# The exponential growth of lattice paths.

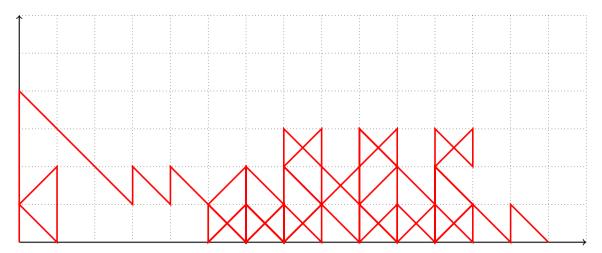
Samuel Johnson, Marni Mishna Department of Mathematics

# Introduction

A lattice path model is a combinatorial class defined by a **region** and a direction set  $\mathfrak{S} \subseteq \{0, 1, -1\} \times \{0, 1, -1\}.$ 

eg.  $\mathcal{Q}_{\lambda}$  = the set of walks in the first quadrant with steps from  $\mathfrak{S} = \{(0,1), (1,-1), (-1,-1)\}.$ 

An element of  $\mathcal{Q}_{\lambda}$  with 100 steps:



Let  $q_{\mathfrak{S}}(n)$  be the # of walks of length n in the first quadrant. Typically

 $q_{\mathfrak{S}}(n) \sim \kappa \beta^n n^{\alpha}, \quad \kappa \in \mathbb{R}^+, \alpha \leq 0.$ 

**Goal:** Given model  $Q_{\mathfrak{S}}$ , find  $\beta_{\mathfrak{S}}$ .

### This is the exponential growth factor. We write $q_{\mathfrak{S}} \Join \beta$ .

# Motivation

- In statistical mechanical applications, the exponential growth is the **limiting free energy**, linked to the entropy of the system.
- Although we can estimate  $\beta$  with series computations, we prefer an approach that is **direct**, systematic and combinatorial.
- Experimentally we see that the **drift**

eg. 
$$\delta(\mathbf{x}) = \mathbf{x}$$

is key. We would like to explain the link in detail.

History

- Full plane: Trivial, factor is always  $\beta_{\mathfrak{S}} = |\mathfrak{S}|$ .
- Half plane: Drift dependent, fully explicit results based on singularity analysis of Banderier and Flajolet [1].
- Quarter plane: Experimental results from series analysis are known [2], as well as several enumerative strategies. A few sporadic cases are solved [3].

# Conjectured values of Bostan and Kauers

 $\kappa$ 

 $\frac{\sqrt{5}}{2\sqrt{2}\sqrt{\pi}}$ 

 $5\sqrt{95}\pi$ 

 $\sqrt{8}(1+\sqrt{2})$ 

 $\frac{\frac{3\sqrt{3}}{2\sqrt{\pi}}}{\frac{3\sqrt{3}}{\sqrt{2}\Gamma(\frac{1}{4})}}$ 

 $\sqrt{6(376+156\sqrt{6})}$ 

For 23 models with vertical drift, Bostan and Kauers found the following asymptotic expressions in [2].

|     | $\mathfrak{S}$ | $\delta$ | $\kappa$                                                 | lpha           | $eta_{\mathfrak{S}}$ | $\mathfrak{S}$ | $\delta$ |
|-----|----------------|----------|----------------------------------------------------------|----------------|----------------------|----------------|----------|
|     |                | •        | <u>4</u>                                                 | -1             | 4                    | $\times$       | •        |
|     | *              | •        | $\frac{\pi}{\sqrt{6}}$                                   | -1             | 6                    | *              | •        |
|     | Y              | 1        | $\frac{\sqrt{3}}{\sqrt{\pi}}$                            | $-\frac{1}{2}$ | 3                    | ¥              | 1        |
|     | Ψ              | 1        | $\frac{4}{3\sqrt{\pi}}$                                  | $-\frac{1}{2}$ | 4                    | ¥              | 1        |
|     | *              | 1        | $\frac{\sqrt{5}}{3\sqrt{2}\sqrt{\pi}}$                   | $-\frac{1}{2}$ | 5                    | *              | 1        |
|     | +              | t        | $\frac{12\sqrt{3}}{\pi}$                                 | -2             | $2\sqrt{3}$          | *              | t        |
| ) - | ×              | t        | $\frac{12\sqrt{30}}{\pi}$                                | -2             | $2\sqrt{6}$          | ✷              | t        |
|     |                | t        | $\frac{24\sqrt{2}}{\pi}$                                 | -2             | $2\sqrt{2}$          | +              | ↓<br>↓   |
|     | 4              | •        | $\frac{24\sqrt{2}}{\pi}$ $\frac{3\sqrt{3}}{2\sqrt{\pi}}$ | $-\frac{3}{2}$ | $2\sqrt{2}$          | *              | •        |
|     | 1              |          | 2,/2                                                     | 2              |                      |                |          |

Table 1: Parameters for  $q_{\mathfrak{S}}(n)$  for all non-isomorphic quarter plane classes with zero or vertical drift.

# Proving the hypotheses

 $\frac{2\sqrt{2}}{\Gamma(\frac{1}{4})}$ 

 $\frac{\sqrt{2}3^{\frac{3}{4}}}{\Gamma(\frac{1}{4})}$ 

- 1. The growth of 1/4-plane models is **bounded above** by 1/2-plane models.
- 2. Explicit **lower bounds** are computed by reducing to 11 base cases using the following lemma.

Lemma: Let 
$$d(j)$$
 be the number of Dyck  
et  $w(i) \sim \kappa \beta^i i^{\alpha}$ , where  $\alpha \leq 0, \kappa, \beta \in \mathbb{R}^+$   
 $w'(n) = \sum_{i \geq 0} \binom{n}{i} w(i) \bowtie (\beta + w''(n)) = \sum_{i \geq 0} \binom{n}{i} w(i) d(n-i)$ 

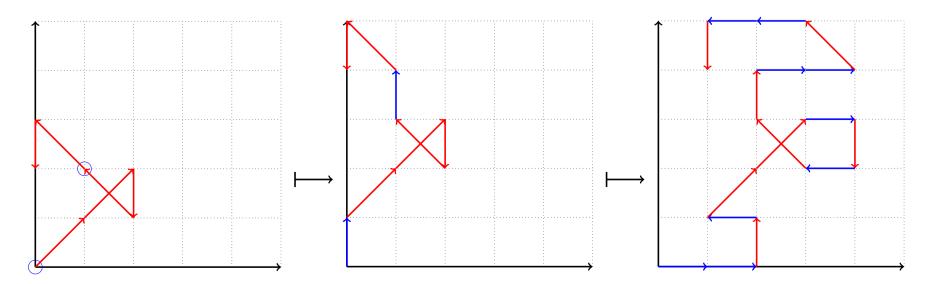
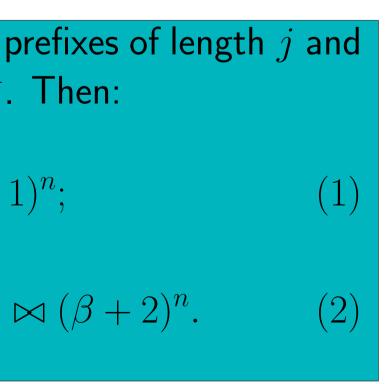


Figure 1: The number of ways of **inserting a single step not toward any boundary** is given by Equation (1) (first mapping), and Equation (2) gives the number of ways of **inserting a Dyck** prefix on a pair of steps with drift away from any boundary (second mapping).



|                             | $\alpha$                      | $eta_{\mathfrak{S}}$        |
|-----------------------------|-------------------------------|-----------------------------|
|                             | -1                            | 4                           |
|                             | -1                            | 8                           |
|                             |                               | 5                           |
|                             | $-\frac{1}{2}$ $-\frac{1}{2}$ | 6                           |
|                             | $-\frac{1}{2}$                | 7                           |
|                             | $\left -2\right $             | $2(1+\sqrt{3})$             |
| $(+\sqrt{6})^{\frac{7}{2}}$ | $\left -2\right $             | $2(1+\sqrt{6})$             |
| 72                          | $\left -2\right $             | $2(1+\sqrt{2})$             |
|                             | $-\frac{3}{2}$                | 6                           |
|                             | $\left  -\frac{3}{4} \right $ | $2(1 + \sqrt{2})$<br>6<br>3 |
|                             | -2                            | 4                           |
|                             |                               |                             |



# Examples

We apply the methodology to a pair of examples. The first is a base case.

- **Proposition 1:**  $q_{\perp}(n) \bowtie 2_{\mathbf{v}}$ 1. Upper bound given by 1 2. Lower bound found by c
- count is a product of Cata (since  $C_n \bowtie 4$ )

### The second uses our lemma

**Proposition 2:**  $q_{\pm}(n) \bowtie 2($ 1. Upper bound given by 1lim –

result of Proposition 1, giving

# Perspective

- Unified approach reduce the amount of case analysis.
- Generalise:
- 1. More interesting drift:  $\delta(\cdot)$
- 2. Bigger steps  $^{-}$
- 3. Higer dimensional lattices
- tions for 1/4 plane models, à la [1].

# References

[1] C. Banderier and P. Flajolet, *Basic analytic combinatorics of directed lattice paths*, Theoretical Computer Science, 2002.

[2] A. Bostan and M. Kauers, Automatic classification of restricted lattice walks, Discrete Mathematics and Theoretical Computer Science, 2009.

[3] M. Bousquet-Mélou, M. Mishna, Walks with small steps in the quarter plane, Contemporary Mathematics, Volume 520, 2010.

# THINKING OF THE WORLD

72.  
72 plane model  

$$\log q_{\lambda}(n) \leq \log 2\sqrt{2}.$$
  
ounting walks returning to the origin. The  
annumbers  $q_{\lambda}(0,0;4n) = C_{2n}C_n$ , giving  
 $\sqrt{2} \leq \lim \frac{1}{n} \log q_{\lambda}(n).$   
to import a lower bound.  
 $1 + \sqrt{2}.$   
72 plane model  
 $\log q_{\lambda}(n) \leq \log 2(1 + \sqrt{2}).$ 

**Lower bound** found by applying Equation (2) of the Lemma to the

 $\log 2(1+\sqrt{2}) \le \lim \frac{1}{-1} \log q_{+}(n).$ 

$$\checkmark) = \checkmark$$

• Understand the underlying singular behaviour of generating func-