Almost-linear time algorithms for triangular sets
Xavier Dahan*, Marc Moreno Maza ${ }^{\dagger}$, Adrien Poteaux•, Éric Schost ${ }^{\dagger}$
\dagger : ORCCA, University of Western $\begin{gathered}\text { : } \\ \text { Ontario, London, Canada. }\end{gathered}$

Background

Triangular set: polynomials in $\mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ with a triangular structure

$$
\mathbf{T} \left\lvert\, \begin{aligned}
& T_{n}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
& T_{1}\left(X_{1}\right) .
\end{aligned}\right.
$$

T_{i} is monic in X_{i} and reduced modulo $\left\langle T_{1}, \ldots, T_{i-1}\right\rangle$. Here, \mathbb{F} is a perfect field, and all ideals will be radical

Triangular decomposition of an ideal I : a family of triangular sets $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(s)}$ with

$$
I=\left\langle\mathbf{T}^{(1)}\right\rangle \cap \cdots \cap\left\langle\mathbf{T}^{(s)}\right\rangle
$$

and, for all $i \neq j$,

$$
\left\langle\mathbf{T}^{(i)}\right\rangle+\left\langle\mathbf{T}^{(j)}\right\rangle=\langle 1\rangle .
$$

Non unique, in general.
Equiprojectable decomposition: a canonical triangular decomposition. Splits according to the cardinality of fibers of projections.

Complexity measure: δ
\bullet for a single $\mathbf{T}, \delta=\operatorname{deg}\left(T_{1}, X_{1}\right) \cdots \operatorname{deg}\left(T_{n}, X_{n}\right)$
\bullet for a triangular decomposition, $\delta=\delta\left(\mathbf{T}^{(1)}\right)+\cdots+\delta\left(\mathbf{T}^{(s)}\right)$.

Previous work

- Triangular sets:
- Wu, Kalkbrener, Lazard, Aubry, Moreno Maza, etc.
- Equiprojectable decomposition:
- Aubry, Valibouze (2000)
- Dahan, Moreno Maza, Schost, Wu, Xie (2005)

Our Problems

Multiplication

- given \mathbf{T} and polynomials A, B reduced modulo \mathbf{T}, compute $A B$ modulo \mathbf{T}

Quasi-inverse

- given \mathbf{T} and A reduced modulo \mathbf{T}, return
- the equiprojectable decomposition $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(r)}$ of $\langle\mathbf{T}, A\rangle$ (where A vanishes)
-the equiprojectable decomposition $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(s)}$ of $\langle\mathbf{T}\rangle$ A^{∞} (where A is invertible), and the inverse of A modulo each $\mathbf{T}^{(i)}$

Change of order

- given \mathbf{T} and a target variable order $<^{\prime}$
- return the equiprojectable decomposition $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(s)}$ of $\langle\mathbf{T}\rangle$ for the order $<^{\prime}$
- for A reduced modulo $\langle\mathbf{T}\rangle$, compute the image of A modulo each $\mathbf{T}^{(j)}$, and conversely.

Equiprojectable decomposition

- given a triangular decomposition $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(r)}$ of an ideal I - return its equiprojectable decomposition $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(s)}$ - for $A=\left(A_{1}, \ldots, A_{r}\right)$, with A_{i} reduced modulo $\left\langle\mathbf{T}^{(i)}\right\rangle$, compute the image of A modulo each $\mathbf{T}^{(j)}$, and conversely.

Previous work

Multiplication:

- Li, Moreno Maza, Schost (2009)

Quasi-inverse:

- Dahan, Moreno Maza, Schost, Xie (2006)

Change of order:

- Boulier, Lemaire, Moreno Maza (2001)
- Pascal, Schost (2006)

Main results

Theorem 1 For any $\varepsilon>0$, there exists a constant c_{ε} such that over \mathbb{F}_{q}, all previous problems can be solved using an expected $\mathbf{c}_{\varepsilon} \delta^{1+\varepsilon} \log (\mathbf{q}) \log \log (\mathbf{q})^{5}$ bit operations.

Remarks

- cost are in a boolean RAM model
- Las Vegas algorithm (the running time is a random variable).

Discussion

- input and output size are $\delta \log (q)$
- multiplication (previous: $\left.4^{n} \delta \operatorname{poly} \log (\delta)\right)$ and quasi-inverse (previous: $K^{n} \delta \operatorname{polylog}(\delta)$),
- not an improvement w.r.t. previous work if e.g. n is fixed
- better if e.g. $\operatorname{deg}\left(T_{i}, X_{i}\right)$ fixed
- change of order, equiprojectable decomposition:
- first quasi-linear time result

Main ideas: introduce a primitive element, change representation, and solve the problem for univariate polynomials

Previous work

Classical algorithms (subquadratic time)

- Modular composition: Brent, Kung (1978)
- Power projection: Shoup (1994)

Almost linear time

- In small characteristic: Umans (2008)
- Any finite field: Kedlaya-Umans (2008)

