
OPTIMIZATION TECHNIQUES FOR SMALL MATRIX
MULTIPLICATION

Charles Éric Drevet†, Md. Nazrul Islam⋆ and Éric Schost⋆

†École Polytechnique, Palaiseau, France
⋆Ontario Research Centre for Computer Algebra, The University of Western Ontario, London, Canada

Overview

Our goal: improving the number of multiplications for small matrix

product, by combining previous results in an optimal manner.

Why?

• small matrices with large entries: evaluation of holonomic func-

tions, Padé Hermite, Hensel lifting for polynomial systems

• actual complexity still poorly understood

Base cases (over a non-commutative ring)

dimension author # multiplications

(2 × 2 × 2)
Strassen (1969)

Winograd (1971)
7

(3 × 3 × 3) Laderman (1976) 23

(5 × 5 × 5) Makarov (1987) 100

(a × 2 × c) Hopcroft-Kerr (1971) (3ac + max(a, c))/2

(a × b × c)

(b × c × a)

pair of products

Pan (1984)
abc + ab + bc + ac

(a × a × a)

a even

trilinear aggregating (TA)

Pan (1982, 84); (⋆) is new

(a3 + 12a2 + 11a)/3 (⋆)

(a3 + 11.25a2 + 32a + 27)/3

(a × a × a)

a odd

slight improvement

on Pan’s results
(a3 + 15a2 + 14a − 6)/3

Base cases (over a commutative ring)

dimension author # multiplications

(3 × 3 × 3) Makarov (1986) 22

(a × b × c)

b even
Waksman (1970) b(ac + a + c − 1)/2

(a × b × c)

b odd
Waksman (1970) (b − 1)(ac + a + c − 1)/2 + ac

Previous work

•Probert and Fischer (1980): square sizes up to 40.

•Smith (2002): rectangular sizes up to (28 × 28 × 28)

•Mezzarobba (2007): commutative case, square sizes up to 28.

Improved Padding

Main idea: When using algorithms recursively, peeling and padding

techniques are used. We can avoid some useless products by ex-

ploiting “sparsity” (of the algorithm).

Example: To multiply two square matrices A, B of size 3 with

Strassen’s algorithm, we pad them in size 4, and subdivide as

Ã1,1 =

a1,1 a1,2

a2,1 a2,2

 , Ã1,2 =

a1,3 0

a2,3 0

 , Ã2,1 =

a3,1 a3,2

0 0

 , Ã2,2 =

a3,3 0

0 0

The 7 recursive products are

γ1 = Ã2,2(B̃2,1 − B̃1,1) γ2 = (Ã2,1 − Ã1,1)(B̃1,1 + B̃1,2) . . .

and the product C̃ = ÃB̃ is

C̃1,1 = γ1 + γ6 + γ7 − γ4 C̃1,2 = γ5 + γ4

C̃2,1 = γ1 + γ3 C̃2,2 = γ5 − γ3 + γ2 + γ7.

Naive remark: Ã2,2 has one row and one column full of zeros,

so 2 multiplications suffice for γ1.

Less naive: γ2 is used only to compute C̃2,2, and C̃2,2 has only

one non-zero term, so 2 multiplications suffice.

Total: 25 products.

To make this automatic: describe an algorithm by three sequences

of matrices. For Strassen’s algorithm, we get

linear combination

of A’s entries

linear combination

of B’s entries

where it is

used in C

γ1 :

0 0

0 1

−1 0

1 0

1 1

0 0

γ2 :

Exploiting the zeros in these matrices, we can reduce the sizes of
recursive calls.

Building a table

We start from a database of algorithms

•Strassen, Winograd, Laderman, . . .

•Winograd2, obtained by applying a symmetry of Winograd

•mul211, mul121 and mul112, which describe product in sizes

(2 × 1 × 1), (1 × 2 × 1), (1 × 1 × 2)

Then, for a given size:

• try all algorithms, various subdivision schemes

• for a given algorithm, and a given subdivision, determine the

size of the recursive calls, and look up their cost

• other techniques: pairing products, TA, . . .

Implementation: proof-of-concept, few optimizations

•based on GMP (integers) and NTL (polynomials)

• commutative base rings: Z, Fp[x]

•non-commutative base rings: differential operations and linear

recurrences with polynomial coefficients

Results

commutative non commutative

dim. # mul. algorithm previous # mul. algorithm previous

9 472 mul121 473 522 mul121 527

11 825 mul121 831 923 Strassen 992

13 1318 mul121 1333 1450 Strassen 1580

14 1525 mul121 1561 1728 Strassen 1743

15 1941 mul121 2003 2108 Winograd2 2300

18 3060 Hopcroft 3231 3306 TA 3342

20 4158 Strassen 4165 4340 TA 4380

21 4938 Strassen 5261 5365 Strassen 5610

22 5440 mul121 5610 5566 TA 5610

23 6382 Hopcroft 6843 6806 TA 7048

24 6900 Hopcroft 6909 7000 TA 7048

25 8083 mul121 8710 8448 TA 8710

26 8658 TA 8710 8658 TA 8710

27 9994 mul121 10612 10330 TA 10612

28 10556 TA 10612 10556 TA 10612

Timings with polynomials of degree 100 over F9001 as entries:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

T
im

e
 i

n
 S

e
c
o
n
d
s

Dimension

Table

Naive

TA

Waksman

Timings with differential operators of order 10, with polynomial

coefficients of degree 10 over F9001 as entries:

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30

T
im

e
 i

n
 S

e
c
o

n
d

s

Dimension

Table

Naive

TA

