
Geometric Completion of Differential Systems using NumericSymbolic ContinuationGreg Reid, Ontario Research Centre for Computer Algebra, UWO
In previous work symbolic algorithms have been developed which use a finite number of exact differentiations and eliminations to reduce over and underdetermined systems of polynomially nonlinear differential equations to involutive form. The output involutive form enables the identification of consistent initial values, and eases the application of exact or numerical integration methods. However such differentialelimination algorithms, which usually incorporate Groebner bases, have poor complexity and are unsuited for application to systems with approximate coefficients. A new generation of differentialelimination algorithms is proposed which uses homotopy continuation methods to perform the differentialelimination process on such nonsquare systems. Examples such as the classic index 3 Pendulum are given to illustrate the new procedure. Our approach uses slicing by random linear subspaces to intersect its jet components in finitely many points. Generation of enough such generic points, enables irreducible jet components of the differential system to be interpolated. 