OPTIMIZATION TECHNIQUES FOR SMALL MATRIX
${ }^{\dagger}$ École Polytechnique, Palaiseau, France

Overview

Our goal: improving the number of multiplications for small matrix product, by combining previous results in an optimal manner.

Why?

- small matrices with large entries: evaluation of holonomic functions, Padé Hermite, Hensel lifting for polynomial systems
- actual complexity still poorly understood

Base cases (over a non-commutative ring)

dimension	author	\# multiplications
$(2 \times 2 \times 2)$	Strassen (1969)	7
$(3 \times 3 \times 3)$	Winograd (1971)	23
$(5 \times 5 \times 5)$	Makaron (1976)	100
$(a \times 2 \times c)$	Hopcroft-Kerr (1971)	$(3 a c+\max (a, c)) / 2$
$(a \times b \times c)$	pair of products	$a b c+a b+b c+a c$
$(b \times c \times a)$	Pan (1984)	$\left(a^{3}+12 a^{2}+11 a\right) / 3(\star)$
$(a \times a \times a)$	trilinear aggregating (TA)	
a even	Pan (1982, 84); (\star) is new	$\left(a^{3}+11.25 a^{2}+32 a+27\right) / 3$
$(a \times a \times a)$	slight improvement	$\left(a^{3}+15 a^{2}+14 a-6\right) / 3$
a odd	on Pan's results	

Base cases (over a commutative ring)

dimension	author	\# multiplications
$(3 \times 3 \times 3)$	Makarov (1986)	22
$(a \times b \times c)$ b even	Waksman (1970)	$b(a c+a+c-1) / 2$
$(a \times b \times c)$ b odd	Waksman (1970)	$(b-1)(a c+a+c-1) / 2+a c$

Previous work

- Probert and Fischer (1980): square sizes up to 40
- Smith (2002): rectangular sizes up to $(28 \times 28 \times 28)$
- Mezzarobba (2007): commutative case, square sizes up to 28 .

Improved Padding

Main idea: When using algorithms recursively, peeling and padding techniques are used. We can avoid some useless products by exploiting "sparsity" (of the algorithm).

Example: To multiply two square matrices A, B of size 3 with Strassen's algorithm, we pad them in size 4, and subdivide as
$\tilde{A}_{1,1}=\left[\begin{array}{ll}a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2}\end{array}\right], \tilde{A}_{1,2}=\left[\begin{array}{ll}a_{1,3} & 0 \\ a_{2,3} & 0\end{array}\right], \tilde{A}_{2,1}=\left[\begin{array}{cc}a_{3,1} & a_{3,2} \\ 0 & 0\end{array}\right], \tilde{A}_{2,2}=\left[\begin{array}{cc}a_{3,3} & 0 \\ 0 & 0\end{array}\right]$ The 7 recursive products are

$$
\gamma_{1}=\tilde{A}_{2,2}\left(\tilde{B}_{2,1}-\tilde{B}_{1,1}\right) \quad \gamma_{2}=\left(\tilde{A}_{2,1}-\tilde{A}_{1,1}\right)\left(\tilde{B}_{1,1}+\tilde{B}_{1,2}\right)
$$

and the product $\tilde{C}=\tilde{A} \tilde{B}$ is

$$
\left[\begin{array}{cc}
\tilde{C}_{1,1}=\gamma_{1}+\gamma_{6}+\gamma_{7}-\gamma_{4} & \tilde{C}_{1,2}=\gamma_{5}+\gamma_{4} \\
\tilde{C}_{2,1}=\gamma_{1}+\gamma_{3} & \tilde{C}_{2,2}=\gamma_{5}-\gamma_{3}+\gamma_{2}+\gamma_{7}
\end{array}\right]
$$

Naive remark: $\tilde{A}_{2,2}$ has one row and one column full of zeros, so 2 multiplications suffice for γ_{1}
Less naive: γ_{2} is used only to compute $\tilde{C}_{2,2}$, and $\tilde{C}_{2,2}$ has only one non-zero term, so 2 multiplications suffice.
Total: 25 products.
To make this automatic: describe an algorithm by three sequences of matrices. For Strassen's algorithm, we get

| $\binom{$ linear combination }{ of A 's entries } | $\left.\begin{array}{c}\text { linear combination } \\ \text { of } B \text { 's entries }\end{array}\right)$ |
| :---: | :---: | | $\binom{$ where it is }{ used in $C}$ |
| :---: |
| $\gamma_{1}:$ |
| $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ |\(\quad\left[\begin{array}{cc}-1 \& 0

1 \& 0\end{array}\right] \quad\left[$$
\begin{array}{ll}1 & 0\end{array}
$$\right]\)
γ_{2} :
Exploiting the zeros in these matrices, we can reduce the sizes of recursive calls.

Building a table

We start from a database of algorithms

- Strassen, Winograd, Laderman,
- Winograd2, obtained by applying a symmetry of Winograd
- mul211, mul121 and mul112, which describe product in sizes $(2 \times 1 \times 1),(1 \times 2 \times 1),(1 \times 1 \times 2)$

Then, for a given size:

- try all algorithms, various subdivision schemes
- for a given algorithm, and a given subdivision, determine the size of the recursive calls, and look up their cost
- other techniques: pairing products, TA,

Implementation: proof-of-concept, few optimizations

- based on GMP (integers) and NTL (polynomials)
- commutative base rings: $\mathbb{Z}, \mathbb{F}_{p}[x]$
- non-commutative base rings: differential operations and linear recurrences with polynomial coefficients

Results

| | commutative | | | non commutative | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dim. | \# mul. | algorithm | previous | \# mul. | algorithm | previous |
| 9 | $\mathbf{4 7 2}$ | mul121 | 473 | $\mathbf{5 2 2}$ | mul121 | 527 |
| 11 | $\mathbf{8 2 5}$ | mul121 | 831 | $\mathbf{9 2 3}$ | Strassen | 992 |
| 13 | $\mathbf{1 3 1 8}$ | mul121 | 1333 | $\mathbf{1 4 5 0}$ | Strassen | 1580 |
| 14 | $\mathbf{1 5 2 5}$ | mul121 | 1561 | $\mathbf{1 7 2 8}$ | Strassen | 1743 |
| 15 | $\mathbf{1 9 4 1}$ | mul121 | 2003 | $\mathbf{2 1 0 8}$ | Winograd2 | 2300 |
| 18 | $\mathbf{3 0 6 0}$ | Hopcroft | 3231 | $\mathbf{3 3 0 6}$ | TA | 3342 |
| 20 | $\mathbf{4 1 5 8}$ | Strassen | 4165 | $\mathbf{4 3 4 0}$ | TA | 4380 |
| 21 | $\mathbf{4 9 3 8}$ | Strassen | 5261 | $\mathbf{5 3 6 5}$ | Strassen | 5610 |
| 22 | $\mathbf{5 4 4 0}$ | mul121 | 5610 | $\mathbf{5 5 6 6}$ | TA | 5610 |
| 23 | $\mathbf{6 3 8 2}$ | Hopcroft | 6843 | $\mathbf{6 8 0 6}$ | TA | 7048 |
| 24 | $\mathbf{6 9 0 0}$ | Hopcroft | 6909 | $\mathbf{7 0 0 0}$ | TA | 7048 |
| 25 | $\mathbf{8 0 8 3}$ | mul121 | 8710 | $\mathbf{8 4 4 8}$ | TA | 8710 |
| 26 | $\mathbf{8 6 5 8}$ | TA | 8710 | $\mathbf{8 6 5 8}$ | TA | 8710 |
| 27 | $\mathbf{9 9 9 4}$ | mul121 | 10612 | $\mathbf{1 0 3 3 0}$ | TA | 10612 |
| 28 | $\mathbf{1 0 5 5 6}$ | TA | 10612 | $\mathbf{1 0 5 5 6}$ | TA | 10612 |

Timings with polynomials of degree 100 over \mathbb{F}_{9001} as entries

Timings with differential operators of order 10, with polynomial coefficients of degree 10 over \mathbb{F}_{9001} as entries:

