
Interpolation of Shifted-Lacunary Polynomials
[Extended Abstract]

Mark Giesbrecht and Daniel S. Roche

Abstract. Given a “black box” function to evaluate an unknown rational polynomial
f ∈ Q[x] at points modulo a prime p, we exhibit algorithms to compute the repre-
sentation of the polynomial in the sparsest shifted power basis. That is, we determine
the sparsity t ∈ Z>0, the shift α ∈ Q, the exponents 0 ≤ e1 < e2 < · · · < et, and the
coefficients c1, . . . , ct ∈ Q \ {0} such that

f (x) = c1(x − α)e1 + c2(x − α)e2 + · · · + ct(x − α)et .

The computed sparsity t is absolutely minimal over any shifted power basis. The nov-
elty of our algorithm is that the complexity is polynomial in the (sparse) represen-
tation size and in particular is logarithmic in deg f . Our method combines previous
celebrated results on sparse interpolation and computing sparsest shifts, and provides
a way to handle polynomials with extremely high degree which are, in some sense,
sparse in information. We give both an unconditional deterministic algorithm which is
polynomial-time but has a rather high complexity, and a more practical probabilistic
algorithm which relies on some unknown constants.

Mathematics Subject Classification (2000). Primary 68W30; Secondary 12Y05.

Keywords. Sparse interpolation, Sparsest shift, Lacunary polynomials.

1. Introduction

Interpolating an unknown polynomial from a set of evaluations is a problem which has
interested mathematicians for hundreds of years, and which is now implemented as a
primitive operation in most computer algebra systems. To illustrate some different kinds
of interpolation problems, consider the following three representations for a polynomial

Appears in Mathematical Aspects of Computer and Information Sciences
(MACIS’07), Paris, France, December 5–7, 2007.

2 Giesbrecht and Roche

f (x) of degree n:

f (x) = a0 + a1x + a2x2 + · · · + anxn (1.1)
f (x) = b1xd1 + b2xd2 + · · · + bsxds (1.2)
f (x) = c1(x − α)e1 + c2(x − α)e2 + · · · + ct(x − α)et (1.3)

In (1.1) we see the dense representation of the polynomial, where all coefficients
are represented, even if they are zero. Newton and Waring discovered methods to inter-
polate f (x) in time proportional to the size of this representation in the 18th century. The
sparse or lacunary representation is shown in (1.2), wherein only the terms with non-
zero coefficients are shown. Less than 20 years ago, Ben-Or and Tiwari [3] discovered
a method to interpolate in time polynomial in the size of this representation (see [12]).
This method has recently been pointed out to be essentially equivalent to the method of
de Prony from 1795 [6].

When α is chosen so that t is absolutely minimal in (1.3), we call this the sparsest
shift of f (x). We present new algorithms to interpolate f (x) ∈ Q[x], given a black box for
evaluation, in time proportional to the size of the shifted-lacunary representation corre-
sponding to (1.3). It is easy to see that t could be exponentially smaller than both n and
s, for example when f (x) = (x + 1)n, demonstrating that our algorithms are providing a
significant improvement in complexity over those previously known.

The main applications of all these methods for polynomial interpolation are signal
processing and reducing intermediate expression swell. Dense and sparse interpolation
have been applied successfully to both these ends, and our new algorithms effectively
extend the class of polynomials for which such applications can be made.

The most significant challenge here is computing the sparsest shift index α ∈ Q.
Computing this value from a set of evaluation points was stated as an open problem in
[4]. An algorithm for a generalization of our problem in the dense representation was
given in [9], though its cost is exponential in the size of the output; they admit that the de-
pendency on the degree of the polynomial is probably not optimal. Our algorithm achieves
deterministic polynomial-time complexity for polynomials over the rational numbers. We
are always careful to count the bit complexity — the number of fixed-precision machine
operations — and hence account for any coefficient growth in the solution or intermediate
expressions.

The black box model we use is slightly modified from the traditional one:

p ∈ N, θ ∈ Zp - - f (θ) mod p

f (x) ∈ Q[x]

Given a prime p and an element θ in Zp, the black box computes the value of the unknown
polynomial evaluated at θ over the field Zp. Note that in some sense this restriction is
necessary for rational (or integer) polynomials, since the value of a polynomial of degree
n at any point other than 0,±1 will typically have n bits or more. Thus, any algorithm
whose complexity is proportional to log n cannot evaluate such a polynomial over Q or Z.

Shifted-Lacunary Interpolation [Extended Abstract] 3

To be precise, define for a rational polynomial f (x) as in (1.3):

size(f (x)) = size(α) +
t∑

i=1

(size(ci) + size(ei)) .∗ (1.4)

Our algorithms will have polynomial complexity in the smallest possible size(f (x)).

2. Computing the Sparsest Shift
The input to the algorithms will be a modular black box for evaluating a rational polyno-
mial, as described above, and a bound B ∈ N on size(f (x)).

Here, and for the remainder of this discussion, for f (x) ∈ Q[x] as in (1.3), define

fp(x) = (c1 mod p)(x − αp)e1 mod (p−1) + . . . + (ct mod p)(x − αp)et mod (p−1), (2.1)

where αp = α mod p.
Using Fermat’s Little Theorem, we can see that f (θ) mod p = fp(θ) for all θ ∈ Zp

with θ , αp. If we are “lucky”, then f (αp) mod p = fp(αp) also, so that the unique
polynomial in Zp[x] interpolating any (p − 1) of the points (i, f (i) mod p), for i ∈ Zp, is
just fp(x).

The basic outline of our approach to computing the sparsest shift index α is as
follows:

1. Choose a prime p with p ∈ O(BO(1))
2. Use dense (Lagrange) interpolation to compute fp(x)

or determine that f (αp) mod p , fp(αp).
3. Use a dense method to compute the sparsest shift βp of fp(x)

and determine whether βp = αp.
4. Repeat Steps 1 to 3 enough times to recover α

As an example, suppose we are given a modular black box for the following polynomial:

f (x) = x15 − 45x14 + 945x13 − 12285x12 + 110565x11 − 729729x10 + 3648645x9

− 14073345x8 + 42220035x7 − 98513415x6 + 177324145x5 − 241805625x4

+ 241805475x3 − 167403375x2 + 71743725x − 14348421.

In fact, it is easy to see that f (x) = (x − 3)15 − 2(x − 3)5. Now suppose the algorithm
chooses p = 7 in Step 1. We use the black box to find f (1), f (2), . . . , f (6) in Z7, and give
this input to the Lagrange interpolation algorithm to compute

f7(x) = 5x5 + 2x4 + 3x3 + 6x2 + x + 4.

We confirm that f (α7) mod 7 = f7(α7) and therefore that we have computed the correct
f7(x) (as in (2.1)) by checking that f (0) mod 7 = f7(0).

Next, in Step 3, we use a dense sparsest shift computation method to find that f7(x) =
5(x + 4)5 + (x + 4)3. Thus, the sparsest shift index must be congruent to 4 mod 7. In this

∗ For q = a
b ∈ Q and a ∈ Z, b ∈ N, gcd(a, b) = 1, size(q) is dlog2(|a| + 1)e + dlog2(b + 1)e + 1, the number of bits

needed to represent q.

4 Giesbrecht and Roche

case, we know that α = −3, which of course is congruent to 4 modulo 7. We have one
modular image to use in recovering α at Step 4.

The following theorem gives sufficient conditions for success in Steps 2 and 3.

Theorem 2.1. fp(x) is computed correctly and βp = αp whenever the following hold:
• ∀i ∈ {1, 2, . . . , t − 1} s.t. ei , 0, ei . 0 mod (p − 1).
• ct . 0 mod p;
• ∀i ∈ {1, 2, . . . , t − 1}, et . ei mod (p − 1);
• ∀i ∈ {0, 1, . . . , 2t − 1}, et . i mod (p − 1).

Proof. The first condition tells us that the constant coefficient of fp(x) will be the same
as the constant coefficient of f (x) (either it is c1 or 0, depending on whether e1 = 0).
Therefore f (αp) mod p = fp(αp), so fp(x) will be computed correctly.

The second condition guarantees that the last term of fp(x) as in (2.1) does not
vanish. We also know that there is no other term with the same degree from the third
condition. Finally, the fourth condition tells us that the degree of the last term will be at
least 2t − 1.

This means that the degree of fp(x) is at least 2t − 1. Lakshman and Saunders [13]
prove that there can be at most one shift with sparsity at most t. Since αp must be at worst
a t-sparse shift, it is the unique sparsest shift, and therefore βp = αp. �

Now define

C = max{e1, 1}
t−1∏
i=2

ei

t−1∏
i=1

(et − ei)
2t−2∏
i=0

(et − i).

Step 3 succeeds whenever p - ct and (p − 1) - C. Of course, ct and C are unknown, but
we do have ct < 2B and C < 24B2

.
Additionally, we know the numerator and denominator of α are both bounded by

2B, so we need a total of 2B + 1 “good” primes to recover both of them and the sign.
Also notice that if deg f (x) < 2t − 1, then

∏
i<2t−1(et − i) = 0, so Theorem 2.1 will

never hold. But this case is easy to discard, as here deg(f) ≤ 2B, so we can just use dense
interpolation modulo a single “big” prime and recover the sparsest shift directly.

2.1. A Deterministic Algorithm For The Sparsest Shift
For the deterministic algorithm, we choose primes p from a pre-constructed set P. This
set is computed by first finding the first k primes q1, q2, . . . , qk, where k ∈ O(B2 log B).
For each qi, let pi be the least prime such that qi | (pi − 1), and set P =

⋃
1≤i≤k{pi}.

We need to show that at least 2B + 1 of the primes pi satisfy the conditions of
Theorem 2.1. For this, we first show that only O(log k) of the pi’s can share any single
value, and therefore the number of distinct pi’s is at least Ω(k/ log k). † We can see that
only O(B) of the primes in P can divide ct, and O(B2) of the qi’s can divide C. Thus the
rest satisfy the conditions of Theorem 2.1; we choose k just large enough so that there are
at least 2B + 1 such pi’s.

†We use the normal notation for the asymptotic behaviour functionΩ, namely f (n) ∈ Ω(g(n)) iff g(n) ∈ O(f (n)).

Shifted-Lacunary Interpolation [Extended Abstract] 5

Step 2 involves first computing a candidate fp(x) by dense interpolation on the points
f (θ) mod p for θ = 1, 2, . . . , p − 1, then checking that f (0) mod p = fp(0) to confirm that
fp(x) was computed correctly. Note that we can also detect Step 3 failures at this stage,
namely when deg fp(x) < 2B − 1.

For Step 3, we use the algorithm UniSparsestShifts<symbolic> from [7], which
has worst-case complexity O(p2 log p M(p5)). ‡

These steps will be repeated at most k times, which again is O(B2). But since we
detect failures on Step 2, Step 3 will never be executed more than 2B + 1 times. In fact,
this step dominates the complexity, which is O(Bp2 log p M(p5)). Now we need the up-
per bound on the pi’s provided by Linnik’s Theorem, which tells us that, for each qi,
pi ∈ O(q L

i), for some constant L [14]. Current best results give L ≤ 5.5 [10]. Also, the
effective bounds on the prime number theorem given in [16] tell us that the kth prime qk

is O(k log k). Combining these sizes, we have that, for all p ∈ P, p ∈ O(B11(log B)11).

Theorem 2.2. Computing the sparsest shift of a rational polynomial given a modular
black box for evaluation can be performed in output-sensitive polynomial time.

This all leads us to the rather nasty (yet still polynomial!) complexity bound of
O(B23(log B)23 M(B55(log B)55)), or O(B78(log B)24 log log B) if we use the results from
[5]. We do note, however, that the high exponent in the complexity is mostly a result of
the best known bound of 5.5 for Linnik’s constant L. In fact, under the Extended Riemann
Hypothesis (ERH), pi ≤ 2q 2

i (ln qi)2 [2], and it has been conjectured that L = 2 [10].

2.2. Improvements to the Algorithm
The following significant improvements in the algorithm’s complexity are possible by
introducing randomization and accepting some unknown constants.

First, we choose the primes pi via randomization “on the fly” rather than explicitly
pre-computing a set P. For this, first choose a random prime q ∈ O(B2). With high prob-
ability (using [16]), q - C. Next, search for a prime p = kq + 1, initially with 1 < k < q.
After O(log q) failures, search with q < k < q2 and repeat. Next try q2 < k < q4 and so
on, until a prime is found. The bounds on the number primes with µ bits from [8] allow
us to use [17] to prove the density of primes here is just under half the density of primes
in general once k is larger than some unspecified constant, and so the number of primality
tests necessary to find p is expected logarithmic if B is large enough.

We have p ∈ O(B4) and the same argument as before shows that only an expected
O(B2 log B) randomly-chosen p’s are necessary to find 2B + 1 which are “good”.

Step 2 can be performed in exactly the same way, but for Step 3, we can now use a
probabilistic algorithm. The fastest one, from [7], has complexity O(p2 log p M(p2)).

This brings the total cost down to O(B8 log B M(B8)), or O(B16(log B)9 log log B) if
we use [5]. This is probably still not the optimal complexity, but it is certainly much more
manageable than that of the deterministic algorithm above.

‡Here and for the remainder of the document, M(n) refers to the number of operations in Zp needed to compute
the product of two polynomials of degree less than n over Zp[x], for any p. Current best results in [5] give
M(n) ∈ O(n log n log log n).

6 Giesbrecht and Roche

3. Interpolation
Having computed α, we know that f (x + α) has sparsity at most B in the standard power
basis. And this polynomial can be evaluated with our black box and the value of α.

This means we can use the methods of sparse interpolation, in the style of Ben-Or
and Tiwari [3], to compute the coefficients ci and exponents ei of f (x) in the α-shifted
basis. For example, we can employ the randomized algorithm of [11] or deterministic
lifting algorithm of [1], which require black box evaluation modulo a prime power pk.

One of the bottlenecks in Ben-Or/Tiwari over Zp (that is, maintaining prime mod-
ulus) is doing discrete logarithm in Z∗p. Using p = qk s + 1, for some small prime q and
small k and s, we can restrict our discrete logarithm computations to the subgroup of size
qk inside Z∗p. This can be accomplished in polynomial-time using the Pohlig-Hellman Al-
gorithm [15]. A randomized algorithm for constructing such a p is straightforward using
[17] as before, or assuming the ERH, though an unconditional deterministic algorithm is
still elusive.

4. Conclusions and Future Work
Our work here provides the first step towards a general solution to the problem of inter-
polating an unknown polynomial given by its values into the sparsest shifted power basis
in time polynomially-bounded by the size of the output. The main tool we have used is
mapping down modulo small primes where the sparse shift is also mapped nicely. This
technique could be useful for other problems involving lacunary polynomials as well, al-
though it is not clear how it would apply in finite domains where there is no notion of
“size”.

Another obvious avenue for investigation is computing sparsest shift representations
for multivariate polynomials. Of course, all of the sparse interpolation algorithms work
well in the multivariate case, and in fact this is their primary domain of application, but
computing multivariate shifts seems to be more difficult [7]. Nevertheless, the ideas we
present here may shed some new light on this problem.

References
[1] M. Avendano, T. Krick, and A. Pacetti. Newton-hensel interpolation lifting. Foundations of

Computational Mathematics, 6(1):82–120, 2006.
[2] E. Bach and J. Sorenson. Explicit bounds for primes in residue classes. Math. Comput.,

65(216):1717–1735, 1996.
[3] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate poly-

nomial interpolation. In STOC ’88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 301–309, New York, NY, USA, 1988. ACM Press.

[4] Allan Borodin and Prasoon Tiwari. On the decidability of sparse univariate polynomial inter-
polation. Comput. Complexity, 1(1):67–90, 1991.

[5] D. Cantor and E. Kaltofen. Fast multiplication of polynomials over arbitrary algebras. Acta
Informatica, 28:693–701, 1991.

Shifted-Lacunary Interpolation [Extended Abstract] 7

[6] M. Giesbrecht, G. Labahn, and W s. Lee. Symbolic-numeric sparse interpolation of multivari-
ate polynomials. In Proc. ACM International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC), pages 116–123, 2006.

[7] Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee. Algorithms for computing sparsest shifts
of polynomials in power, Chebyshev and Pochhammer bases. J. Symbolic Comput., 36(3-
4):401–424, 2003. International Symposium on Symbolic and Algebraic Computation (IS-
SAC’2002) (Lille).

[8] Mark Giesbrecht and Arne Storjohann. Computing rational forms of integer matrices. J. Sym-
bolic Comput., 34(3):157–172, 2002.

[9] Dima Grigoriev and Marek Karpinski. A zero-test and an interpolation algorithm for the
shifted sparse polynomials. In Applied algebra, algebraic algorithms and error-correcting
codes (San Juan, PR, 1993), volume 673 of Lecture Notes in Comput. Sci., pages 162–169.
Springer, Berlin, 1993.

[10] D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an
arithmetic progression. Proc. London Math. Soc. (3), 64(2):265–338, 1992.

[11] E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular rational sparse multivariate polyno-
mial interpolation. In ISSAC ’90: Proceedings of the international symposium on Symbolic
and algebraic computation, pages 135–139, New York, NY, USA, 1990. ACM.

[12] Erich Kaltofen and Wen-shin Lee. Early termination in sparse interpolation algorithms. J. Sym-
bolic Comput., 36(3-4):365–400, 2003. International Symposium on Symbolic and Algebraic
Computation (ISSAC’2002) (Lille).

[13] Y. N. Lakshman and B. David Saunders. Sparse shifts for univariate polynomials. Appl. Alge-
bra Engrg. Comm. Comput., 7(5):351–364, 1996.

[14] U. V. Linnik. On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math.
[Mat. Sbornik] N.S., 15(57):139–178, 1944.

[15] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over GF(p) and
its cryptographic significance. IEEE Trans. Information Theory, 24, 1978.

[16] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois J. Math., 6:64–94, 1962.

[17] Bruno Rousselet. Inégalités de type Brun-Titchmarsh en moyenne. In Groupe de travail en
théorie analytique et élémentaire des nombres, 1986–1987, volume 88 of Publ. Math. Orsay,
pages 91–123. Univ. Paris XI, Orsay, 1988.

Mark Giesbrecht
School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
e-mail: mwg@uwaterloo.ca

Daniel S. Roche
School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
e-mail: droche@cs.uwaterloo.ca

	1. Introduction
	2. Computing the Sparsest Shift
	2.1. A Deterministic Algorithm For The Sparsest Shift
	2.2. Improvements to the Algorithm

	3. Interpolation
	4. Conclusions and Future Work
	References

