How to share a Pizza

Himadri Sekhar Ganguli
Simon Fraser University

February 12, 2007

Imagine O is a fixed point and A moves on the circle with radius R .

Area of the slice swept by $O A=\int \frac{1}{2}(O A)^{2} d \theta$
Sum of the areas of four even number slices :

$$
\begin{aligned}
\int_{0}^{\pi / 4} \frac{1}{2}(O A)^{2} d \theta & +\frac{1}{2}(O B)^{2} d \theta+\frac{1}{2}(O C)^{2} d \theta+\frac{1}{2}(O D)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 4}\left((O A)^{2}+(O B)^{2}+(O C)^{2}+(O D)^{2}\right) d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 4}(A B)^{2}+(C D)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 4} 4 R^{2} d \theta \\
& =\frac{\pi}{2} R^{2}
\end{aligned}
$$

Theorem. In a circle with centre P and radius $R . A C$ and $B D$ are perpendicular to each other. Then $A B^{2}+C D^{2}=4 R^{2}$.

Theorem. In a circle with centre P and radius $R . A C$ and $B D$ are perpendicular to each other. Then $A B^{2}+C D^{2}=4 R^{2}$.

Proof. $\angle A P B+\angle C P D=2(\angle A C B+\angle C A D)=\pi$

Using the Cosine rule we have

$$
\begin{aligned}
& A B^{2}+C D^{2} \\
& =P A^{2}+P B^{2}+2 P A \cdot P B \cos (\angle A P B)+P C^{2}+P D^{2}+2 P C \cdot P D \cos (\angle C P D) \\
& =4 R^{2}
\end{aligned}
$$

