

Background

Triangular set: polynomials in $\mathbb{F}[X_1, \ldots, X_n]$ with a triangular structure

$$\mathbf{T} \begin{vmatrix} T_n(X_1, \dots, X_n) \\ \vdots \\ T_1(X_1). \end{vmatrix}$$

 T_i is monic in X_i and reduced modulo $\langle T_1, \ldots, T_{i-1} \rangle$. Here, \mathbb{F} is a **perfect** field, and all ideals will be **radical**.

Triangular decomposition of an ideal *I*: a family of triangular sets $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(s)}$ with

$$I = \langle \mathbf{T}^{(1)} \rangle \cap \dots \cap \langle \mathbf{T}^{(s)} \rangle$$

and, for all $i \neq j$,

$$\langle \mathbf{T}^{(i)} \rangle + \langle \mathbf{T}^{(j)} \rangle = \langle 1 \rangle.$$

Non unique, in general.

Equiprojectable decomposition: a canonical triangular decomposition. Splits according to the cardinality of fibers of projections.

Complexity measure: δ

- for a single $\mathbf{T}, \, \delta = \deg(T_1, X_1) \cdots \deg(T_n, X_n)$
- for a triangular decomposition, $\delta = \delta(\mathbf{T}^{(1)}) + \cdots + \delta(\mathbf{T}^{(s)})$.

Previous work

• Triangular sets:

-Wu, Kalkbrener, Lazard, Aubry, Moreno Maza, etc.

- Equiprojectable decomposition:
- -Aubry, Valibouze (2000)
- -Dahan, Moreno Maza, Schost, Wu, Xie (2005)

Almost-linear time algorithms for triangular sets

Xavier Dahan^{*}, Marc Moreno Maza[†], Adrien Poteaux[•], Éric Schost[†]

★: .
†: ORCCA, University of Western Ontario, London, Canada. ●: .

Our Problems

Multiplication

• given **T** and polynomials A, B reduced modulo **T**, compute $AB \mod \mathbf{T}$.

Quasi-inverse

- given \mathbf{T} and A reduced modulo \mathbf{T} , return: -the equiprojectable decomposition $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(r)}$ of $\langle \mathbf{T}, A \rangle$ (where A vanishes)
- -the equiprojectable decomposition $\mathbf{T}^{\prime(1)}, \ldots, \mathbf{T}^{\prime(s)}$ of $\langle \mathbf{T} \rangle$: A^{∞} (where A is invertible), and the inverse of A modulo each $\mathbf{T}^{\prime(i)}$.

Change of order

- given \mathbf{T} and a target variable order <': -return the equiprojectable decomposition $\mathbf{T}^{\prime(1)}, \ldots, \mathbf{T}^{\prime(s)}$ of
- $\langle \mathbf{T} \rangle$ for the order <',
- -for A reduced modulo $\langle \mathbf{T} \rangle$, compute the image of A modulo each $\mathbf{T}^{\prime(j)}$, and conversely.

Equiprojectable decomposition

- given a triangular decomposition $\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(r)}$ of an ideal I-return its equiprojectable decomposition $\mathbf{T}^{\prime(1)}, \ldots, \mathbf{T}^{\prime(s)}$ -for $A = (A_1, \ldots, A_r)$, with A_i reduced modulo $\langle \mathbf{T}^{(i)} \rangle$, compute the image of A modulo each $\mathbf{T}^{\prime(j)}$, and conversely.

Previous work

Multiplication:

- Li, Moreno Maza, Schost (2009)
- Quasi-inverse:
- Dahan, Moreno Maza, Schost, Xie (2006)

Change of order:

- Boulier, Lemaire, Moreno Maza (2001)
- Pascal, Schost (2006)

Remarks:

- cost are in a boolean RAM model

Discussion:

- input and output size are $\delta \log(q)$
- (previous: $K^n \delta \operatorname{polylog}(\delta)$), -better if e.g. $\deg(T_i, X_i)$ fixed
- -first quasi-linear time result

Main ideas: introduce a primitive element, change representation, and solve the problem for univariate polynomials

bivariate modular composition and power projection

change of order for bivariate triangular sets

Previous work

- Power projection: Shoup (1994)

Almost linear time

- In small characteristic: Umans (2008)
- Any finite field: Kedlaya-Umans (2008)

Main results

Theorem 1 For any $\varepsilon > 0$, there exists a constant c_{ε} such that over \mathbb{F}_q , all previous problems can be solved using an expected $\mathbf{c}_{\varepsilon} \, \delta^{\mathbf{1}+\varepsilon} \log(\mathbf{q}) \, \log \log(\mathbf{q})^{\mathbf{5}}$ bit operations.

• Las Vegas algorithm (the running time is a random variable).

• multiplication (previous: $4^n \delta \operatorname{polylog}(\delta)$) and quasi-inverse -not an improvement w.r.t. previous work if e.g. n is fixed • change of order, equiprojectable decomposition:

primitive element representation

Classical algorithms (subquadratic time) • Modular composition: Brent, Kung (1978)