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I work in Computer Algebra or Symbolic Computation. Computer Algebra Systems,
like Magma, Maple, Mathematica, Singular and Sage, are used by scientists and engineers in
industry and academia. They enable many kinds of non-numerical mathematical calculations
to be undertaken. One core facility they provide is computation with polynomials in one or
more variables over various coefficient rings. This is the main area I propose to work in.

I am designing algebraic algorithms and implementing them in Maple and in C. Since
2009, when multi-core computers were becoming mainstream, and Computer Algebra Sys-
tems needed to exploit them, I started to also develop and implement parallel algorithms. I
am using Cilk C for multi-core implementations.

My long term objectives are (1) to build a solid foundation for our Computer Algebra
Systems by designing good algorithms for multivariate polynomial multiplication, division,
GCD, and factorization and (2) to undertake high-performance parallel implementations
of them and make the software available to users and the research community, either by
integrating it into Maple or by making a standalone C/C++ library available on the web.

I propose the following four short-term objectives. Each is central to Computer Al-
gebra and has many applications. Each is suitable for graduate student involvement.

P1. Design and implement a first high-performance polynomial time algorithm for factoring
multivariate polynomials with integer coefficients.

P2. Apply sparse interpolation tools to compute greatest common divisors (GCDs) of mul-
tivariate polynomials with algebraic number and algebraic function coefficients.

P3. Develop and apply sparse interpolation tools to compute the Dixon resultant, which is
used to eliminate variables from systems of polynomial equations.

P4. Build a C++ library for multivariate polynomials that supports modular algorithms, has
tools for sparse polynomial interpolation, and provides multi-core and AVX support.

The main tool connecting research problems P1, P2, P3 and P4 is sparse polynomial
interpolation. Let me review this and explain why it is important.

A polynomial f(x1, . . . , xn) with deg(f, xi) < d may have up to dn terms. We say f is
sparse if it has relatively few terms, less than

√
dn terms say. Let t be the number of terms

of f . The main idea is to interpolate f from values modulo a prime p. We want algorithms
whose complexity depends on the actual number of terms t and not on the possible number
dn. The main reason this is important is that in most applications, polynomials with many
variables are sparse and often very sparse.

Zippel’s probabilistic algorithm from [33] was the first sparse polynomial interpolation
method. It interpolates f using O(ndt) points. The Ben-Or/Tiwari algorithm from [1]
interpolates f using 2t points but it works over Q and one needs to know t.

A mod p version of Ben-Or/Tiwari was first developed by Kaltofen, Lakshman and Wiley
in [16]. A different mod p version of Ben-Or/Tiwari is presented by Murao and Fujise in
[28]. It allows one to use a smaller prime p. In [17], Kaltofen, Lee and Lobo show how to
determine t with high probability using 2t+ 2 points.
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For projects P2 and P3 we need to also interpolate rational functions such as (2t31 −
3t2t3 + t34)/(t

4
1 + t22t

2
3 + t44). Kaltofen and Trager in [15] gave the first sparse rational function

interpolation algorithm. For k parameters, the best result I know of is Cuyt and Lee [4],
which uses a factor of O(k) fewer images than my RATZIP algorithm from [20].

The literature on sparse interpolation algorithms is substantial. See Daniel Roche’s 2018
paper “What we can (and can’t do) with sparse polynomials” in [29], and the practical work
of van der Hoven and Lecerf [11]. But few researchers are applying sparse interpolation to
applications, and, as a tool, it is not getting deployed in Computer Algebra Systems. My
research proposal addresses this. Details of the 4 projects follow.

P1 High-performance multivariate polynomial factorization.

All Computer Algebra Systems basically use Wang’s “variable at a time, degree at a time”
Hensel lifting from [31] to factor multivariate polynomials. At each step one solves a poly-
nomial Diophantine equation using the same “variable at a time, degree at a time” strategy.
This is highly sequential and it can be exponential in the number of variables n. Polynomial
time solutions (see Zippel [34] and Kaltofen [14]) are known but are not practical.

In [25] my PhD student Tuncer and I presented a new polynomial time algorithm which
exploits the structure between the coefficients of the factors we are trying to find. Our im-
plementation beats the implementation of Wang’s algorithm in Maple, Magma and Singular
on a wide range of inputs, so it is practical. What I am even more excited about is that our
structural observation opens the door to a fast parallel design.

Our approach in [25] used sparse interpolation to solve the multivariate Diophantine
equations that arise in Hensel lifting. The new idea I want to develop is to Hensel lift
bivariate images of the factors (in parallel) and interpolate the coefficients of the factors
(in parallel) from these bivariate images. I made a first experiment in Cilk C this Spring
for polynomials with two factors which I presented at ICMS 2018 [26]. I am training my
new PhD student Tian Chen to help me develop this approach to handle multiple factors,
improve the performance, and analyze the failure probability of the algorithm.

This strategy reduces Hensel lifting in Zp[x1, ..., xn] to (i) multi-point polynomial evalu-
ation, (ii) many Hensel lifts in Zp[x1, x2] of modest degree, and (iii) solving Vandermonde
linear systems. In trying to speed (ii) up, I have discovered a beautiful cubic algorithm for
bivariate Hensel lifting in Zp[x1, x2].

To lift two factors of degree n in x and degree m in y, linear and quadratic Hensel lifting
both do O(m2n2) arithmetic operations in Zp if classical quadratic polynomial arithmetic is
used, [2]. My cubic algorithm does O(mn2 + m2n). Although not as fast asymptotically as
fast quadratic Hensel lifting which is linear in mn up to logarithmic factors [7], my C code
for my cubic algorithm is much faster and uses much less space than Magma’s fast quadratic
Hensel lifting up to m=n=10000 which is as far as I could go before Magma exceeded the
memory (64 gigabytes) on my machine.

I have worked out how to make the cubic algorithm also work for Hensel lifting in Z[x1].
But does it handle multiple factors and non-monic factors? If yes, then it could become the
algorithm of choice in practice for factoring polynomials in Z[x1] and Zp[x1, x2]. My Masters’
student Garrett Paluck will continue to investigate this.
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P2 Computing polynomial GCDs over number fields and function fields.

Computer Algebra Systems often have to simplify fractions A/B where A and B are poly-
nomials. To do this they compute and divide out by G = GCD(A,B). GCDs arise in many
other places as well. They are perhaps the most important operation for overall efficiency of
a Computer Algebra System because computing a polynomial GCD is much more expensive
than adding, multiplying and dividing polynomials.

For polynomials with integer coefficients, many Computer Algebra Systems use Zippel’s
sparse GCD algorithm from [33]. For A and B in n + 1 variables x0, x1, . . . , xn, Zippel’s
algorithm interpolates G = GCD(A,B) =

∑d0
i=0 ci(x1, . . . , xn)xi0 using O(t(d1 + · · · + dn))

monic images in x0 where di = deg(G, xi) and t is the maximum number of terms of the ci.
In [12, 13], my PhD student Hu and I designed a new sparse GCD algorithm that needs only
2t + 2 images. It uses a Kronecker substitution on x1, . . . , xn. I want to try this approach
for polynomials with algebraic number and algebraic function coefficients.

Algebraic numbers like
√

3 and algebraic functions like
√

1− t2 arise naturally in geomet-
ric problems and in applications involving polynomial equations. Without a good modular
GCD algorithm, the default Euclidean algorithm will often not terminate.

Given polynomials A,B in K[x1, . . . , xn] where K = Q(α1, ..., αk) is a number field, or a
function field in variables t1, . . . , tr, a basic approach is to compute G = GCD(A,B) modulo
primes, combine them with Chinese remaindering, then use rational number reconstruction.
This approach was developed by Encarnacion [5] for Q(α1)[x1], extended to Q(α1, . . . , αk)[x1]
by van Hoeij and me in [8] and subsequently generalized by us in [9] to the algebraic function
case using dense rational function interpolation.

To compute G modulo p for the number field case (and function field case respectively),
I propose to interpolate the variables (and parameters) in G from monic images of the form

xd1 + Zp[α1, . . . , αk][x1] and xd1 + Zp(t1)[α1, . . . , αk][x1]

respectively. I will try using a Kronecker substitution on x2, . . . , xn and a second Kronecker
substitution on t2, . . . , tr. One technical difficulty is the possibility of hitting a zero divisor
in the finite ring Zp[α1, ..., αk] at some point in the algorithm. This may be due to the choice
of prime, evaluation point or Kronecker substitution.

To bound the probability of hitting a zero divisor we will need degree bounds for G in
xi and tj and integer coefficient bounds for G where G is a factor of A and B. This is likely
difficult for k > 1 thus more suited to PhD students than Masters students. For k > 1 one
approach would be to use a primitive element γ to map the input number field Q(α1, . . . , αk)
into Q(γ) where bounds will be easier to get. Also, because there are three types of variables,
xi, αj and tk, an implementation will be complicated. For this, my Maple package RECDEN

that I developed and used in [8] will be helpful.

P3 Computing the Dixon resultant.

Given a system of polynomial equations in (x1, ..., xn), one way to solve the system is to first
eliminate n− 1 variables to obtain a polynomial R in one variable, say x1. The polynomial
R is called a resultant or eliminant. In many applications there are also parameters y1, ..., yk
present, for example, lengths. So R is a polynomial in k + 1 variables x1, y1, ..., yk.
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There are three general approaches that can be used to eliminate variables: (1) Gröbner
Bases, (2) Triangular Sets, and (3) Determinants. I am interested in the Dixon matrix A.
The determinant of A is called the Dixon resultant. In general, it a multiple of R. Among
the determinant methods, it is preferred because the Dixon matrix A is smaller and the
Dixon resultant has fewer spurious factors – see Kapur and Saxema [19].

In [18], Kapur, Saxema and Lakshman observed that the Dixon resultant is often 0,
thus providing no useful information. They showed that if one picks any submatrix M of
A of maximum rank then R is a factor of D = det(M). They gave an effective method for
computing D and found that this was much faster than computing a Gröbner basis.

In [22, 23, 23], Lewis lists a large number of elimination problems with parameters from
real applications where Gröbner basis engines, including Magma’s and FGb [6], fail. They
typically run out of memory after several hours, whereas computing D = detM takes a
few minutes. I have tried Maple’s Triangularize command from the RegularChains library
which was developed by Moreno Maza et. al. [21, 27]. It computes a Triangular Set. It also
fails on Lewis’ problems.

To compute D = detM , Lewis modified Gaussian elimination to keep track of any factors
of D that appear in the elimination. But working in the fraction field Q(x1, y1, . . . , yk) results
in an expression swell. On some large examples, Lewis had to manually choose a different
minor of A to get his code to terminate.

I propose to use sparse interpolation to directly interpolate D. Actually, Kapur and
Saxena already tried this in [19]. They used Zippel’s sparse interpolation which requires
O(kdt) evaluation points where k is the number of parameters, t is the number of terms in
D and d = deg(D). A direct application of our modified Ben-Or/Tiwari method from [12]
requires only 2t + 2 points, so it should be much faster. However, the root finding in the
sparse interpolation does not parallelize – this is an open problem in Computer Algebra.
Instead, I propose to interpolate D from univariate images in x1 or, alternatively, from
bivariate images in x1, y1. This will likely reduce t, hence reduce the sparse interpolation
cost, and inject some parallelism into the sparse interpolation.

In principle, sparse interpolation techniques can also be applied to approaches (1) Gröbner
Bases and (2) Triangular Sets. For these one would interpolate monic(R) in Q(y1, . . . , yk)[x1]
from monic univariate images in x1. Since the coefficients of monic(R) are in Q(y1, . . . , yn)
this approach requires that we either interpolate rational functions or we scale by a multiple of
the LCM of the denominators of monic(R) so that we can use sparse polynomial interpolation
which is cheaper. One source of such a multiple is the leading coefficient of detM in x1.

When trying to reproduce Lewis’ results, I discovered something very interesting about
the Dixon matrix M . On half of Lewis’ examples, M has a non-trivial block structure, that
is, det(M) = det(B1) det(B2) · · · det(Bm) where the Bk are nontrivial blocks. For example,
one of Lewis’ problems has eight blocks of size 48, 48, 49, 49, 50, 50, 52, 53. Obviously this
makes computing det(M) much easier. Furthermore R is often a factor of each det(Bk).

Why does the Dixon matrix have this block structure? Can we identify the smallest block
B of M with R a factor of detB? How fast can we interpolate detB? Why do Gröbner
bases and Triangular sets fail so badly on Lewis’ problems? Does sparse interpolation “fix”
the failure of Gröbner bases and Triangular set methods?
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P4 A high-performance library for multivariate polynomials.

I propose to develop a C++ library for multivariate polynomials with multi-core and AVX
support. The library will provide tools for sparse polynomial and rational function inter-
polation and other tools needed to implement modular algorithms including a mixed radix
representation for long integers. I will use the 128 bit integer type in the Gnu C compiler
to support 127 bit primes as well as 63 bit primes so that sparse interpolation methods can
handle problems with more variables.

I know of two research groups that are developing software libraries for multivariate
polynomials, both in C++, but with different goals than mine. Moreno Maza [3] and his
students are developing the BPAS (Basic Polynomial Algebra Subroutines) library. It is
aimed at computing Triangular Sets. They use FFT based techniques and CilkPlus for
multicore processors. J. van der Hoven, Lecerf and Mourrain are developing the Mathemagix
library [10]. It is aimed at asymptotically fast methods.

I have designed and implemented in C, algorithms and data structures for multivariate
polynomials. I have been a major contributor of code to the Maple kernel. I plan to continue
to design and implement parallel algorithms for multi-core computers using Cilk C/C++ but
also start using Intel’s SIMD technology AVX. Intel’s newest AVX processor, the AVX-512,
can do eight 64 bit arithmetic operations at a time. Actually, it can do 16 “Fused Multiply
Adds” at a time. How and where do we exploit this?

One bottleneck in project P1 is multi-point polynomial evaluation modulo a prime p.
Given a polynomial A ∈ Zp[x1, x2, . . . , xn] in expanded form with a million terms, we want
to evaluate A(x1, x2, β

j
2, . . . , β

j
n) mod p for j = 1, 2, . . . , 2t+ 2. I have started a collaboration

with Pierre Fortin (Sorbonne, France) to apply AVX technology to this problem.
This project is suitable for students interested in HPC tools and their application.

Impact: The new approach I am using in project P1 will likely lead to a first high-
performance multivariate polynomial factorization code. P2 is a necessary evil. No one is
working on polynomial GCDs with algebraic function field coefficients because it is difficult.
Yet, without a good solution, inputs with many variables will cause Computer Algebra
Systems to fail to terminate. P3 will potentially lead to new fast parallel algorithms for
eliminating variables from polynomial systems with parameters. P4 is something I would
like to do for the research community. Sparse polynomial and rational function interpolation
is complicated; we need a good open source library for it so others can deploy it.

Methodology: As my students and I design algorithms for P1–P3, we will be making
experimental prototype implementations of them. Implementations will enable us to see
design problems clearly and force us to work through details. For this I will use Maple or
Magma because coding in them is much easier than coding in C and C++. Since the algo-
rithms in P1–P3 are probabilistic, we will need to determine worst case failure probabilities.
For this I will use tools from algebra and combinatorics like the Schwartz-Zippel Lemma [30].
For (Cilk) C and C++ implementations, my students can use my own serial C library for
polynomials. We will identify (parallel) bottlenecks in the code and try to speed those up.
This may lead to a new research problem or suggest a change in the algorithm. For Project
P4 I will first build a library of serial codes for sparse polynomial and rational function
interpolation before adding parallel routines and AVX support. We will always benchmark
our software with existing software.
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