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The Famous Prime Number Theorem

π(x) =
∑
p≤x

1 ∼
x

logx
as x→∞

was studied already by Legendre and Gauss. However, it took a

hundred years before the first proofs appeared, one by

Hadamard and one by de la Vallee Poussin (1896).
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Technique used in the past :

Weiner’s Tauberian theory of Fourier integrals

( Ikehara-Weiner Theorem )
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Ikehara-Weiner Theorem

Let f(x) be non negative, non decreasing on [1,∞) and such

that the Mellin transform

g0(s) =
∫ ∞
1

x−sdf(x) = −f(1) + s
∫ ∞
1

f(x)x−s−1dx

exists for <(s) > 1. Suppose that for some constant c , the

function ( g0(s)− c
s−1 ) has a continuous extension to the closed

half plane <(s) ≥ 1. Then

f(x)

x
→ c as x→∞
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Outline of Newman’s Proof

1. Auxiliary Tauberian Theorem ( Complex Integration )

2. Corollary - A Poor Man’s Version of Ikehara-Weiner Theorem

3. Corollary ⇒ Prime Number Theorem
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Auxiliary Tauberian theorem

Let F (t) be bounded on (0,∞) and integrable over every finite

subinterval, so that the Laplace transform

G(z) =
∫ ∞
0

F (t)e−ztdt

is well-defined and analytic throughout the open half-plane <(z) >

0. Suppose that G(z) can be continued analytically to a neigh-

borhood of every point on the imaginary axis. Then∫ ∞
0

F (t)dt

exists as an improper intergral ( and is equal to G(0) )
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We want to establish the following :-

Corollary to the auxiliary theorem

Let f(x) be non negative, non decreasing and O(x) on [1,∞),
so that its Mellin transform

g(s) = s
∫ ∞
1

f(x)x−s−1dx

is well-defined and analytic throughout the half-plane <(s) > 1.
Suppose that for some constant c , the function ( g(s) − c

s−1 )
can be continued analytically to a neighbourhood of every point
on the line <(s) = 1. Then

f(x)

x
→ c as x→∞
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Corollary ⇒ Prime Number theorem

One takes f(x) = ψ(x) where ψ(x) is that well-known function

from prime number theory,

ψ(x) =
∑
pm≤x

log p

It is a simple fact that π(x) = O( x
logx) or equivalently, ψ(x) =

O(x).

Thus f(x) is as the corollary wants it.
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What about its Melin transform g(s)?

A standard calculation based on the Euler product shows that

g(s) = −
ζ
′
(s)

ζ(s)
, <(s) > 1

Since ζ(s) behaves like 1
s−1 around s = 1, the same is true for

g(s).Hence

g(s) − 1
s−1 has an analytic continuation to a neighbourhood of

the closed half plane <(s) ≥ 1 The conclusion of the corollary

now gives us

ψ(x)

x
→ 1 as x→∞
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