Millenium Problem: $P \neq N P$

David Laferrière

March 27, 2007

Computational Complexity

P and NP
Complexity Class P
Complexity Class NP
NP-Complete
Examples of NP-Complete Problems
$P \neq N P ?$
Millenium Problem
Possible Answers
Consequences of $P=$ NP Solution
Current Status

What is an algorithm?

What is an algorithm?

- a finite set of well-defined instructions designed to solve a type of problem

What is an algorithm?

- a finite set of well-defined instructions designed to solve a type of problem
- in general, receives input and provides results as a final state called output

What is an algorithm?

- a finite set of well-defined instructions designed to solve a type of problem
- in general, receives input and provides results as a final state called output
- must terminate after a finite number of instructions

Example

Example

```
procedure SumFirstN (n: positive integer) begin
    x:=0
    for \(i:=1\) to \(n\) do
        \(\mathrm{x}:=\mathrm{x}+\mathrm{i}\)
end
```


Example

procedure SumFirstN (n: positive integer) begin x:=0
for $i:=1$ to n do $\mathrm{x}:=\mathrm{x}+\mathrm{i}$
end
So SumFirstN(5) would output the integer 15.

How do we determine complexity?

How do we determine complexity?

- Is there a way to measure the time required to solve a problem of a given size?

How do we determine complexity?

- Is there a way to measure the time required to solve a problem of a given size?
- Given two or more algorithms that solve the same problem, can we decide which is faster?

How do we determine complexity?

- Is there a way to measure the time required to solve a problem of a given size?
- Given two or more algorithms that solve the same problem, can we decide which is faster?
- Of course, the answer to both question is "Yes"

Time-Complexity Function

Time-Complexity Function

The time-complexity function $f(n)$ is the function which tells us the time required by an algorithm to determine an output given an input of length n.

Time-Complexity Function

The time-complexity function $f(n)$ is the function which tells us the time required by an algorithm to determine an output given an input of length n.
But how do we relate the time-complexity functions of two different algorithms?

What is time?

What is time?

- We define $f(n)$ to be the number of operations required to determine an output given an input of length n

What is time?

- We define $f(n)$ to be the number of operations required to determine an output given an input of length n
- Of course, the exact number of steps depends on the computer or the language used

What is time?

- We define $f(n)$ to be the number of operations required to determine an output given an input of length n
- Of course, the exact number of steps depends on the computer or the language used
- Instead we use big-oh notation

Big-oh notation

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$. We say that g dominates f if there exist constants $m \in \mathbb{R}^{+}$and $k \in \mathbb{N}$ such that $|f(n)| \leq m|g(n)|$ for all $n \in \mathbb{N}, n \geq k$.
When f is dominated by g, we denote this by $f(n) \in O(g(n))$.

Complexity Class \mathbf{P}
Complexity Class NP
NP-Complete
Examples of NP-Complete Problems

History

History

- Computability of problems was first considered by Church, Turing and Gödel in the 1930's

History

- Computability of problems was first considered by Church, Turing and Gödel in the 1930's
- Polynomial-time computation was introduced in the 1960s by Cobham and Edmonds

History

- Computability of problems was first considered by Church, Turing and Gödel in the 1930's
- Polynomial-time computation was introduced in the 1960s by Cobham and Edmonds
- Cook gave the first proof that a problem was NP-complete in 1971

History

- Computability of problems was first considered by Church, Turing and Gödel in the 1930's
- Polynomial-time computation was introduced in the 1960s by Cobham and Edmonds
- Cook gave the first proof that a problem was NP-complete in 1971
- Karp in 1972 presented a collection of other NP-complete problems

What is a Problem?

What is a Problem?

A decision problem Π is a set D_{Π} of instances subject to a question and a subset $Y_{\Pi} \subseteq D_{\Pi}$ of yes-instances.

Outline
Computational Complexity
$P \neq N P$?

Complexity Class \mathbf{P}
Complexity Class NP
NP-Complete
Examples of NP-Complete Problems

- P is the class of all decision problems which can be solved by a deterministic Turing machine (DTM) in polynomial time
- P is the class of all decision problems which can be solved by a deterministic Turing machine (DTM) in polynomial time
- P is the class of so-called "tractable" problems

Outline

Complexity Class P Complexity Class NP NP-Complete Examples of NP-Complete Problems

NP

NP

- Stands for "non-deterministic polynomial time"

NP

- Stands for "non-deterministic polynomial time"
- NP is the complexity class of decision problems that can be solved by a non-deterministic Turing machine (NDTM) in polynomial time

NP

- Stands for "non-deterministic polynomial time"
- NP is the complexity class of decision problems that can be solved by a non-deterministic Turing machine (NDTM) in polynomial time
- NP is equivalently the class of decision problems whose solutions can be verified in polynomial time

Non-deterministic Algorithm

Non-deterministic Algorithm

- Composed of two separate stages

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
- Given a problem, the algorithm guesses a solution

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
- Given a problem, the algorithm guesses a solution
- Checking Stage

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
- Given a problem, the algorithm guesses a solution
- Checking Stage
- Given the problem and the guess as inputs, checking stage computes deterministically

Non-deterministic Algorithm

- Composed of two separate stages
- Guessing Stage
- Given a problem, the algorithm guesses a solution
- Checking Stage
- Given the problem and the guess as inputs, checking stage computes deterministically
- Returns "yes," returns "no," or does not halt

Reducibility

Reducibility

Let Π_{1} and Π_{2} be problems.

Reducibility

Let Π_{1} and Π_{2} be problems. We say that Π_{1} reduces to Π_{2} if there is a deterministic algorithm which transforms instances $d \in D_{\Pi_{1}}$ into instances in $c \in D_{\Pi_{2}}$, such that the answer to d is YES iff the answer to c is YES.

Reducibility

Let Π_{1} and Π_{2} be problems. We say that Π_{1} reduces to Π_{2} if there is a deterministic algorithm which transforms instances $d \in D_{\Pi_{1}}$ into instances in $c \in D_{\Pi_{2}}$, such that the answer to d is YES iff the answer to c is YES.
Denoted $\Pi_{1} \propto \Pi_{2}$.

NP-Complete

NP-Complete

A decision problem is NP-Hard if every problem in NP is reducible to it in polynomial time.

NP-Complete

A decision problem is NP-Hard if every problem in NP is reducible to it in polynomial time.
A decision problem is NP-Complete if it is in NP and it is NP-Hard.

Satisfiability Problem

Satisfiability Problem

- $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ a set of Boolean variables

Satisfiability Problem

- $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ a set of Boolean variables
- A truth assignment $t: U \rightarrow\{T, F\}$

Satisfiability Problem

- $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ a set of Boolean variables
- A truth assignment $t: U \rightarrow\{T, F\}$
- If $u \in U, u$ and \bar{u} are literals over U

Satisfiability Problem

- $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ a set of Boolean variables
- A truth assignment $t: U \rightarrow\{T, F\}$
- If $u \in U, u$ and \bar{u} are literals over U
- A clause over U is a set of literals over U

Satisfiability Problem

- $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ a set of Boolean variables
- A truth assignment $t: U \rightarrow\{T, F\}$
- If $u \in U, u$ and \bar{u} are literals over U
- A clause over U is a set of literals over U
- A clause is satisfied by a truth assignment iff at least one of its members is true under that assignment

Satisfiability Problem

- $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ a set of Boolean variables
- A truth assignment $t: U \rightarrow\{T, F\}$
- If $u \in U, u$ and \bar{u} are literals over U
- A clause over U is a set of literals over U
- A clause is satisfied by a truth assignment iff at least one of its members is true under that assignment
- A collection C of clauses over U is satisfiable iff there exists some truth assignment for U that simultaneously satisfies each of the clauses in C

Outline

Complexity Class \mathbf{P}

Example

Example

Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$, and let $t\left(u_{1}\right)=T, t\left(u_{2}\right)=T$, and let $t\left(u_{3}\right)=F$. Then $\left\{u_{1}, u_{3}\right\}$ is satisfied by t.

Example

Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$, and let $t\left(u_{1}\right)=T, t\left(u_{2}\right)=T$, and let $t\left(u_{3}\right)=F$. Then $\left\{u_{1}, u_{3}\right\}$ is satisfied by t.
$C=\left\{\left\{u_{1}, \bar{u}_{2}\right\},\left\{\bar{u}_{1}, u_{2}\right\}\right\}$ is satisfiable.

Example

Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$, and let $t\left(u_{1}\right)=T, t\left(u_{2}\right)=T$, and let $t\left(u_{3}\right)=F$. Then $\left\{u_{1}, u_{3}\right\}$ is satisfied by t.
$C=\left\{\left\{u_{1}, \bar{u}_{2}\right\},\left\{\bar{u}_{1}, u_{2}\right\}\right\}$ is satisfiable.
$C^{\prime}=\left\{\left\{u_{1}, u_{2}\right\},\left\{u_{1}, \bar{u}_{2}\right\},\left\{\bar{u}_{1}\right\}\right\}$ is not satisfiable.

Satisfiability Problem

Satisfiability Problem

INSTANCE:

Satisfiability Problem

INSTANCE:

QUESTION:

Satisfiability Problem

INSTANCE: A set U of variables and a collection C of clauses over
U.
QUESTION:

Satisfiability Problem

INSTANCE: A set U of variables and a collection C of clauses over
U.
QUESTION: Is there a satisfying truth assignment for C ?

Cook's Theorem

Cook's Theorem

Theorem (Cook, 1971)
The Satisfiability Problem is NP-Complete.

Cook's Theorem

Theorem (Cook, 1971)
The Satisfiability Problem is NP-Complete.
Proof.
It is easy to see that satisfiability is in NP.

Cook's Theorem

Theorem (Cook, 1971)
The Satisfiability Problem is NP-Complete.
Proof.
It is easy to see that satisfiability is in NP. The other direction is much more difficult (six pages in Garey and Johnson).

Outline

Complexity Class \mathbf{P}

Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP)

Instance:

Traveling Salesman Problem (TSP)

Instance: A finite set $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of cities, a distance $d\left(c_{i}, c_{j}\right) \in \mathbb{Z}^{+}$for each pair of cities $c_{i}, c_{j} \in C$, and a bound $B \in \mathbb{Z}^{+}$.

Traveling Salesman Problem (TSP)

Instance: A finite set $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of cities, a distance $d\left(c_{i}, c_{j}\right) \in \mathbb{Z}^{+}$for each pair of cities $c_{i}, c_{j} \in C$, and a bound $B \in \mathbb{Z}^{+}$.
Question:

Traveling Salesman Problem (TSP)

Instance: A finite set $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of cities, a distance $d\left(c_{i}, c_{j}\right) \in \mathbb{Z}^{+}$for each pair of cities $c_{i}, c_{j} \in C$, and a bound $B \in \mathbb{Z}^{+}$.
Question: Is there a tour of all cities in C having total length no more than B ?

Outline

Hamiltonian Circuit (HC)

Hamiltonian Circuit (HC)

Instance:

Hamiltonian Circuit (HC)

Instance: A graph $G=(V, E)$ with $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.

Hamiltonian Circuit (HC)

Instance: A graph $G=(V, E)$ with $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.
Question:

Hamiltonian Circuit (HC)

Instance: A graph $G=(V, E)$ with $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.
Question: Does G contain a Hamiltonian circuit?

Outline

Traveling Salesman vs Hamiltonian Circuit

Traveling Salesman vs Hamiltonian Circuit

Theorem
$H C \propto T S$

Traveling Salesman vs Hamiltonian Circuit

Theorem
$H C \propto T S$
Proof.
First we require a function f that maps each instance of HC to a corresponding instance of TS that satisfies the two properties required of a polynomial reduction.

Traveling Salesman vs Hamiltonian Circuit

Theorem
$H C \propto T S$
Proof.
First we require a function f that maps each instance of HC to a corresponding instance of TS that satisfies the two properties required of a polynomial reduction.

Define f as follows: suppose $G=(V, E)$, with $|V|=m$, is an instance of HC. The corresponding instance of TS has a set C of cities that is identical to V. For any two cities $v_{i}, v_{j} \in C$, we define the inter-city distance $d\left(v_{i}, v_{j}\right)$ as follows:

$$
d\left(v_{i}, v_{j}\right)=\left\{\begin{array}{rr}
1 & \text { if }\left\{v_{i}, v_{j}\right\} \in E \\
2 & \text { otherwise }
\end{array}\right.
$$

Complexity Class \mathbf{P}
Complexity Class NP
NP-Complete
Examples of NP-Complete Problems

Example

Example

- Begin with a graph on five vertices.

Example

- Begin with a graph on five vertices.
- Make HC instance into TSP.

Example

- Begin with a graph on five vertices.
- Make HC instance into TSP.
- Weight each edge.

Example

- Try to find a cycle of weight ≤ 5.

Example

- Try to find a cycle of weight ≤ 5.

Example

- Try to find a cycle of weight ≤ 5.

Example

- Try to find a cycle of weight ≤ 5.

Example

- Try to find a cycle of weight ≤ 5.

Example

- Try to find a cycle of weight ≤ 5.

Example

- Try to find a cycle of weight ≤ 5.
- None exist.

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd).

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd).
It is easy to see that f can be computed by a polynomial time algorithm.

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd).
It is easy to see that f can be computed by a polynomial time algorithm.
If we have a HC , then we have a tour of weight m.

Traveling Salesman vs Hamiltonian Circuit

Proof (cont'd).
It is easy to see that f can be computed by a polynomial time algorithm.
If we have a HC , then we have a tour of weight m.
If we have a tour of weight m, we must have a HC .

Possible Answers
Consequences of $P=N P$ Solution
Current Status

Millenium Problem

Millenium Problem

Does $P=N P$?

Possible Answers

Possible Answers

- $P \neq N P$

Possible Answers

- $P \neq N P$
- $P=N P$ via existence proof

Possible Answers

- $P \neq N P$
- $P=N P$ via existence proof
- $P=N P$ via constructive proof

Consequences of $P \neq N P$

Consequences of $P \neq N P$

- Cryptography is safe for now

Consequences of $P \neq N P$

- Cryptography is safe for now
- The world of computational complexity makes sense

Consequences of $P \neq N P$

- Cryptography is safe for now
- The world of computational complexity makes sense
- There must exist problems in $N P-(P \bigcup N P C)$ [Ladner, 1975]

Consequences of $P \neq N P$

- Cryptography is safe for now
- The world of computational complexity makes sense
- There must exist problems in $N P-(P \bigcup N P C)$ [Ladner, 1975]

$P \neq N P$?

Consequences of $P=N P$ (Existence)

Consequences of $P=N P$ (Existence)

- Interesting result

Consequences of $P=N P$ (Existence)

- Interesting result
- Millenium Prize

Consequences of $P=N P$ (Existence)

- Interesting result
- Millenium Prize
- Hunt continues for constructive proof

Consequences of $P=N P$ (Constructively)

Consequences of $P=N P$ (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P

Consequences of $P=N P$ (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n^{2}) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)

Consequences of $P=N P$ (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n^{2}) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)
- Practical algorithm for solving NP-complete problems would fundamentally change mathematics

Consequences of $P=N P$ (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n^{2}) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)
- Practical algorithm for solving NP-complete problems would fundamentally change mathematics
- Rather than trying to prove results, we would devote our energies to finding interesting problems

Consequences of $P=N P$ (Constructively)

- Depends on practicality of algorithm for reducing NP-complete problems to problems in P
- If we are able to solve Satisfiability problem in (n^{2}) steps, we can factor a 200 digit number in minutes (devastating DES cryptography)
- Practical algorithm for solving NP-complete problems would fundamentally change mathematics
- Rather than trying to prove results, we would devote our energies to finding interesting problems
- We could potentially solve all the Millenium Problems

Current Status

Current Status

- Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."

Current Status

- Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."
- The more we learn, the further we seem from a solution

Current Status

- Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."
- The more we learn, the further we seem from a solution
- Razborov and Rudich (1993) showed that, given a certain credible assumption, "natural" proofs cannot solve $P=N P$

Current Status

- Devlin calls the P versus NP problem "the one most likely to be solved by an unknown amateur."
- The more we learn, the further we seem from a solution
- Razborov and Rudich (1993) showed that, given a certain credible assumption, "natural" proofs cannot solve $P=N P$
- Potential solution is a polynomial-time algorithm which solves an NP-complete problem

Outline
Computational Complexity
P and NP
$\mathbf{P} \neq \mathbf{N P}$?

Millenium Problem
Possible Answers
Consequences of $P=N P$ Solution
Current Status

Thank You.

