

Our goal: improving the number of multiplications for small matrix product, by combining previous results in an optimal manner.

Why?

- small matrices with large entries: evaluation of holonomic functions, Padé Hermite, Hensel lifting for polynomial systems
- actual complexity still poorly understood

Base cases (over a non-commutative ring)

dimension	limension author	
$(2 \times 2 \times 2)$	Strassen (1969)	
	Winograd (1971)	
$(3 \times 3 \times 3)$	Laderman (1976)	
$(5 \times 5 \times 5)$	Makarov (1987)	1
$(a \times 2 \times c)$	Hopcroft-Kerr (1971)	(3ac + max)
$(a \times b \times c)$	pair of products	abc + ab
$(b \times c \times a)$	Pan (1984)	uoc + uo
$(a \times a \times a)$	trilinear aggregating (TA)	
a even	Pan (1982, 84); (\star) is new	$(a^3 + 11.25a^2)$
$(a \times a \times a)$	slight improvement	$(a^3 + 15a^2 -$
a odd	on Pan's results	(u 10u

Base cases (over a commutative ring)

dimension	author	# multiplication
$(3 \times 3 \times 3)$	Makarov (1986)	22
$ \begin{array}{c} (a \times b \times c) \\ b \text{ even} \end{array} $	Waksman (1970)	b(ac+a+c-1)
$ \begin{array}{c} (a \times b \times c) \\ b \text{ odd} \end{array} $	Waksman (1970)	(b-1)(ac+a+c-1)

Previous work

- Probert and Fischer (1980): square sizes up to 40.
- Smith (2002): rectangular sizes up to $(28 \times 28 \times 28)$
- Mezzarobba (2007): commutative case, square sizes up to 28.

Improved Padding

Main idea: When using algorithms recursively, peeling and padding techniques are used. We can avoid some useless products by exploiting "sparsity" (of the algorithm).

OPTIMIZATION TECHNIQUES FOR SMALL MATRIX MULTIPLICATION

Charles Éric Drevet[†], Md. Nazrul Islam^{*} and Éric Schost^{*} [†]École Polytechnique, Palaiseau, France *Ontario Research Centre for Computer Algebra, The University of Western Ontario, London, Canada

iplications

23 100

 $\max(a,c))/2$

+bc+ac

(11a)/3 (*) +32a+27)/3

+14a-6)/3

lons 1)/2

1)/2 + ac

Example: To multiply two square matrices A, B of size 3 with Strassen's algorithm, we pad them in size 4, and subdivide as

 $\tilde{A}_{1,1} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}, \tilde{A}_{1,2} = \begin{bmatrix} a_{1,3} & 0 \\ a_{2,3} & 0 \end{bmatrix}, \tilde{A}_{2,1} = \begin{bmatrix} a_{1,2} & 0 \\ a_{2,3} & 0 \end{bmatrix}$ The 7 recursive products are $\gamma_1 = \tilde{A}_{2,2}(\tilde{B}_{2,1} - \tilde{B}_{1,1}) \quad \gamma_2 = (\tilde{A}_{2,1} - \tilde{A}_{1,1})(\tilde{B}_{1,1} + \tilde{B}_{1,2}) \quad \dots$

and the product $\tilde{C} = \tilde{A}\tilde{B}$ is

 $\begin{bmatrix} \tilde{C}_{1,1} = \gamma_1 + \gamma_6 + \gamma_7 - \gamma_4 & \tilde{C}_{1,2} = \gamma_5 + \gamma_4 \\ \tilde{C}_{2,1} = \gamma_1 + \gamma_3 & \tilde{C}_{2,2} = \gamma_5 - \gamma_3 + \gamma_2 + \gamma_7. \end{bmatrix}$ **Naive remark:** $\tilde{A}_{2,2}$ has one row and one column full of zeros,

so 2 multiplications suffice for γ_1 .

Less naive: γ_2 is used only to compute $\tilde{C}_{2,2}$, and $\tilde{C}_{2,2}$ has only one non-zero term, so 2 multiplications suffice. Total: 25 products.

To make this automatic: describe an algorithm by three sequences of matrices. For Strassen's algorithm, we get

/ li	near combination \rangle	(linear con
	of A 's entries \int	$\int of B's$
γ_1 :	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$
$\gamma_2:$	• • •	• •

Exploiting the zeros in these matrices, we can reduce the sizes of recursive calls.

Building a table

We start from a database of algorithms

- Strassen, Winograd, Laderman, ...
- Winograd2, obtained by applying a symmetry of Winograd
- •mul211, mul121 and mul112, which describe product in sizes
- $(2 \times 1 \times 1), (1 \times 2 \times 1), (1 \times 1 \times 2)$

Then, for a given size:

- try all algorithms, various subdivision schemes
- for a given algorithm, and a given subdivision, determine the
- size of the recursive calls, and look up their cost
- other techniques: pairing products, TA, ...

Implementation: proof-of-concept, few optimizations

- based on GMP (integers) and NTL (polynomials)
- commutative base rings: \mathbb{Z} , $\mathbb{F}_p[x]$
- non-commutative base rings: differential operations and linear recurrences with polynomial coefficients

$a_{3,1}$	$a_{3,2}$	$, ilde{A}_{2,2}=$	$a_{3,3} \\ 0$	0
0	0	$, A_{2,2} =$	0	0

mbination ' where it is entries used in C $\left(\right)$ 0 0

• • •

	Results					
	commutative		non commutative			
dim.	# mul.	algorithm	previous	# mul.	algorithm	previous
9	472	mul121	473	522	mul121	527
11	825	mul121	831	923	Strassen	992
13	1318	mul121	1333	1450	Strassen	1580
14	1525	mul121	1561	1728	Strassen	1743
15	1941	mul121	2003	2108	Winograd2	2300
18	3060	Hopcroft	3231	3306	TA	3342
20	4158	Strassen	4165	4340	TA	4380
21	4938	Strassen	5261	5365	Strassen	5610
22	5440	mul121	5610	5566	TA	5610
23	6382	Hopcroft	6843	6806	TA	7048
24	6900	Hopcroft	6909	7000	TA	7048
25	8083	mul121	8710	8448	TA	8710
26	8658	TA	8710	8658	TA	8710
27	9994	mul121	10612	10330	TA	10612
28	10556	TA	10612	10556	TA	10612

Timings with differential operators of order 10, with polynomial coefficients of degree 10 over \mathbb{F}_{9001} as entries:

Timings with polynomials of degree 100 over \mathbb{F}_{9001} as entries: