Newman's Proof of PNT

Himadri Sekhar Ganguli Simon Fraser University

March 12, 2007

The Famous Prime Number Theorem

$$
\pi(x) = \sum_{p \le x} 1 \sim \frac{x}{\log x} \qquad as \qquad x \to \infty
$$

was studied already by Legendre and Gauss. However, it took a hundred years before the first proofs appeared, one by Hadamard and one by de la Vallee Poussin (1896).

Technique used in the past :

Weiner's Tauberian theory of Fourier integrals (Ikehara-Weiner Theorem)

Ikehara-Weiner Theorem

Let $f(x)$ be non negative, non decreasing on $[1,\infty)$ and such that the Mellin transform

$$
g_0(s) = \int_1^\infty x^{-s} df(x) = -f(1) + s \int_1^\infty f(x) x^{-s-1} dx
$$

exists for $\Re(s) > 1$. Suppose that for some constant c, the function ($g_0(s) - \frac{c}{s-1}$) has a continuous extension to the closed half plane $\Re(s) \geq 1$. Then

$$
\frac{f(x)}{x} \to c \quad as \quad x \to \infty
$$

D. J. Newman

Outline of Newman's Proof

- 1. Auxiliary Tauberian Theorem (Complex Integration)
- 2. Corollary A Poor Man's Version of Ikehara-Weiner Theorem
- 3. Corollary \Rightarrow Prime Number Theorem

Auxiliary Tauberian theorem

Let $F(t)$ be bounded on $(0,\infty)$ and integrable over every finite subinterval, so that the Laplace transform

$$
G(z) = \int_0^\infty F(t)e^{-zt}dt
$$

is well-defined and analytic throughout the open half-plane $\Re(z)$ > 0. Suppose that $G(z)$ can be continued analytically to a neighborhood of every point on the imaginary axis. Then

$$
\int_0^\infty F(t)dt
$$

exists as an improper intergral (and is equal to $G(0)$)

We want to establish the following :-

Corollary to the auxiliary theorem

Let $f(x)$ be non negative, non decreasing and $O(x)$ on $[1,\infty)$, so that its Mellin transform

$$
g(s) = s \int_1^\infty f(x) x^{-s-1} dx
$$

is well-defined and analytic throughout the half-plane $\Re(s) > 1$. Suppose that for some constant c, the function ($g(s) - \frac{c}{s-1}$) can be continued analytically to a neighbourhood of every point on the line $\Re(s) = 1$. Then

$$
\frac{f(x)}{x} \to c \quad as \quad x \to \infty
$$

9

Corollary \Rightarrow Prime Number theorem

One takes $f(x) = \psi(x)$ where $\psi(x)$ is that well-known function from prime number theory,

$$
\psi(x) = \sum_{p^m \leq x} \log p
$$

It is a simple fact that $\pi(x) = O(\frac{x}{\log x})$ $\frac{x}{\log x}$) or equivalently, $\psi(x) =$ $O(x)$.

Thus $f(x)$ is as the corollary wants it.

What about its Melin transform $g(s)$?

A standard calculation based on the Euler product shows that

$$
g(s)=-\frac{\zeta^{'}(s)}{\zeta(s)},\quad \Re(s)>1
$$

Since $\zeta(s)$ behaves like $\frac{1}{s-1}$ around $s=1$, the same is true for $g(s)$. Hence

 $g(s)-\frac{1}{s-1}$ has an analytic continuation to a neighbourhood of the closed half plane $\Re(s) \geq 1$ The conclusion of the corollary now gives us

$$
\frac{\psi(x)}{x} \to 1 \qquad as \quad x \to \infty
$$

We begin with the necessary facts about the zeta function.

B.1. Analytic continuation of $\zeta(s)$. Simple transformations show that for Re $s > 2$

$$
\zeta(s) = \sum_{1}^{\infty} \frac{n}{n^s} - \sum_{1}^{\infty} \frac{n-1}{n^s} = \sum_{1}^{\infty} \frac{n}{n^s} - \sum_{1}^{\infty} \frac{n}{(n+1)^s} = \sum_{1}^{\infty} n \left(\frac{1}{n^s} - \frac{1}{(n+1)^s} \right) = \sum_{1}^{\infty} n s \int_{1}^{n+1} x^{-s-1} dx = s \sum_{1}^{\infty} \int_{1}^{n+1} [x] x^{-s
$$

where [x] denotes the largest integer $\leq x$. Since first and final member are analytic for Re $s > 1$, the integral formula holds throughout that half-plane.

It is reasonable to compare the integral with

$$
s\int_{1}^{\infty} x \cdot x^{-s-1} dx = \frac{s}{s-1} = 1 + \frac{1}{s-1}.
$$
 (B.2)

Combination of $(B.1)$ and $(B.2)$ gives

×.

$$
\zeta(s) - \frac{1}{s-1} = 1 + s \int_{1}^{\infty} ([x] - x) x^{-s-1} dx.
$$
 (B.3)

The new integral converges and represents an analytic function throughout the half-plane Re $s > 0$. Thus (B.3) provides an analytic continuation of the left-hand side to that half-plane.

B.2. Non-vanishing of $\xi(s)$ for Re $s \ge 1$. The Euler product in (1.2) shows that $\xi(s) \ne 0$ for Re $s > 1$. For Re $s = 1$ we will use Mertens's clever proof of 1898. The key fact is the inequality

 $3 + 4 \cos \theta + \cos 2\theta = 2(1 + \cos \theta)^2 \ge 0$, θ real.

Suppose that $\zeta(1 + ib)$ would be equal to 0, where b is real and $\neq 0$. Then the auxiliary analytic function

$$
\varphi(s) = \zeta^3(s)\zeta^4(s+ib)\zeta(s+2ib)
$$

would have a zero for $s = 1$: the pole of $\zeta^3(s)$ could not cancel the zero of $\zeta^4(s + ib)$. It would follow that

 $\log |\varphi(s)| \rightarrow -\infty$ as $s \rightarrow 1$. $(B.5)$

 $(B.4)$

We now take s real and > 1 . By the Euler product,

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

$$
\log |\xi(s+it)| = -\operatorname{Re} \sum_{p} \log (1 - p^{-s-it}) = \operatorname{Re} \sum_{p} \left\{ p^{-s-it} + \frac{1}{2} (p^2)^{-s-it} + \frac{1}{3} (p^3)^{-s-it} + \dots \right\} = \operatorname{Re} \sum_{p}^{\infty} a_n n^{-s-it} \quad \text{with} \quad a_n \ge 0.
$$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

Thus

$$
\log |\varphi(s)| = \text{Re} \sum_{n=1}^{\infty} a_n n^{-s} (3 + 4n^{-1b} + n^{-2ib}) = \sum_{n=1}^{\infty} a_n n^{-s} \{3 + 4 \cos (b \log n) + \cos (2b \log n)\} \ge 0
$$

 ~ 10

because of (B.4), contradicting (B.5).

B.3. Representations for $\zeta'(s)/\zeta(s)$. Logarithmic differentiation of the Euler product in (1.2) gives

$$
-\frac{\xi'(s)}{\zeta(s)} = \sum_{p=1}^{\infty} \frac{p^{-s}}{p^{-s}} \log p = \sum_{p}^{\infty} (p^{-s} + p^{-2s} + ...) \log p = \sum_{p=1}^{\infty} \Lambda(n) n^{-s},
$$

where $\Lambda(n)$ is the von Mangoldt function,

 \bar{L}

$$
\Lambda(n) = \begin{cases} \log p & \text{if } n = p^m, \\ 0 & \text{if } n \text{ is not a prime power.} \end{cases}
$$

The corresponding partial sum function is equal to $\psi(x)$:

$$
\psi(x) = \sum_{p^m \leq x} \log p = \sum_{n \leq x} \Lambda(n).
$$

Proceeding as in $(B.1)$, the series $(B.6)$ leads to the integral representation

$$
-\frac{\xi'(s)}{\xi(s)}=s\int_{1}^{\infty}\psi(x)x^{-s-1}dx,\quad \text{Re }s>1.
$$

The integral converges and is analytic for Re $s > 1$ since by (B.7), $\psi(x) \le x \log x$.

B.4. Relation between $\psi(x)$ and $\pi(x)$. By (B.7), $\psi(x)$ counts log p (for fixed p) as many times as there are powers $p^m \le x$, hence

$$
\psi(x) = \sum_{p \leq x} \left[\frac{\log x}{\log p} \right] \log p \leq \log x \sum_{p \leq x} 1 = \pi(x) \log x. \tag{B.9}
$$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1$

On the other hand, when $1 < y < x$,

$$
\pi(x) = \pi(y) + \sum_{y < p \leq x} 1 \leq \pi(y) + \sum_{y < p \leq x} \frac{\log p}{\log y} < y + \frac{\psi(x)}{\log y}.
$$

Taking $y = x / \log^2 x$ one thus finds that

$$
\pi(x) \frac{\log x}{x} < \frac{1}{\log x} + \frac{\psi(x)}{x} \frac{\log x}{\log x - 2 \log \log x}.\tag{B.10}
$$

 \mathcal{L}

 ~ 100

Combination of $(B.9)$ and $(B.10)$ shows that

$$
\lim \pi(x) \frac{\log x}{x} = 1 \quad \text{if and only if} \quad \lim \frac{\psi(x)}{x} = 1.
$$

We finally indicate a standard proof of the estimate

 $(B.11)$

We finally indicate a standard proof of the estimate

For positive integral *n*, the binomial coefficient $\binom{2n}{n}$ must be divisible by all primes *p* on $(n, 2n]$. Hence $\prod_{n \le p \le 2n} p \le \binom{2n}{n} < 2^{2n}$, $\psi(x) = 0(x)$.

so that

$$
\sum_{2^{k-1} < p \leqslant 2^k \log p} \leqslant 2^k \log 2
$$

It follows that

$$
\sum_{p \leq 2^k} \log p \leq (2^k + 2^{k-1} + \ldots + 1) \log 2 < 2^{k+1} \log 2
$$

and hence there is a constant C such that

$$
\sum_{p \leq x} \log p \leq Cx.
$$

19 Since the prime powers higher than the first contribute at most a term $0(x^{1/2 + \epsilon})$ to $\psi(x)$, inequality (B.12) follows.

 $(B.12)$