Computing minimal polynomials for bifurcation points of the logistic map.

Michael Monagan,
Department of Mathematics, Simon Fraser University.
mmonagan@cecm.sfu.ca

Extended Abstract

Recall that logistic map is the function

\[f(x) = ax(1-x) \]

with parameter \(a \). Consider applying \(f(x) \) to a value \(x_0 \in (0, 1) \) to generate the sequence \(x_1, x_2, x_3, \ldots \) where

\[x_1 = f(x_0), \; x_2 = f(f(x_0)), \ldots, \; x_k = f(x_{k-1}) = f^k(x_0). \]

It is known that this sequence converges to a one-cycle for \(1 < a < 3 \). For \(3 < a < 1 + \sqrt{6} \), the sequence converges to a two-cycle, and beyond this there is a stable 4-cycle. Thus there are bifurcations at \(a = 3 \) and \(a = 1 + \sqrt{6} \). Beyond \(a = 1 + \sqrt{6} \), a period-doubling bifurcation sequence occurs, that is, we find a stable 4-cycle, then 8-cycle, 16-cycle, etc.

Let \(B_n \) denote the bifurcation point between the stable cycles of periods \(n \) and \(2n \). Many numerical methods (we will describe one in the talk that uses automatic differentiation) have been developed to compute the \(B_n \). It turns out that the \(B_n \) are algebraic numbers and so we may speak of their minimal polynomials \(M_n(a) \). The first few bifurcation points and their minimal polynomials are given in the table below.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(B_n)</th>
<th>(M_n(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>(a - 3)</td>
</tr>
<tr>
<td>2</td>
<td>1 + \sqrt{6}</td>
<td>(a^2 - 2a - 5)</td>
</tr>
<tr>
<td>4</td>
<td>3.498561699</td>
<td>(a^{12} - 12a^{11} + 48a^{10} - 40a^9 - 192a^8 + 384a^7 + 64a^6 - 1024a^4 - 512a^3 + 2048a^2 + 4096)</td>
</tr>
</tbody>
</table>
The next bifurcation point is $B_8 = 3.564407266$. Computing $M_8(a)$ is not easy. The polynomial $M_8(a)$ has degree 240 and 73 digit integer coefficients. Computing $M_{16}(a)$ is MUCH harder. The polynomial $M_{16}(a)$ has degree just under 2^{16} and its integer coefficients have length 2^{16} bits. That is, the total size of $M_{16}(a)$ is 2^{32} bits or about half a Gigabyte. We’d like to set computing $M_{16}(a)$ as a computational challenge. It may well be that computing $M_{16}(a)$ is just not possible. As steps towards this challenge, we propose to compute the minimal polynomials $M_9(a)$, $M_{10}(a)$, $M_{11}(a)$, ... for the bifurcation points between the n-cycles and $2n$-cycles for $n = 9, 10, 11, ..., 15$ and, finally $n = 16$. Since the degree of $M_n(a)$ is approximately 2^n and the size of its coefficients are approximately 2^n bits, increasing n by 1 quadruples the size of $M(a)$.

In this talk we consider three methods for computing $M_n(a)$. The first is described by Bailey et. al. in their paper “Ten Problems in Experimental Mathematics” – see [1]. In outline, one first approximates B_n to high precision using a numerical method. Next, assuming that the degree of $M_n(a)$ is known to be less than N, one applies Ferguson’s PSLQ algorithm to search for a integer relation between the decimal numbers $1, B_n, B_{2n}, ..., B_{Nn}$. This gives the coefficients of $M_n(a)$. Bailey et. al. used this method to determine $M_8(a)$. It required that B_8 be computed to over 10,000 digits of precision. The numerical precision needed for B_n is a little more than $\deg(M_n) \log_{10} ||M_n||_\infty$ decimal digits, that is, about the size of $M_n(a)$.

In [2], Kotsirias and Karamanos describe a method for computing $M_n(a)$ which is purely algebraic. It does not compute B_n, but rather uses Groebner bases to do an elimination to compute $M_n(a)$. We illustrate the method for $n = 2$. The 2-cycle of the logistic map can be defined by the equations.

$$
x_2 = ax_1(1 - x_1), \ x_3 = ax_2(1 - x_2) \text{ and } x_3 = x_1.
$$

The bifurcation occurs when the stability of the map is ± 1. This occurs when $[f(f(x))]' = +1$. From this one obtains $a^2(1 - 2x_1)(1 - 2x_2) = -1$. One constructs the ideal

$$I = \langle x_2 - ax_1(1 - x_1), x_1 - ax_2(1 - x_2), a^2(1 - 2x_1)(1 - 2x_2) + 1 \rangle$$

in $\mathbb{Q}[a, x_1, x_2]$ and computes generators for

$$I \cap \mathbb{Q}[a]$$

using Groebner bases. Since $I \cap \mathbb{Q}[a]$ is a principal ideal, $M_2(a)$ is a factor of a generator of $I \cap \mathbb{Q}[a]$. The authors reported in [2] that it took 5 and a half hours in Magma to compute $M_8(a)$ using this method.
We will present a third method that is semi-numerical. In principle, $M_n(a)$ can be found using resultants to eliminate x from a factor of $f^{(n)}(x) - x$ and the polynomial $[f^{(n)}(x)]_1^n + 1$. For $n = 2$ one obtains the polynomial

$$a^6 \left(a^2 - 2a - 5\right)^2$$

which is not equal to $M_2(a)$. In general the resultant we obtain is of the form $a^{L_n} M_n(a)^{D_n}$ where L_n is approximately 2^{2n} and $D_n = n$. The very large factor a^{L_n} is a problem for the modular resultant algorithm of Collins which interpolates $M_n(a)$ modulo a sequence of primes. In [3], we modified Collins’ modular resultant algorithm to automatically detects the high low degree L_n in such a way that the number of interpolation points used is $O(D_n \deg M_n(a))$ instead of $O(L_n D_n \deg M_n(a))$.

In current work we have refined the method so that it reconstructs the square-free part of the resultant to save a factor of D_n. We also now have an exact formula for L_n which avoids the need to bound L_n. Using our new algorithm we can compute $M_8(a)$ in under 2 minutes on a desktop computer – a single core AMD Opteron running at 2.4 GHz. To compute $M_n(a)$, the new algorithm is $O(N^2 \log N)$ where $N = 2^{2n}$ is the size of $M_n(a)$. Thus it takes approximately 16 times longer to compute $M_{n+1}(a)$ than $M_n(a)$. Hence, we estimate that it would take $2 \times 16^8 = 8,589,934,592$ minutes to compute $M_{16}(a)$ – which is clearly not feasible.

In the talk I will describe in more detail our modular algorithm. The algorithm is embarrassingly parallel so this is one way to try to speed it up. I will present the results we have computed so far for the sequence of minimal polynomials $M_9(a)$, $M_{10}(a)$, $M_{11}(a)$, … . One of the interesting aspects of the algorithm is that it uses automatic differentiation.

References

