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The Famous Prime Number Theorem
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was studied already by Legendre and Gauss. However, it took a
hundred years before the first proofs appeared, one by
Hadamard and one by de la Vallee Poussin (1896).



Technique used in the past :

Weiner’'s Tauberian theory of Fourier integrals
( Ikehara-Weiner Theorem )



Ikehara-Weiner T heorem

Let f(x) be non negative, non decreasing on [1,c0) and such
that the Mellin transform

go(s) = /loo s (@) = (D +s | @) Lda

exists for ®(s) > 1. Suppose that for some constant ¢ , the
function ( go(s) — =7 ) has a continuous extension to the closed
half plane R(s) > 1. Then
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Outline of Newman’s Proof

1. Auxiliary Tauberian Theorem ( Complex Integration )
2. Corollary - A Poor Man's Version of Ikehara-Weiner T heorem
3. Corollary = Prime Number Theorem



Auxiliary Tauberian theorem

Let F'(t) be bounded on (0,00) and integrable over every finite
subinterval, so that the Laplace transform

G(z) = /O T F()edt

is well-defined and analytic throughout the open half-plane f(z) >
0. Suppose that G(z) can be continued analytically to a neigh-
borhood of every point on the imaginary axis. Then
© @)
/O F(t)dt
exists as an improper intergral ( and is equal to G(0) )









We want to establish the following :-
Corollary to the auxiliary theorem

Let f(xz) be non negative, non decreasing and O(xz) on [1,c0),
so that its Mellin transform

g(s) = s/loof(ac)a:_s_ldac

is well-defined and analytic throughout the half-plane R(s) > 1.
Suppose that for some constant ¢, the function ( g(s) — .55 )
can be continued analytically to a neighbourhood of every point

on the line N(s) = 1. Then

@)

X

as r — OO



Corollary = Prime Number theorem

One takes f(z) = vy (x) where o (x) is that well-known function
from prime number theory,

Y(z) = > logp

p<x

It is a simple fact that n(z) = O(
O(x).
Thus f(x) is as the corollary wants it.

o2 or equivalently, ¢(z) =
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What about its Melin transform g(s)?
A standard calculation based on the Euler product shows that

¢'(s)

(5)’ R(s) > 1

g(s) = —
Since ((s) behaves like ﬁ around s = 1, the same is true for
g(s).Hence
g(s) — S_il has an analytic continuation to a neighbourhood of
the closed half plane ®(s) > 1 The conclusion of the corollary
now gives us
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We begin with the necessary facts about the zeta function.

B.1. Analytic continuation of ¢(s). Simple transformations show that for Re § > 2

aon wn-—l ocn 0o n o 1 1 00 n+1 e wn+l ol
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where (x] denotes the largest integer < x. Since first and final member are analytic for Re s > 1, the integral formula holds throughout that

half-plane.
It is reasonable to compare the integral with
= § l

xS gy s s —
s{xx ¥2 =l — (B.2)
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Combination of (B.1) and (B.2) gives

o]

£(s) ";}i: 1 +sf1([x] - rS=ldy, | ‘ (B.3)

The new integral converges and represents an analytic function throughout the half-plane Re 5> 0. Thus (B.3) provides an analytic con-
tinuation of the left-hand side to that half-plane,
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B.2. Non-vanishing of ¢(s) for Re s > 1. The Euler product in (1.2) shows that ¢(s) # 0 for Re s > 1. For Re = 1 we will use Mertens's
clever proof of 1898. The key fact is the inequality

3+4cos 8 +cos 28 =2(1 +cos 6)2 >0, 0real (B.4)
Suppose that ¢(1 +ib) would be equal to 0, where b is real and # 0. Then the auxiliary analytic function
o(9) = )5 + i)¢(s + 20b)

would have a zero for s = 1: the pole of §3 (5) could not cancel the zero of £*(s + ). It would follow that

log lp(s)i+~-w a5 s-1. (B.5)
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We now take § real and > 1. By the Euler product,

log [¢(s+it)[= -Re Llog (1 - p~$~M=Re 2{0“5‘”+ %- I L % (p3)‘S'it+. . J=Rel ann"s‘it with a,>0.
p p 1

Thus

log lp(s)i =Re ) a3+ dnt0 n“m) =2 ay5{3 + 4 cos (b log n) + cos (2b log n)} >0
1 1

because of (B.4), contradicting (B.5).
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B.3. Representations for ¢'(s)/¢(s). Logarithmic differentiation of the Euler product in (1.2) gives

ogp X(p L )logp=ZamnS

__(Lz
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where A(n) is the von Mangoldt function,

16

(B.6)



log pifn=p™,
Aln) =
0  if nis not a prime power.

The corresponding partial sum function is equal to ¥ (x):

vx)= 2 logp= 2 A
pmﬁx nsXx

Proceeding as in (B.1), the series (B.6) leads to the integral representation

@ =g [ye)x~ " ldx, Res> L.
¢sy 7

The integral converges and is analytic for Re s > 1 since by (B.7), v (x) <€ x log x.
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B.4. Relation between ¢ (x) and n(x). By (B.7), ¥ (x) counts log p (for fixed p) as many times as there are powers p < x, hence

Y= 2

pSX

195__{‘_} logp<logx L 1=n(x)logx.
log p ps<x

On the other hand, when 1 <y <x,

) =1+ X 1<y + 2 135!’.-<y+-"i-(x—).

y<p<x y<p<x logy log y
Taking y = x/log? x one thus finds that

logx< 1 +1,b(x) log x

x logx x logx-2loglogx

m(x)

Combination of (B.9) and (B.10) shows that

log x
i) =1 fadonyf fim e,
X X

We finally indicate a standaxd proof of the estimate

(B.10)

(B.11)
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We finally indicate a standard proof of the estimate

¥ (x) = 0x). (B.12)
For positive integral n, the binomial coefficient ::’:! 'must be divisible by all primes p on (1, 2n]. Hence
I p<|™|<a2n
n<p<2n n
so that

2 log p < 2k log 2.
Zk“1<p<2k

[t follows that

2 logp<F+2 14 41)log2 <2kt jog 2
p-@k

and hence there is a constant C such that

2 logp <Cx.
pSX

Since the prime powers higher than the first contribute at most a term O(xI/ 2 +E) to ¥ (x), inequality (B.12) follows.



