for w ∈ � and v ∈ �,
the unique remainder, with degree less than n. Clearly
v ∈ W . The elements of � are exactly those elements in
the null space of Ψ, a basis which is found by construct-
ing a matrix for Ψ (an nν ×nν matrix over K) and then
using linear algebra over K to compute a basis for the

null space. This matrix is computed by evaluating Ψ
at each of the basis elements of W , i.e., finding Ψ(tiDj)
for 0 ≤ i < ν and 0 ≤ j < n.

Thus, � can be presented by means of a K-basis
A1, . . . , Am ∈ W of polynomials under multiplication
in � reduced modulo f , or as a K-basis �1, . . . ,�m ∈
Knν×nν of matrices, where �i specifies the linear action
of Ai on W . Finding such a basis for � involves only
nν divisions with remainder in � of polynomials of de-
gree less than n in D and less than max{degt f, q} in t,
followed by linear algebra to find the kernel of Ψ. We
obtain the following.

Theorem 3.5. A basis A1, . . . , Am ∈ W for � as
a reduced polynomial algebra, or a basis �1, . . . ,�m ∈
Knν×nν for � as a matrix algebra, can be found in time
polynomial in degD f , degt f and p.

3.4 Reducibility and the eigenring
We show that non-trivial zero-divisors exists in E(�f)

if and only if f has a non-trivial factorization.

Theorem 3.6. Let f ∈ �. Then f has a non-trivial
factorization if and only if E(�f) has non-trivial zero
divisors.

Proof. Any non-trivial zero divisor in E(�f) yields
a non-trivial factorization of f . For if u, v ∈ I(�f), with
u, v �∈ �f and uv ∈ �f , it follows that gcrd(f, u) �=
1. To see this, suppose conversely that gcrd(f, u) =
1. There exist s, t ∈ � such that sf + tu = 1 and
sfv + tuv = v. But fv ∈ �f and uv ∈ �f so v ∈ �f ,
a contradiction. If u, v are represented in the basis W ,
then they have degree (in D) less than that of f , and
hence gcrd(f, u) is a non-trivial right factor of f .

To prove the converse, assume f is not irreducible,
and f = gh for g, h ∈ � of positive degree. Let f̂ ∈ � =
K[Y ] be the minimal central multiple of f .

First suppose f̂ is reducible as a polynomial in K[Y ],

that is, f̂ = ĝĥ for ĝ, ĥ ∈ K[Y ] \ K. Since ĝ, ĥ ∈ �, both

ĝ and ĥ ∈ I(�f). By the minimality of deg f̂ , we also

know ĝ, ĥ �∈ �f , i.e., ĝ + �f, ĥ + �f ∈ E(�f) \ {0}.
Finally, since ĝĥ ∈ �f , we see ĝ +�f, ĥ +�f are zero
divisors in E(�f).

Now assume that f̂ is irreducible as a polynomial in
K[Y ] (and f = gh is reducible in �), we show that
in fact f = lclm(f1, f2) for some f1, f2 ∈ � of posi-
tive degree such that gcrd(f1, f2) = 1, i.e., f is LCLM-
decomposable. In this case there exist g1, g2 ∈ � such
that g1f1 + g2f2 = 1. Let h1 = g1f1 and h2 = g2f2,
neither of which are equivalent to zero modulo f . Then

fh1 = f(1 − g2f2) ∈ �f2 and fh1 = fg1f1 ∈ �f1,

so fh1 ∈ �f . Similarly fh2 ∈ �f , so h1, h2 ∈ I(�f).
Moreover, h1h2 = h1 − h2

1 = h2 − h2
2, which is right-

equivalent to zero modulo both f1 and f2, and hence
modulo f . Thus (h1 +�f)(h2 +�f) ∈ �f and h1 +�f
and h2 +�f are non-trivial zero divisors in E(�f).

Still assuming that f̂ is irreducible as a polynomial in
K[Y ] yet f is reducible, we now show that f is in fact

LCLM-decomposable. Since �f̂ is a maximal two-sided
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ideal in �, E(�f) = �/�f̂ is a (finite dimensional)
simple algebra and

0 � E(�f)(f +�f̂)� �	 

�

� E(�f)(h +�f̂)� �	 

�

⊆ E(�f)

is a tower of left ideals in E(�f). Since E(�f) is
simple there exists a complementary ideal � such that
� ∩� = � and � +� = 1. E(�f) inherits from � the
property of being a left principal ideal ring. That is,
there exists a unique monic ḡ ∈ � of minimal degree
such that � = ḡ +�f̂ , called the minimal left modular
generator of �. This follows easily from the fact that
if ḡ1 + �f̂ , ḡ2 + �f̂ ∈ �, then gcrd(ḡ1, ḡ2) + �f̂ ∈ �.

Thus � = ḡ + �f̂ , f = lclm(h, ḡ) and gcrd(h, ḡ) = 1.
Thus f is decomposable, and hence its eigenring has
zero divisors.

Note that the above theorem does not hold in general,
at least in the derivation case in characteristic 0. Singer
[1996] exhibits reducible polynomials whose eigenrings
are division algebras. Essentially, it is the fact that
�q (t) is an algebraic extension of the field of constants
that allows for the more representative structure of the
eigenring.

3.5 Decomposability and the eigenring
For a given polynomial f ∈ �, we now show a cor-

respondence between the existence of a pair of non-
trivial orthogonal idempotents summing to the identity
in E(�f), and the existence of a non-trivial LCLM-
decomposition of f .

Recall that two idempotents e1, e2 in an algebra are
orthogonal if e1e2 = e2e1 = 0.

Theorem 3.7. Let e1, e2 ∈ I(�f) be such that ē1 =
e1 + �f and ē2 = e2 + �f ∈ E(�f) are non-trivial
orthogonal idempotents such that e1 + e2 ∈ 1 +�f (so
e1e2 ∈ �f and e2

1−e1, e
2
2−e2 ∈ �f). Let fi ∈ �\{0} be

the polynomial of minimal degree such that fiei ⊆ �f ,
for i = 1, 2. Then f = lclm(f1, f2) and gcrd(f1, f2) = 1.

Proof. For i = 1, 2, the set Ji = {u ∈ � : uei ∈ �f}
is a left ideal in �. Since � is a principal left ideal ring,
Ji is generated by a unique monic fi ∈ �. Note that fi

is a right factor of f since f ∈ Ji (because ei ∈ I(�f)).
For any h ∈ � such that h ∈ �f1 and h ∈ �f2, then

h +�f = h(e1 + e2) +�f . But hei ∈ �f , so h ∈ �f .
Hence f = lclm(f1, f2).

We now show gcrd(f1, f2) = 1. Let g1 = gcrd(f, e1),
g2 = gcrd(f, e2). Clearly gcrd(g1, g2) = gcrd(f, e1, e2) =
1 since e1+e2 ∈ 1+�f . There exist vi, wi ∈ � such that
vif + wiei = gi. Now g2e1 = (v2f + w2e2)e1 = v2fe1 +
w2e2e1 ∈ �f . Thus f1 | g2. Similarly f2 | g1. Since
gcrd(g1, g2) = 1, it follows that gcrd(f1, f2) = 1.

Theorem 3.8. Given f ∈ �, and f1, f2 of positive
degree such that gcrd(f1, f2) = 1 and f = lclm(f1, f2),
there exist non-trivial orthogonal idempotents ē1, ē2 ∈
E(�f) whose sum is 1 ∈ E(�f).

Proof. Since gcrd(f1, f2) = 1, there exists g1, g2 ∈
� such that g1f1 + g2f2 = 1. Let h1 = g1f1 and h2 =

g2f2, neither of which lie in �f . Then fh1 = f(1 −
g2f2) = f − fg2f2 ∈ �f2 and fh1 = fg1f1 ∈ �f1, so
fh1 ∈ �f . Similarly fh2 ∈ �f , so h1, h2 ∈ I(�f).
We assign ē1 = h1 + �f , and ē2 = h2 + �f and note
that both are in E(�f) = I(�f)/�. Moreover, h1h2 =
h1 − h2

1 = h2 − h2
2 ∈ �f , since its is clearly in �f1 and

�f2, and hence in �f . Thus ē1 and ē2 are orthogonal
idempotents in E(�f). As well, h1+h2 = 1, so ē1+ē2 =
1 ∈ E(�f).

4. FACTORING MODULAR ORE POLY-
NOMIALS

Theorem 3.6 effectively reduces the problem of factor-
ing in � to finding zero divisors in a finite dimensional
associative algebra over the field of constants K in both
the difference and differential case. To find such zero
divisors quickly we use the algorithm of Ivanyos et al.
[1994]. For any finite-dimensional associative algebra
over �q (T ), their algorithm finds the Jacobson radical
if it exists, and, for a semi-simple algebra, finds a sys-
tem of primitive orthogonal idempotents. Otherwise it
reports that � is a division algebra. In either case, the
output immediately yields zero divisors or states that
non-exists. The algebra is presented to the zero-divisor
finding algorithm as a basis of generating matrices over
�q (T ) (also known as the structure constants for the al-
gebra). The algorithm of Ivanyos et al. [1994] runs in
time polynomial in the dimension of the algebra and
the height (degree in T ) of the structure constants (en-
tries in the basis). Computing a basis for the eigenring
� ∼= E(�f) has been discussed in the previous section.

The cost of their algorithm is polynomial in the di-
mension of the algebra, the maximum degree of the en-
tries of the generating matrices, and log q.

Again, we let � = �q (t)[D; σ, δ], transformed to a
pure differential or automorphism ring as in Section 2.

Algorithm: Factorization

Input: � f ∈ � of degree n;

Output: � g, h ∈ �, or a message that f is irre-
ducible;

(1) Compute a basis A1, . . . , Am ⊆ Knν×nν for � ∼=
E(�f) as in Subsection 3.3;

(2) If � is a division ring then report “f is irreducible”

Else

(3) Find a non-trivial left zero divisor u ∈ �;

Compute h := gcrd(f, u) and g ∈ � with f =
gh;

(5) Return g, h;

Theorem 4.1. The above algorithm works as speci-
fied. It runs in time polynomial in degD(f), degt(f)
and q.

Proof. Correctness when f is irreducible follows from
Theorem 3.6, as does the existence of u when f is irre-
ducible. Suppose that v ∈ �\{0} is such that uv = 0.
To see that gcrd(f, u) is a non-trivial factor of f , assume
to the contrary that gcrd(f, u) = 1. Then there exist
s, t ∈ � such that sf + tu = 1 and sfv + tuv = v. But
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fv ∈ �f and uv ∈ �f , so v ∈ �f , a contradiction to v
being non-trivial in � (which is defined modulo f).

The costs are dominated by finding a basis for the
eigenring (see Theorem 3.5) and finding the zero-divisors
in � (see Ivanyos et al. [1994]), all of which are polyno-
mial in degD(f), degt(f) and q.

5. COMPUTING A COMPLETE LCLM
DECOMPOSITION

In this section we present a method for the LCLM-
decomposition of a polynomial f ∈ �q (t)[D; σ, δ]. Again,
we let � = �q (t)[D; σ, δ], transformed to a pure differ-
ential or automorphism ring as in Section 2.

Using the relationship between the existence of an
LCLM-decomposition and the existence of non-trivial,
orthogonal idempotents in E(�f) summing to 1 devel-
oped in Theorems 3.7 and 3.8 of the previous section,
we reduce the problem to finding such idempotents.

We need to be able to find a pair of orthogonal idem-
potents in � which sum to the identity. We again em-
ploy the algorithm of Ivanyos et al. [1994], this time to
compute Rad(�) and an idempotent in � mod Rad(�).
We use this to construct an idempotent in � as follows.

Algorithm: Orthogonal-Idempotents

Input: � a basis �1, . . . ,�m ∈ Kr×r for an asso-
ciative algebra (containing the identity).
Here K = �q (T ) for an indeterminate T ,
and q some power of a prime q.

Output: � non-trivial orthogonal idempotents e1, e2 ∈
� such that e1 + e2 = 1.

(1) Compute Rad(�), and assume Rad(�)η = 0, using
the algorithm of Ivanyos et al. [1994].

(2) If �/Rad(�) is a division algebra;

(3) Then output “� has no non-trivial idempo-
tents”;

(3) Else

(4) Let ē ∈ � be such that ē mod Rad(�) is a non-
trivial idempotent in �/Rad(�), using the al-
gorithm of Ivanyos et al. [1994].

(5) Compute u ∈ K[x]: u ≡ 1 mod xη, u ≡ 0 mod
(x − 1)η ;

v ∈ K[x]: v ≡ 0 mod xη, v ≡
1 mod (x − 1)η;

(6) Output e1 := u(ē), e2 = v(ē);

Theorem 5.1. Orthogonal-Idempotents works as
specified. The time require is polynomial in r and the
maximum degree of any entry in �i for 1 ≤ i ≤ m.

Proof. We need to show that e1, e2 are orthogonal
idempotents in �. First, note that ē2 − ē ∈ Rad(�), so
(ē2 − ē)η = 0. Thus, the minimal polynomial in K[x] of
ē divides (x2 − x)η = xη(x − 1)η . With u, v as in step
(5), we know

u(x) = q1(x)xη + 1 u(x) = q2(x)(x− 1)η

v(x) = r1(x)xη v(x) = r2(x)(x − 1)η + 1

for some q1, q2, r1, r2 ∈ K[x]. Now

e2
1 − e1 = e1(e1 − 1) = q2(ē)(ē − 1)ηq1(ē)ē

η

= ēη(ē − 1)ηq1(ē)q2(ē) = 0,

e2
2 − e2 = e2(e2 − 1) = r2(ē)(ē − 1)ηr1(ē)ē

η

= ēη(ē − 1)ηr1(ē)r2(ē) = 0,

e2e1 = e1e2 = q1(ē)(ē − 1)ηr1(ē)ē
η

= ēη(ē − 1)ηq1(ē)r1(ē) = 0.

Finally e1 + e2 = u(ē) + v(ē) = (u + v)(ē). But u + v ≡
1 mod xη(x − 1)η by construction, so e1 + e2 = 1.

That the algorithm runs in polynomial in the dimen-
sion r and the maximum degree of a structure constant
follows immediately from Ivanyos et al. [1994].

We can now present our algorithm to compute an
LCLM-decomposition.

Algorithm: LCLM-Decomposition

Input: � f ∈ � of degree n;

Output: � g, h ∈ � with f = lclm(g, h) and gcrd(g, h) =
1 for 1 ≤ i ≤ k;

(1) Compute a basis A1, . . . , Am ⊆ Knν×nν for � ∼=
E(�f) as in Section 3;

(2) Using Orthogonal-Idempotents, attempt to find
a pair of orthogonal idempotents e1, e2 ∈ � such
that e1 + e2 = 1 ∈ �;

(3) If no such idempotents exist, report “f is indecom-
posable”;

Else

(4) Let g, h ∈ � each be of minimal degree such
that ge1 ∈ �f , and he2 ∈ �f ;

(5) Return g, h;

Theorem 5.2. The above algorithm works as speci-
fied. It runs in time polynomial in degD(f), degt(f)
and p.

Proof. Correctness of Step (3) follows from Theo-
rem 3.8, and that of Step (5) follows from Theorem 3.7.

The dominant cost in this algorithm is computing the
orthogonal idempotents with Orthogonal-Idempotents,
which can be done in time polynomial in the dimension
and degree of entries in the basis for �, i.e., polynomial
in n, degt(f) and p. As well, we must compute g and h
in step (4), but this is simply linear algebra in W (see
Subsection 3.3).

6. CONCLUSION
Given f ∈ �q (t)[D; σ, δ], we have considered the prob-

lems of computing factorizations f = gh for g, h ∈
�q (t)[D; σ, δ], and LCLM-decompositions f = lclm(g, h)
for relatively (right) prime g, h. The algorithms pre-
sented require time polynomial in degD f , degt f and q.
Our main idea was to work by decomposing the eigen-
ring, and use the correspondence between these decom-
positions and factorizations to split f .

Many important questions remain to be considered.
We have shown here how to split and LCLM-decompose
polynomials into two factors, and can iterate the algo-
rithm on these factors until a complete factorization or
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complete LCLM-decomposition is obtained. However,
we must be careful to manage the growth in the degree
of t in the factors. We can also ask if there are any fac-
tors of a specific given degree s. For this an analogue
to the method of Giesbrecht [1998] should apply.

As noted earlier, one of the main goals was to ap-
ply this work to factoring in �(t)[D; σ, δ]. The prob-
lems of lifting and factor reconstruction are consider-
ably more difficult in the non-commutative case. Inter-
esting mathematical questions also arise in understand-
ing the factorization pattern under modular reduction,
which could greatly affect the complexity of algorithms
for these problems.
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