$\begin{array}{c} & \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

Millenium Problem: $P \neq NP$

David Laferrière

March 27, 2007

David Laferrière Millenium Problem: $P \neq NP$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

 $\begin{array}{c} & \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

Computational Complexity

P and NP Complexity Class P Complexity Class NP NP-Complete Examples of NP-Complete Problems

$P \neq NP$? Millenium Problem Possible Answers Consequences of P = NP Solution Current Status

< 注→ < 注→

A ■

 $\begin{array}{c} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

What is an algorithm?

・ロン ・回 と ・ ヨン ・ ヨン

 $\begin{array}{c} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

What is an algorithm?

 a finite set of well-defined instructions designed to solve a type of problem

・ 母 と ・ ヨ と ・ ヨ と

What is an algorithm?

- a finite set of well-defined instructions designed to solve a type of problem
- in general, receives *input* and provides results as a final state called *output*

★ E > < E >

A ■

What is an algorithm?

- a finite set of well-defined instructions designed to solve a type of problem
- in general, receives *input* and provides results as a final state called *output*
- must terminate after a finite number of instructions

▲ 문 ▶ | ▲ 문 ▶

 $\begin{array}{c} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

Example

David Laferrière Millenium Problem: $P \neq NP$

 $\begin{array}{l} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

Example

```
procedure SumFirstN (n: positive integer) begin
    x:=0
    for i:=1 to n do
        x:=x+i
end
```

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

 $\begin{array}{l} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

Example

```
procedure SumFirstN (n: positive integer) begin
    x:=0
    for i:=1 to n do
        x:=x+i
end
```

So SumFirstN(5) would output the integer 15.

イロト イヨト イヨト イヨト

3

 $\begin{array}{c} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

How do we determine complexity?

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Computational Complexity P and NP P \neq NP?

How do we determine complexity?

Is there a way to measure the time required to solve a problem of a given size?

(4回) (1日) (日)

Computational Complexity P and NP P \neq NP?

How do we determine complexity?

- Is there a way to measure the time required to solve a problem of a given size?
- Given two or more algorithms that solve the same problem, can we decide which is faster?

< 注→ < 注→

A ■

 $\begin{array}{l} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

How do we determine complexity?

- Is there a way to measure the time required to solve a problem of a given size?
- Given two or more algorithms that solve the same problem, can we decide which is faster?
- Of course, the answer to both question is "Yes"

▲ 문 ▶ | ▲ 문 ▶

 $\begin{array}{c} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

Time-Complexity Function

David Laferrière Millenium Problem: $P \neq NP$

 $\begin{array}{c} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

Time-Complexity Function

The *time-complexity function* f(n) is the function which tells us the time required by an algorithm to determine an output given an input of length n.

(4回) (4回) (4回)

Time-Complexity Function

The *time-complexity function* f(n) is the function which tells us the time required by an algorithm to determine an output given an input of length n. But how do we relate the time-complexity functions of two different algorithms?

★ 문 ► ★ 문 ►

 $\begin{array}{l} \text{Outline} \\ \text{Computational Complexity} \\ \text{P and NP} \\ \text{P} \neq \text{NP?} \end{array}$

What is time?

David Laferrière Millenium Problem: $P \neq NP$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What is time?

We define f(n) to be the number of operations required to determine an output given an input of length n

(4回) (1日) (日)

What is time?

- We define f(n) to be the number of operations required to determine an output given an input of length n
- Of course, the exact number of steps depends on the computer or the language used

(4回) (1日) (日)

What is time?

- We define f(n) to be the number of operations required to determine an output given an input of length n
- Of course, the exact number of steps depends on the computer or the language used
- Instead we use *big-oh* notation

| 4 回 2 4 U = 2 4 U =

Big-oh notation

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$. We say that g dominates f if there exist constants $m \in \mathbb{R}^+$ and $k \in \mathbb{N}$ such that $|f(n)| \le m|g(n)|$ for all $n \in \mathbb{N}, n \ge k$.

When f is dominated by g, we denote this by $f(n) \in O(g(n))$.

・ 回 と ・ ヨ と ・ ヨ と …

Outline	Complexity Class P
nputational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP$?	Examples of NP-Complete Problems
P and NP P \neq NP?	Examples of NP-Complete Problems

▲□→ ▲圖→ ▲厘→ ▲厘→

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

 Computability of problems was first considered by Church, Turing and Gödel in the 1930's

《문》 《문》

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

- Computability of problems was first considered by Church, Turing and Gödel in the 1930's
- Polynomial-time computation was introduced in the 1960s by Cobham and Edmonds

▲ 문 ▶ | ▲ 문 ▶

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP$?	Examples of NP-Complete Problems

- Computability of problems was first considered by Church, Turing and Gödel in the 1930's
- Polynomial-time computation was introduced in the 1960s by Cobham and Edmonds
- Cook gave the first proof that a problem was NP-complete in 1971

< 注 → < 注 →

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

- Computability of problems was first considered by Church, Turing and Gödel in the 1930's
- Polynomial-time computation was introduced in the 1960s by Cobham and Edmonds
- Cook gave the first proof that a problem was NP-complete in 1971
- Karp in 1972 presented a collection of other NP-complete problems

< 注→ < 注→

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

What is a Problem?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline Computational Complexity	Complexity Class P Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

What is a Problem?

A decision problem Π is a set D_{Π} of instances subject to a question and a subset $Y_{\Pi} \subseteq D_{\Pi}$ of yes-instances.

< ≣ >

Complexity Class P
Complexity Class NP
NP-Complete
Examples of NP-Complete Problems

Ρ

・ロト・(型ト・(型ト・(型ト・(ロト)

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

 P is the class of all decision problems which can be solved by a deterministic Turing machine (DTM) in polynomial time

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

- P is the class of all decision problems which can be solved by a deterministic Turing machine (DTM) in polynomial time
- P is the class of so-called "tractable" problems

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

・ロト・(型ト・(型ト・(型ト・(ロト)

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
P \neq NP?	Examples of NP-Complete Problems

Stands for "non-deterministic polynomial time"

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

- Stands for "non-deterministic polynomial time"
- NP is the complexity class of decision problems that can be solved by a non-deterministic Turing machine (NDTM) in polynomial time

Outline Computational Complexity	Complexity Class P Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

- Stands for "non-deterministic polynomial time"
- NP is the complexity class of decision problems that can be solved by a non-deterministic Turing machine (NDTM) in polynomial time
- NP is equivalently the class of decision problems whose solutions can be verified in polynomial time

 Outline
 Complexity Class P

 Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P \neq NP?
 Examples of NP-Complete Problems

Non-deterministic Algorithm

David Laferrière Millenium Problem: $P \neq NP$
Non-deterministic Algorithm

Composed of two separate stages

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
 - Given a problem, the algorithm guesses a solution

<ロ> (日) (日) (日) (日) (日)

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
 - Given a problem, the algorithm guesses a solution
- Checking Stage

イロト イヨト イヨト イヨト

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
 - Given a problem, the algorithm guesses a solution
- Checking Stage
 - Given the problem and the guess as inputs, checking stage computes deterministically

イロト イヨト イヨト イヨト

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
 - Given a problem, the algorithm guesses a solution
- Checking Stage
 - Given the problem and the guess as inputs, checking stage computes deterministically
 - Returns "yes," returns "no," or does not halt

イロト イヨト イヨト イヨト

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

David Laferrière Millenium Problem: $P \neq NP$

▲御★ ▲注★ ▲注★

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

Let Π_1 and Π_2 be problems.

⊡ ►

★ E ► < E ►</p>

Outline	Complexity Class P
P and NP	NP-Complete
P \neq NP?	Examples of NP-Complete Problems

Let Π_1 and Π_2 be problems. We say that Π_1 reduces to Π_2 if there is a deterministic algorithm which transforms instances $d \in D_{\Pi_1}$ into instances in $c \in D_{\Pi_2}$, such that the answer to d is YES iff the answer to c is YES.

Outline	Complexity Class P
P and NP	NP-Complete
P \neq NP?	Examples of NP-Complete Problems

Let Π_1 and Π_2 be problems. We say that Π_1 reduces to Π_2 if there is a deterministic algorithm which transforms instances $d \in D_{\Pi_1}$ into instances in $c \in D_{\Pi_2}$, such that the answer to d is YES iff the answer to c is YES. Denoted $\Pi_1 \propto \Pi_2$.

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

NP-Complete

・ロン ・四と ・ヨン ・ヨン

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

NP-Complete

A decision problem is NP-Hard if every problem in NP is reducible to it in polynomial time.

< ≣ >

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

NP-Complete

A decision problem is *NP-Hard* if every problem in *NP* is reducible to it in polynomial time.

A decision problem is NP-Complete if it is in NP and it is NP-Hard.

Satisfiability Problem

David Laferrière Millenium Problem: $P \neq NP$

 $\begin{array}{c} \mbox{Outline} & \mbox{Complexity Class P} \\ \mbox{Computational Complexity} & \mbox{Complexity Class NP} \\ \mbox{P and NP} & \mbox{NP-Complete} \\ \mbox{P} \neq \mbox{NP} & \mbox{Examples of NP-Complete Problems} \\ \end{array}$

Satisfiability Problem

• $U = \{u_1, u_2, \dots, u_m\}$ a set of Boolean variables

・ロト ・回ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Outline} & \mbox{Complexity Class P} \\ \mbox{Computational Complexity} & \mbox{Complexity Class NP} \\ \mbox{P and NP} & \mbox{NP-Complete} \\ \mbox{P} \neq \mbox{NP}? & \mbox{Examples of NP-Complete Problems} \end{array}$

Satisfiability Problem

- $U = \{u_1, u_2, \dots, u_m\}$ a set of Boolean variables
- A truth assignment $t: U \rightarrow \{T, F\}$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Satisfiability Problem

- $U = \{u_1, u_2, \dots, u_m\}$ a set of Boolean variables
- A truth assignment $t : U \rightarrow \{T, F\}$
- If $u \in U$, u and \overline{u} are *literals* over U

イロン イヨン イヨン イヨン

Satisfiability Problem

- $U = \{u_1, u_2, \dots, u_m\}$ a set of Boolean variables
- A truth assignment $t : U \rightarrow \{T, F\}$
- If $u \in U$, u and \overline{u} are *literals* over U
- ► A *clause* over *U* is a set of literals over *U*

イロン イヨン イヨン イヨン

Satisfiability Problem

- $U = \{u_1, u_2, \dots, u_m\}$ a set of Boolean variables
- A truth assignment $t: U \rightarrow \{T, F\}$
- If $u \in U$, u and \overline{u} are *literals* over U
- ► A *clause* over *U* is a set of literals over *U*
- A clause is *satisfied* by a truth assignment iff at least one of its members is true under that assignment

イロン イヨン イヨン イヨン

Satisfiability Problem

- $U = \{u_1, u_2, \dots, u_m\}$ a set of Boolean variables
- A truth assignment $t : U \rightarrow \{T, F\}$
- If $u \in U$, u and \overline{u} are *literals* over U
- ► A *clause* over *U* is a set of literals over *U*
- A clause is *satisfied* by a truth assignment iff at least one of its members is true under that assignment
- ► A collection C of clauses over U is satisfiable iff there exists some truth assignment for U that simultaneously satisfies each of the clauses in C

イロト イヨト イヨト イヨト

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP$?	Examples of NP-Complete Problems

Let
$$U = \{u_1, u_2, u_3\}$$
, and let $t(u_1) = T$, $t(u_2) = T$, and let $t(u_3) = F$. Then $\{u_1, u_3\}$ is satisfied by t .

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

Let
$$U = \{u_1, u_2, u_3\}$$
, and let $t(u_1) = T$, $t(u_2) = T$, and let $t(u_3) = F$. Then $\{u_1, u_3\}$ is satisfied by t .
 $C = \{\{u_1, \overline{u}_2\}, \{\overline{u}_1, u_2\}\}$ is satisfiable.

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

Let
$$U = \{u_1, u_2, u_3\}$$
, and let $t(u_1) = T$, $t(u_2) = T$, and let $t(u_3) = F$. Then $\{u_1, u_3\}$ is satisfied by t .
 $C = \{\{u_1, \overline{u}_2\}, \{\overline{u}_1, u_2\}\}$ is satisfiable.
 $C' = \{\{u_1, u_2\}, \{u_1, \overline{u}_2\}, \{\overline{u}_1\}\}$ is not satisfiable.

Satisfiability Problem

David Laferrière Millenium Problem: $P \neq NP$

Satisfiability Problem

INSTANCE:

David Laferrière Millenium Problem: $P \neq NP$

Satisfiability Problem

INSTANCE:

QUESTION:

David Laferrière Millenium Problem: $P \neq NP$

Satisfiability Problem

INSTANCE: A set U of variables and a collection C of clauses over U. QUESTION:

イロト イヨト イヨト イヨト

Satisfiability Problem

INSTANCE: A set U of variables and a collection C of clauses over U. QUESTION: Is there a satisfying truth assignment for C?

イロト イヨト イヨト イヨト

Cook's Theorem

David Laferrière Millenium Problem: $P \neq NP$

・ロト ・回 ト ・ヨト ・ヨト

Cook's Theorem

Theorem (Cook, 1971)

The Satisfiability Problem is NP-Complete.

David Laferrière Millenium Problem: $P \neq NP$

イロン イヨン イヨン イヨン

Cook's Theorem

Theorem (Cook, 1971)

The Satisfiability Problem is NP-Complete.

Proof.

It is easy to see that satisfiability is in NP.

イロト イヨト イヨト イヨト

Cook's Theorem

Theorem (Cook, 1971)

The Satisfiability Problem is NP-Complete.

Proof.

It is easy to see that satisfiability is in NP. The other direction is much more difficult (six pages in Garey and Johnson).

★ E ► < E ►</p>

Traveling Salesman Problem (TSP)

・ロン ・回と ・ヨン・

Traveling Salesman Problem (TSP)

Instance:

・ロン ・回 と ・ ヨ と ・ ヨ と

Traveling Salesman Problem (TSP)

Instance: A finite set $C = \{c_1, c_2, \ldots, c_m\}$ of cities, a distance $d(c_i, c_j) \in \mathbb{Z}^+$ for each pair of cities $c_i, c_j \in C$, and a bound $B \in \mathbb{Z}^+$.

<ロ> (日) (日) (日) (日) (日)
Outline
 Complexity Class P

 Computational Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P \neq NP?
 Examples of NP-Complete Problems

Traveling Salesman Problem (TSP)

Instance: A finite set $C = \{c_1, c_2, \ldots, c_m\}$ of cities, a distance $d(c_i, c_j) \in \mathbb{Z}^+$ for each pair of cities $c_i, c_j \in C$, and a bound $B \in \mathbb{Z}^+$. Question:

<ロ> (日) (日) (日) (日) (日)

3

 Outline
 Complexity Class P

 Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P \neq NP?
 Examples of NP-Complete Problems

Traveling Salesman Problem (TSP)

Instance: A finite set $C = \{c_1, c_2, ..., c_m\}$ of cities, a distance $d(c_i, c_j) \in \mathbb{Z}^+$ for each pair of cities $c_i, c_j \in C$, and a bound $B \in \mathbb{Z}^+$.

Question: Is there a tour of all cities in C having total length no more than B?

・ロト ・回ト ・ヨト ・ヨト

 Outline
 Complexity Class P

 Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P ≠ NP?
 Examples of NP-Complete Problems

Hamiltonian Circuit (HC)

David Laferrière Millenium Problem: $P \neq NP$

 Outline
 Complexity Class P

 Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P ≠ NP?
 Examples of NP-Complete Problems

Hamiltonian Circuit (HC)

Instance:

David Laferrière Millenium Problem: $P \neq NP$

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

 Outline
 Complexity Class P

 Computational Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P \neq NP?
 Examples of NP-Complete Problems

Hamiltonian Circuit (HC)

Instance: A graph G = (V, E) with $V = \{v_1, v_2, \dots, v_m\}$.

David Laferrière Millenium Problem: $P \neq NP$

・ロト ・回ト ・ヨト ・ヨト

 Outline
 Complexity Class P

 Computational Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P \neq NP?
 Examples of NP-Complete Problems

Hamiltonian Circuit (HC)

Instance: A graph G = (V, E) with $V = \{v_1, v_2, \dots, v_m\}$. Question:

David Laferrière Millenium Problem: $P \neq NP$

・ロト ・回ト ・ヨト ・ヨト

 Outline
 Complexity Class P

 Computational Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P ≠ NP?
 Examples of NP-Complete Problems

Hamiltonian Circuit (HC)

Instance: A graph G = (V, E) with $V = \{v_1, v_2, \dots, v_m\}$. Question: Does G contain a Hamiltonian circuit?

イロン イヨン イヨン ・

 $\begin{array}{c} \mbox{Outline} & \mbox{Complexity Class P} \\ \mbox{Computational Complexity} & \mbox{Complexity Class NP} \\ \mbox{P and NP} & \mbox{NP-Complete} \\ \mbox{P} \neq \mbox{NP} & \mbox{Examples of NP-Complete Problems} \\ \end{array}$

Traveling Salesman vs Hamiltonian Circuit

・ロン ・回と ・ヨン・

 $\begin{array}{c} \mbox{Outline} & \mbox{Complexity Class P} \\ \mbox{Computational Complexity} & \mbox{Complexity Class NP} \\ \mbox{P and NP} & \mbox{NP-Complete} \\ \mbox{P} \neq \mbox{NP} & \mbox{Examples of NP-Complete Problems} \\ \end{array}$

Traveling Salesman vs Hamiltonian Circuit Theorem $HC \propto TS$

Traveling Salesman vs Hamiltonian Circuit

Theorem

 $HC \propto TS$

Proof.

First we require a function f that maps each instance of HC to a corresponding instance of TS that satisfies the two properties required of a polynomial reduction.

イロト イヨト イヨト イヨト

 Outline
 Complexity Class P

 Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P \neq NP?
 Examples of NP-Complete Problems

Traveling Salesman vs Hamiltonian Circuit

Theorem

 $HC \propto TS$

Proof.

First we require a function f that maps each instance of HC to a corresponding instance of TS that satisfies the two properties required of a polynomial reduction.

Define *f* as follows: suppose G = (V, E), with |V| = m, is an instance of HC. The corresponding instance of TS has a set *C* of cities that is identical to *V*. For any two cities $v_i, v_j \in C$, we define the inter-city distance $d(v_i, v_j)$ as follows:

$$d(v_i, v_j) = \begin{cases} 1 & \text{if } \{v_i, v_j\} \in E \\ 2 & \text{otherwise.} \end{cases}$$

イロト イヨト イヨト イヨト

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

(ロ) (四) (注) (注) (注) [

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

 Begin with a graph on five vertices.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

- Begin with a graph on five vertices.
- Make HC instance into TSP.

- 17

→ Ξ → < Ξ →</p>

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

 Begin with a graph on five vertices.

< 注→ < 注→

- Make HC instance into TSP.
- ► Weight each edge.

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

► Try to find a cycle of weight ≤ 5.

□ > 《 E > 《 E >

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

► Try to find a cycle of weight ≤ 5.

□ > 《 E > 《 E >

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

► Try to find a cycle of weight ≤ 5.

★聞▶ ★臣▶ ★臣▶

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

► Try to find a cycle of weight ≤ 5.

★聞▶ ★臣▶ ★臣▶

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

► Try to find a cycle of weight ≤ 5.

★聞▶ ★臣▶ ★臣▶

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

► Try to find a cycle of weight ≤ 5.

★聞▶ ★臣▶ ★臣▶

Outline	Complexity Class P
Computational Complexity	Complexity Class NP
P and NP	NP-Complete
$P \neq NP?$	Examples of NP-Complete Problems

► Try to find a cycle of weight ≤ 5.

★聞▶ ★臣▶ ★臣▶

æ

► None exist.

 Outline
 Complexity Class P

 Computational Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P ≠ NP?
 Examples of NP-Complete Problems

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd).

 Outline
 Complexity Class P

 Computational Complexity
 Complexity Class NP

 P and NP
 NP-Complete

 P ≠ NP?
 Examples of NP-Complete Problems

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd). It is easy to see that f can be computed by a polynomial time algorithm.

イロト イヨト イヨト イヨト

 $\begin{array}{c} \mbox{Outline} & \mbox{Complexity Class P} \\ \mbox{Complexity Class NP} & \mbox{Complexity Class NP} \\ \mbox{P and NP} & \mbox{NP-Complete} \\ \mbox{P } \neq \mbox{NP} & \mbox{Examples of NP-Complete Problems} \\ \end{array}$

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd).

It is easy to see that f can be computed by a polynomial time algorithm.

If we have a HC, then we have a tour of weight m.

イロト イヨト イヨト イヨト

 $\begin{array}{c} \mbox{Outline} & \mbox{Complexity Class P} \\ \mbox{Complexity Class NP} & \mbox{Complexity Class NP} \\ \mbox{P and NP} & \mbox{NP-Complete} \\ \mbox{P } \neq \mbox{NP} & \mbox{Examples of NP-Complete Problems} \\ \end{array}$

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd).

It is easy to see that f can be computed by a polynomial time algorithm.

If we have a HC, then we have a tour of weight m.

If we have a tour of weight m, we must have a HC.

★ 문 ► ★ 문 ►

Millenium Problem

David Laferrière Millenium Problem: $P \neq NP$

・ロト ・回 ト ・ヨト ・ヨト

Millenium Problem

Does P = NP?

David Laferrière Millenium Problem: $P \neq NP$

Possible Answers

David Laferrière Millenium Problem: $P \neq NP$

・ロト ・回 ト ・ヨト ・ヨト

Possible Answers

David Laferrière Millenium Problem: $P \neq NP$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Possible Answers

- ► $P \neq NP$
- P = NP via existence proof

David Laferrière Millenium Problem: $P \neq NP$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 $\begin{array}{c} \text{Outline} & \text{Millenium Problem} \\ \text{Computational Complexity} & \text{Possible Answers} \\ P \text{ and NP} & \text{Consequences of } P = NP \text{ Solution} \\ P \neq \text{NP?} & \text{Current Status} \end{array}$

Possible Answers

- ► $P \neq NP$
- P = NP via existence proof
- P = NP via constructive proof

・ロン ・回 と ・ ヨ と ・ ヨ と

Consequences of $P \neq NP$

David Laferrière Millenium Problem: $P \neq NP$

Consequences of $P \neq NP$

Cryptography is safe for now

・ロン ・回と ・ヨン・

Consequences of $P \neq NP$

- Cryptography is safe for now
- The world of computational complexity makes sense

イロト イヨト イヨト イヨト

Consequences of $P \neq NP$

- Cryptography is safe for now
- The world of computational complexity makes sense
- There must exist problems in $NP (P \bigcup NPC)$ [Ladner, 1975]

イロト イヨト イヨト イヨト
Consequences of $P \neq NP$

- Cryptography is safe for now
- The world of computational complexity makes sense
- ▶ There must exist problems in $NP (P \bigcup NPC)$ [Ladner, 1975]

Consequences of P = NP (Existence)

・ロン ・回と ・ヨン・

Consequences of P = NP (Existence)

Interesting result

<ロ> (日) (日) (日) (日) (日)

Consequences of P = NP (Existence)

Interesting result

Millenium Prize

イロト イヨト イヨト イヨト

Consequences of P = NP (Existence)

- Interesting result
- Millenium Prize
- Hunt continues for constructive proof

 $\begin{array}{c} \text{Outline} & \text{Millenium Problem} \\ \text{Computational Complexity} & \text{Possible Answers} \\ \text{P and NP} & \text{Consequences of } P = \textit{NP Solution} \\ \text{P} \neq \text{NP?} & \text{Current Status} \end{array}$

Consequences of P = NP (Constructively)

・ロン ・回と ・ヨン・

Consequences of P = NP (Constructively)

 Depends on practicality of algorithm for reducing NP-complete problems to problems in P

Consequences of P = NP (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n²) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)

Consequences of P = NP (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n²) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)
- Practical algorithm for solving NP-complete problems would fundamentally change mathematics

Consequences of P = NP (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n²) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)
- Practical algorithm for solving NP-complete problems would fundamentally change mathematics
 - Rather than trying to prove results, we would devote our energies to *finding* interesting problems

Consequences of P = NP (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n²) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)
- Practical algorithm for solving NP-complete problems would fundamentally change mathematics
 - Rather than trying to prove results, we would devote our energies to *finding* interesting problems
 - We could potentially solve all the Millenium Problems

Current Status

David Laferrière Millenium Problem: $P \neq NP$

▲□→ ▲圖→ ▲厘→ ▲厘→

Outline	Millenium Problem
Computational Complexity	Possible Answers
P and NP	Consequences of $P = NP$ Solution
$P \neq NP?$	Current Status

Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."

< ≣ >

Outline	Millenium Problem
Computational Complexity	Possible Answers
P and NP	Consequences of $P = NP$ Solution
$P \neq NP$?	Current Status

- Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."
- ► The more we learn, the further we seem from a solution

Outline	Millenium Problem
Computational Complexity	Possible Answers
P and NP	Consequences of $P = NP$ Solution
$P \neq NP$?	Current Status

- Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."
- ▶ The more we learn, the further we seem from a solution
- Razborov and Rudich (1993) showed that, given a certain credible assumption, "natural" proofs cannot solve P = NP

Outline	Millenium Problem
Computational Complexity	Possible Answers
P and NP	Consequences of $P = NP$ Solution
$P \neq NP?$	Current Status

- Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."
- ▶ The more we learn, the further we seem from a solution
- Razborov and Rudich (1993) showed that, given a certain credible assumption, "natural" proofs cannot solve P = NP
- Potential solution is a polynomial-time algorithm which solves an NP-complete problem

Millenium Problem
Possible Answers
Consequences of $P = NP$ Solution
Current Status

Thank You.

・ロ・・(四・・)を注・・(注・・)注