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Extended Abstract

Recall that logistic map is the function

f(x) = ax(1− x)

with parameter a. Consider applying f(x) to a value x0 ∈ (0, 1) to generate
the sequence x1, x2, x3, ... where

x1 = f(x0), x2 = f(f(x0)), ..., xk = f(xk−1) = f (k)(x0).

It is known that this sequence converges to a one-cycle for 1 < a < 3. For
3 < a < 1+

√
6, the sequence converges to a two-cycle, and beyond this there

is a stable 4-cycle. Thus there are bifurcations at a = 3 and a = 1 +
√

6.
Beyond a = 1 +

√
6, a period-doubling bifurcation sequence occurs, that is,

we find a stable 4-cycle, then 8-cycle, 16-cycle, etc.
Let Bn denote the bifurcation point between the stable cycles of periods

n and 2n. Many numerical methods (we will describe one in the talk that
uses automatic differentiation) have been developed to compute the Bn.
It turns out that the Bn are algebraic numbers and so we may speak of
their minimal polynomials Mn(a). The first few bifurcation points and their
minimal polynomials are given in the table below.

n Bn Mn(a)
1 3 a− 3
2 1 +

√
6 a2 − 2a− 5

4 3.498561699 a12 − 12 a11 + 48 a10 − 40 a9 − 192 a8 + 384 a7

+64 a6 − 1024 a4 − 512 a3 + 2048 a2 + 4096
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The next bifurcation point is B8 = 3.564407266. Computing M8(a) is not
easy. The polynomial M8(a) has degree 240 and 73 digit integer coefficients.
Computing M16(a) is MUCH harder. The polynomial M16(a) has degree
just under 216 and its integer coefficients have length 216 bits. That is, the
total size of M16(a) is 232 bits or about half a Gigabyte. We’d like to set com-
puting M16(a) as a computational challenge. It may well be that computing
M16(a) is just not possible. As steps towards this challenge, we propose to
compute the minimal polynomials M9(a),M10(a),M11(a), ... for the bifurca-
tion points between the n-cycles and 2n-cycles for n = 9, 10, 11, ..., 15 and,
finally n = 16. Since the degree of Mn(a) is approximately 2n and the size
of its coefficients are approximately 2n bits, increasing n by 1 quadruples
the size of M(a).

In this talk we consider three methods for computing Mn(a). The first
is described by Bailey et. al. in their paper “Ten Problems in Experimental
Mathematics” – see [1]. In outline, one first approximates Bn to high pre-
cision using a numerical method. Next, assuming that the degree of Mn(a)
is known to be less than N , one applies Ferguson’s PSLQ algorithm to
search for a integer relation between the decimal numbers 1, Bn, B2

n, ..., BN
n .

This gives the coefficients of Mn(a). Bailey et. al. used this method to
determine M8(a). It required that B8 be computed to over 10,000 digits
of precision. The numerical precision needed for Bn is a little more than
deg(Mn) log10 ||Mn||∞ decimal digits, that is, about the size of Mn(a).

In [2], Kotsirias and Karamanos describe a method for computing Mn(a)
which is purely algebraic. It does not compute Bn, but rather uses Groebner
bases to do an elimination to compute Mn(a). We illustrate the method for
n = 2. The 2-cycle of the logistic map can be defined by the equations.

x2 = ax1(1− x1), x3 = ax2(1− x2) and x3 = x1.

The bifurcation occurs when the stability of the map is ±1. This occurs
when [f(f(x))]′ = +1. From this one obtains a2(1 − 2x1)(1 − 2x2) = −1.
One constructs the ideal

I = 〈x2 − ax1(1− x1), x1 − ax2(1− x2), a2(1− 2x1)(1− 2x2) + 1〉

in Q[a, x1, x2] and computes generators for

I ∩Q[a]

using Groebner bases. Since I ∩ Q[a] is a principal ideal, M2(a) is a factor
of a generator of I ∩Q[a]. The authors reported in [2] that it took 5 and a
half hours in Magma to compute M8(a) using this method.
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We will present a third method that is semi-numerical. In principle,
Mn(a) can be found using resultants to eliminate x from a factor of f (n)(x)−
x and the polynomial [f (n)(x)]′ + 1. For n = 2 one obtains the polynomial

a6
(
a2 − 2 a− 5

)2

which is not equal to M2(a). In general the resultant we obtain is of the
form aLnMn(a)Dn where Ln is approximately 22n and Dn = n. The very
large factor aLn is a problem for the modular resultant algorithm of Collins
which interpolates Mn(a) modulo a sequence of primes. In [3], we modified
Collins’ modular resultant algorithm to automatically detects the high low
degree Ln in such a way that the number of interpolation points used is
O(Dn deg Mn(a)) instead of O(LnDn deg Mn(a)).

In current work we have refined the method so that it reconstructs the
square-free part of the resultant to save a factor of Dn. We also now have
an exact formula for Ln which avoids the need to bound Ln. Using our new
algorithm we can compute M8(a) in under 2 minutes on a desktop computer
– a single core AMD Opteron running at 2.4 GHz. To compute Mn(a), the
new algorithm is O(N2 log N) where N = 22n is the size of Mn(a). Thus
it takes approximately 16 times longer to compute Mn+1(a) than Mn(a).
Hence, we estimate that it would take 2× 168 = 8, 589, 934, 592 minutes to
compute M16(a) – which is clearly not feasible.

In the talk I will describe in more detail our modular algorithm. The
algorithm is embarassingly parallel so this is one way to try to speed it up. I
will present the results we have computed so far for the sequence of minmial
polynomials M9(a), M10(a), M11(a), . . . . One of the interesting aspects of
the algorithm is that it uses automatic differentiation.
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