
Algorithms for computing cyclotomic polynomials

Andrew Arnold

Centre for Experimental and Constructive Mathematics
Simon Fraser University

Thesis defence

Arnold (Simon Fraser University) December 2010 1 / 39

Definition

The nth cyclotomic polynomial, Φn(z), is the monic polynomial whose
�(n) distinct roots are the complex nth primitive roots of unity:

Φn(z) =
∏

0≤j<n
gcd(j ,n)=1

(z − e2�ij/n).

Φn(z) is an irreducible polynomial over ℚ with integer coefficients.

Definition

The nth inverse cyclotomic polynomial, Ψn(z), is the monic polynomial
whose n − �(n) roots are the nth nonprimitive roots of unity.

We let the order of Φn(z) (Ψn(z)) be the number of distinct odd primes
dividing n.

Arnold (Simon Fraser University) December 2010 2 / 39

Φ1(z) = z − 1

Φ2(z) = z + 1

Φ3(z) = z2 + z + 1

Φ4(z) = z2 + 1

Φ5(z) = z4 + z3 + z2 + z + 1

Φ6(z) = z2 − z + 1

Φ7(z) = z6 + z5 + z4 + z3 + z2 + z + 1

Φ8(z) = z4 + 1

Φ9(z) = z6 + z3 + 1

Φ10(z) = z4 − z3 + z2 − z + 1

Φ11(z) = z10 + z9 + z8 + z7 + z6 + z5 + z4 + z3 + z2 + z + 1

Φ12(z) = z4 − z2 + 1

Arnold (Simon Fraser University) December 2010 3 / 39

Definition

We denote by A(n) the height of Φn(z), i.e. the magnitude of its largest
coefficient.

Example

E.g. As Φ5(z) = 1 + z + z2 + z3 + z4, A(5) = 1.

Theorem (Erdős, 1961)

For every c > 0 there exists n ∈ ℕ such that A(n) > nc .

Question:

What is the least n such that A(n) > n? n2? n3? . . .

Arnold (Simon Fraser University) December 2010 4 / 39

Table: The least n for which A(n) > nc

c n A(n)

1 *1181895 14102773

2 *43730115 862550638890874931

3 416690995 80103182105128365570406901971

4 *1880394945 64540997036010911566826446181523888971563

5,6 17917712785 8103387856491540894577
281647309209796702857224359740676324982827

7 99660932085 6126
720871740783667089620232439526012472525473
338153078678961755149378773915536447185370

*Monagan

To compute these results we needed to implement fast algorithms for
computing Φn(z).

Arnold (Simon Fraser University) December 2010 5 / 39

Some identities

1. Let p be a prime not dividing m > 0, then Φmp(z) = Φm(zp)/Φm(z).

E.g. If p is prime, then
Φp(z) = Φ1(zp)/Φ1(z) = (zp − 1)/(z − 1) = zp−1 + zp−2 + ⋅ ⋅ ⋅+ z + 1.

2. Let q be a prime that divides m then Φmq(z) = Φm(zq).

E.g. Φ9(z) = Φ3(z3) = (z3)2 + (z3) + 1 = z6 + z3 + 1.

3. Let m be odd, then Φ2m(z) = Φn(−z).

E.g. Φ6(z) = Φ3(−z) = (−z)2 + (−z) + 1 = z2 − z + 1.

If n̄ is the product of the distinct odd prime divisors of n, then
A(n) = A(n̄).
We are namely intested in computing Φn(z) for odd, squarefree n.

Arnold (Simon Fraser University) December 2010 6 / 39

The Fast Fourier Transform

1. Let p be a prime not dividing m > 0, then Φmp(z) = Φm(zp)/Φm(z).

We can compute Φn(z) for n = p1p2 ⋅ ⋅ ⋅ pk , a squarefree product of k
distinct primes, using k exact polynomial divisions.

Input: n = p1p2 ⋅ ⋅ ⋅ pk , a product of k distinct odd primes
m←− p1, Φm(z)←−

∑p−1
i=0 z i

for i ←− 2 to k do

Φmpi (z)←− Φm(zpi)
Φm(z)

m←− m ⋅ pi

end
return Φn(z)

Classical polynomial division is quadratic-time. One obvious optimization
would be to expedite division via the Fast Fourier Transform (FFT).

Arnold (Simon Fraser University) December 2010 7 / 39

The Fast Fourier Transform

1. Let p be a prime not dividing m > 0, then Φmp(z) = Φm(zp)/Φm(z).

We can compute Φn(z) for n = p1p2 ⋅ ⋅ ⋅ pk , a squarefree product of k
distinct primes, using k exact polynomial divisions.

Input: n = p1p2 ⋅ ⋅ ⋅ pk , a product of k distinct odd primes
m←− p1, Φm(z)←−

∑p−1
i=0 z i

for i ←− 2 to k do

Φmpi (z)←− Φm(zpi)
Φm(z)

m←− m ⋅ pi

end
return Φn(z)

Classical polynomial division is quadratic-time. One obvious optimization
would be to expedite division via the Fast Fourier Transform (FFT).

Arnold (Simon Fraser University) December 2010 7 / 39

The Fast Fourier Transform

Definition

Let N > 0 be an integer and ! an N primitive root of unity modulo a
prime q. The N-point discrete Fourier transform of a polynomial f (z)
over ℤq is the evaluation of f at the powers of !.

DFT(N, !, f) = (f (!0), f (!1), . . . , f (!N−1)) (1)

If N = 2s is a power of 2, the FFT can compute DFT(N, !, f) from
f (z) in O(N log(N)) arithmetic operations mod q.

The inverse FFT can interpolate f (z) from DFT(N, !, f) (provided
N > deg(f)), also in O(N log(N)) operations.

Arnold (Simon Fraser University) December 2010 8 / 39

The Fast Fourier Transform

Let f (z), g(z) ∈ ℤq[z] be such that g(z)∣f (z), and suppose we want to
compute h(z) = f (z)/g(z). We can

1 Obtain the N-point DFTs of f and g via the FFT, where N is the
least power of 2 greater than deg(h).

2 Compute h(!j) = f (!j)/g(!j) mod q for 0 ≤ j < N

3 Interpolate h from its discrete Fourier transform via the inverse FFT

We need that h(!j) ∕= 0. This is not a problem when computing
Φm(zp)/Φm(z).

Lemma

Let m,N > 1 be coprime and let ! be an Nth primitive root of unity
mod q. Then Φm(!j) mod q ∕= 0 for j ∈ ℤ.

Arnold (Simon Fraser University) December 2010 9 / 39

The cyclotomic Fourier tranform

We can directly compute the DFT of Φmp(z) from that of Φm(z):

Φmp(!j) = Φm(!jp mod N)/Φm(!j)

We can compute the DFT of Φn(z), for squarefree n = p1p2 ⋅ ⋅ ⋅ pk , as
follows:

1 Let N be the least power of 2 greater than deg(Φn(z)) = �(n).

2 Compute the N-point DFT of Φ1(z) = z − 1 (this can be done in
linear-time).

3 For 1 ≤ i ≤ k , compute the DFT of Φp1⋅⋅⋅pi (z) from that of
Φp1⋅⋅⋅pi−1(z).

Here we can compute the DFT of Φn(z) in O(kN) arithmetic operations
(as opposed to O(N log N) via the FFT).
We call this approach the cyclotomic Fourier transform (CFT).

Arnold (Simon Fraser University) December 2010 10 / 39

The cyclotomic Fourier tranform

The CFT requires kN divisions in ℤq.
We make further optimizations to the CFT that allow us to compute the
DFT of Φn(z) using O(kN) multiplications as opposed to kN divisions.

Table: A comparison of times to compute Φn(z) modulo a 64-bit Fourier prime q.

n FFT CFT

1181895 0.83 0.42

3949491 3.93 1.42

15069565 42.59 13.52

43730115 94.83 29.69

Arnold (Simon Fraser University) December 2010 11 / 39

The sparse power series algorithm

Identity

Φn(z) =
∏
d ∣n

(1− zd)�(n/d) (for n > 1).

E.g. Φ105(z) =
(1− z105)(1− z3)(1− z5)(1− z7)

(1− z15)(1− z21)(1− z35)(1− z)

We call the (1− zd)±1 comprising Φn(z) the subterms of Φn(z).

In this approach, we compute Φn(z) as a truncated power series.

We can multiply a power series by (1− zs) or
(1− zs)−1 = 1 + zs + z2s + . . . , truncated to degree D, in O(D)
operations.

Arnold (Simon Fraser University) December 2010 12 / 39

The sparse power series algorithm

The Sparse Power Series (SPS) Algorithm
Input: n = p1p2 ⋅ ⋅ ⋅ pk , a product of k distinct primes
Output: The first half of the coefficients of Φn(z)
D ←− �(n)/2 + 1, a(0)←− 1
for 1 ≤ i ≤ D do a(i)←− 0
for d ∣n do

if �(n
d) = 1 then // multiply by 1− zd

for i = D down to d by −1 do a(i)←− a(i)− a(i − d)
else // divide by 1− zd

for i = d to D do a(i)←− a(i) + a(i − d)
end

end
return a(0), a(1), . . . , a(�(n)/2)

n = p1p2 ⋅ ⋅ ⋅ pk , a product of k distinct primes, has 2k divisors. Thus the
SPS algorithm requires ∼ 2k�(n)/2 integer additions and subtractions.

Arnold (Simon Fraser University) December 2010 13 / 39

We need only compute the first half of the coefficients of Φn(z), as the
coefficients of Φn(z) are palindromic.

E.g. Φ15(z) =
(1)z8 +(−1)z7 +(0)z6 +(1)z5 +(−1)z4 +(1)z3 +(0)z2 +(−1)z +(1)(z0).

In general,

Lemma

If f (z) is a product of cyclotomic polynomials

f (z) = Φn1(z)Φn2(z) ⋅ ⋅ ⋅Φns (z),

such that ni is odd for 1 ≤ i ≤ s. Then if deg(f) is even, f (z) has
palindromic coefficients, else f (−z) has palindromic coefficients (i.e. the
coefficients of f (z) are anti-palindromic).

Arnold (Simon Fraser University) December 2010 14 / 39

The sparse power series algorithm

The SPS algorithm requires ∼ (2k)(�(n)/2) additions and subtractions on
our power series coefficients.

Table: A comparison of times to compute Φn(z)

n FFT CFT SPS

1181895 0.83 0.42 0.01

3949491 3.93 1.42 0.06

15069565 42.59 13.52 0.40

43730115 94.83 29.69 1.72

Arnold (Simon Fraser University) December 2010 15 / 39

Improving the SPS algorithm

Suppose that we iterate through the divisors of n = p1p2 ⋅ ⋅ ⋅ pk in the
order d1, d2, d3,

The SPS algorithm computes fs(z) =
∏s

i=1(1− zdi)�(n/di), for
1 ≤ s ≤ 2k , as an intermediate result.

If fs(z) is a polynomial of degree Ds , then either f (z) or f (−z) is
palindromic.

In order to easily obtain all the coefficients of fs , we need only
truncate to degree Ds/2 when multiplying by the subterms
(1− zd)±1 comprising fs (as opposed to �(n)/2.

Idea to improve the SPS algorithm

Order the divisors of n in a manner which minimizes the degree we need
truncate to (we call if the degree bound) over the computation of Φn(z).

Arnold (Simon Fraser University) December 2010 16 / 39

1st improvement: SPS2

Let n = mp be an odd, squarefree integer with greatest prime divisor p.

Φn(z) =
Φm(zp)

Φm(z)
= Ψm(z)Φm(zp)

1

zm − 1
(2)

(Recall Ψm(z) = (zm − 1)/Φm(z)).
We compute Φn(z) as follows:

1 Compute Ψm(z) as a product of subterms, truncating to degree
m − �(m)/2.

2 Use the palindromic property to get the higher-degree terms of
Ψm(z).

3 Multiply by the remaining subterms, truncating to degree �(n)/2.

We call this approach SPS2

Arnold (Simon Fraser University) December 2010 17 / 39

1st improvement: SPS2

Φn(z) = Ψm(z)Φm(zp) 1
zm−1

If Φn(z) is of order k, then SPS2 requires less than

(2k−1 − 1)(m − �(m)/2) + (2k−1 + 1)(�(n)/2)

arithmetic operations on our power series coefficients. This is roughly half
that of the original SPS algorithm.

Table: Times to compute Φn(z)

n k = order(Φn(z)) SPS SPS2

1073741829 3 4.72 3.25

1073741837 4 11.09 6.63

1073741835 5 16.07 7.96

1073742117 6 25.09 13.58

1073746605 7 45.80 25.72

1074800265 8 74.00 38.97

Arnold (Simon Fraser University) December 2010 18 / 39

The iterative and recursive SPS algorithms

We can express Φn(z) as a product of inverse cyclotomic polynomials of
decreasing index, multiplied by some additional subterms,

Let n = p1p2 ⋅ ⋅ ⋅ pk be an odd, squarefree product of k primes. For
1 ≤ i ≤ k, let mi = p1p2 ⋅ ⋅ ⋅ pi−1 and ei = pi+1 ⋅ ⋅ ⋅ pk . Then

Φn(z) = Ψmk
(zek) ⋅ ⋅ ⋅Ψm1(ze1) ⋅

(
k∏

j=1

(zn/pj − 1)−1

)
⋅ (zn − 1) (3)

Example

Φ105(z) = Ψ15(z)Ψ3(z7) ⋅ (z15 − 1)−1(z21 − 1)−1(z35 − 1)−1 ⋅ (z105 − 1)

In the iterative SPS or SPS3 we compute the product (3) from left to
right, raising the degree bound as necessary.

Arnold (Simon Fraser University) December 2010 19 / 39

The iterative and recursive SPS algorithms

We can, furthermore, break inverse cyclotomic polynomials into products
of cyclotomic polynomials.

Again, given n = p1p2 ⋅ ⋅ ⋅ pk , an odd, squarefree product of k primes, let,
for 1 ≤ i ≤ k , let mi = p1p2 ⋅ ⋅ ⋅ pi−1 and ei = pi+1 ⋅ ⋅ ⋅ pk . Then

Φmk
(zek) ⋅ ⋅ ⋅Φm1(ze1)Ψm1(ze1)

Example

Ψ105(z) = Φ15(z)Φ5(z7)Φ1(z35)

In the recursive SPS or SPS4, we recursively break cyclotomic
polynomials and inverse cyclotomic polynomials into products as much we
can.

Arnold (Simon Fraser University) December 2010 20 / 39

The iterative and recursive SPS algorithms

Arnold (Simon Fraser University) December 2010 21 / 39

The iterative and recursive SPS algorithms

Arnold (Simon Fraser University) December 2010 22 / 39

The iterative and recursive SPS algorithms

Arnold (Simon Fraser University) December 2010 23 / 39

The iterative and recursive SPS algorithms

Table: Times to compute Φn(z)

n k = order(Φn(z)) SPS SPS2 SPS3 SPS4

1073741829 3 4.72 3.25 1.92 2.20

1073741837 4 11.09 6.63 3.87 4.32

1073741835 5 16.07 7.96 2.32 2.69

1073742117 6 25.09 13.58 3.18 3.37

1073746605 7 25.72 4.23 4.27

1074800265 8 74.00 38.97 10.19 6.65

Arnold (Simon Fraser University) December 2010 24 / 39

The big prime algorithm

If Φn(z) can fit in main memory, it is easy to compute.

What if we want to compute A(n), but Φn(z) cannot fit in main memory?
What if Φn(z) cannot fit on a hard disk?

E.g. Nathan Kaplan asked us to compute A(n) for
n = 2, 576, 062, 979, 535 = 3 ⋅ 5 ⋅ 29 ⋅ 2609 ⋅ 2269829. The degree of Φn(z)
is 1, 326, 015, 358, 976. Kaplan was looking for Φn(z) of order five such
that A(n) = 1.

Arnold (Simon Fraser University) December 2010 25 / 39

The big prime algorithm

Let n = mp, and write Φm(zp)Φm(z) =
∑

c(i)z i & Φn(z) =
∑

a(i)z i . As

Φn(z) = Φm(zp)Φm(z) ⋅ 1
zm−1 = (

∑
c(i)z i)(−1− zm − z2m − . . .),

We have that

a(t) = −
∑

0≤s≤t,m∣(t−s)

c(s) = a(s)− c(t)

We compute all the values a(t) incrementally.

We use an array of m integers [ā(0), ā(1), . . . , ā(m − 1)], and store
a(t) in ā(t mod m).

When we want to compute a(t + m) we write it to ā(t mod m) and
discard the value a(t).

Arnold (Simon Fraser University) December 2010 26 / 39

The big prime algorithm

Let n = mp, and write Φm(zp)Φm(z) =
∑

c(i)z i a Φn(z) =
∑

a(i)z i .

a(t) = −
∑

0≤s≤t,m∣(t−s)

c(s) = a(s)− c(t)

The big prime algorithm to compute A(n)
ā(0), ā(1), . . . , ā(m − 1)←− 0, 0, . . . , 0, H ←− 0.
for t ← 0 to �(n)/2 do

Compute c(t) from Φm(z) and Ψm(z)
ā(t mod N)←− ā(t mod N)− c(t)
if ∣ā(t mod N)∣ > H then H ←− ∣ā(t mod N)∣

end
return H

As deg(Φm),deg(Ψm) < m, we can compute all the coefficients c(t) of
Φm(zp)Ψm(z), given Φm(z) and Ψm(z) in O(m2), integer arithmetic
operations.

Arnold (Simon Fraser University) December 2010 27 / 39

The big prime algorithm

This algorithm was used to look for Φn(z) of order 5 with A(n) = 1.
For these cyclotomic polynomials, Ψm(z) and Φm(z) are typically sparse,
and it saves time to use a sparse representation for Ψm(z) and Φm(z).

Table: Time to compute A(n) using the big prime algorithm with 8-bit integers
and sparse representations of Ψm(z) and Φm(z)

n factorization of n time

746443728915 3 ⋅ 5 ⋅ 31 ⋅ 929 ⋅ 1727939 0.27

1147113361785 3 ⋅ 5 ⋅ 29 ⋅ 1741 ⋅ 1514671 0.51

36654908721735 3 ⋅ 5 ⋅ 29 ⋅ 6959 ⋅ 12108659 1.90

117714212390685 3 ⋅ 5 ⋅ 59 ⋅ 3539 ⋅ 37584179 1.97

1349266102959585 3 ⋅ 5 ⋅ 59 ⋅ 8849 ⋅ 172290029 4.92

We found many examples of Φn(z) of order 5 and height 2, but none of
height 1.

Arnold (Simon Fraser University) December 2010 28 / 39

A low-memory SPS algorithm

The big prime algorithm is not effective for Φn(z) without a large
prime factor.

The SPS algorithms are faster for most cyclotomic polynomials, but
slow considerably when we cannot fit Φn(z) in main memory.

Aim

Compute the coefficients of Φn(z) in a manner with the same
computational complexity as one of the SPS algorithms, while limiting disk
I/O.

Arnold (Simon Fraser University) December 2010 29 / 39

A low-memory SPS algorithm

If we compute the coefficients of Φm(zp)Ψm(z) =
∑

c(i)z i (in some
order), then we can multiply by (zm − 1)−1 = −1− zm − z2m − . . . using
an array of m integers as we did with the big-prime algorithm.
We can break Ψm(z) into polynomials fj(z), 0 ≤ j < p such that

Ψm(z) =

p−1∑
j=0

z j fj(zp),

In which case,

Ψm(z)Φm(zp) =

p−1∑
j=0

z j fj(zp)Φm(zp),

thus, to compute the coefficients of Ψm(z)Φm(zp), we can compute
fj(z)Φm(z) for 0 ≤ j < p.

Arnold (Simon Fraser University) December 2010 30 / 39

A low-memory SPS algorithm

If l = deg(Ψm)− j mod p, then z j f (zp) + z l f (zp) has (anti)palindromic
polynomial coefficients. We can leverage this to multiply both fj and fl by
Φm in a manner similar to the recursive SPS algorithm (where we compute
only half the coefficients of any intermediate polynomial).

1 Compute Ψm(z) via SPS4.

2 Break Ψm into polynomials fj such that Ψm(z) =
∑

z j fj(zp).

3 For 0 ≤ j < p, if l ≤ j , multiply both fj(z) and fl(z) by Φm(z) and
write the resulting coefficients to disk.

4 Multiply Ψm(z)Φm(zp) =
∑

c(i)z i by (zm − 1) in a manner similar
to the big prime algorithm.

We used this method to compute many Φn(z) for many n > 1010.

Arnold (Simon Fraser University) December 2010 31 / 39

Table: n such that A(n) > A(m) for m < n

n A(n)

1 1

105 2

385 3

1365 4

1785 5

2805 6

3135 7

6545 9

10465 14

11305 23

17255 25

20615 27

26565 59

40755 359

106743 397

171717 434

FFT-based, original SPS, low-memory SPS algorithm
Arnold (Simon Fraser University) December 2010 32 / 39

Table: n such that A(n) > A(m) for m < n

n A(n)

255255 532

279565 1182

327845 31010

707455 35111

886445 44125

983535 59815

1181895 14102773

1752465 14703509

3949491 56938657

8070699 74989473

10163195 1376877780831

13441645 1475674234751

15069565 1666495909761

30489585 2201904353336

37495115 2286541988726

40324935 2699208408726

FFT-based, original SPS, low-memory SPS algorithm
Arnold (Simon Fraser University) December 2010 33 / 39

Table: n such that A(n) > A(m) for m < n

n A(n)

43730115 862550638890874931

169828113 31484567640915734941

185626077 42337944402802720258

416690995 80103182105128365570406901971

437017385 86711753206816303264095919005

712407185 111859370951526698803198257925

1250072985 137565800042644454188531306886

1311052155 192892314415997583551731009410

1880394945 64540997036010911566826446181523888971563

2317696095 67075962666923019823602030663153118803367

7981921311 454336118538773092209637015999240106863272841

12436947159 633620313483920410424364276653674197598804995

17917712785 81033
87856491540894577281647309209796702857224359740676324982827

22084622735 94928
13291464815330681848221029648678194321867848264652910092651

FFT-based, original SPS, low-memory SPS algorithm
Arnold (Simon Fraser University) December 2010 34 / 39

Table: n such that A(n) > A(m) for m < n

n A(n)

53753138355 185020
43917986583739321241526591953999236378383078987405925610051

66253868205 186123
63044507322761861417215546362953753512534494470558327433458

99660932085 61267208717407836670896202324
39526012472525473338153078678961755149378773915536447185370

FFT-based, original SPS, low-memory SPS algorithm

Arnold (Simon Fraser University) December 2010 35 / 39

The coefficients of Φ4849845(z)

Arnold (Simon Fraser University) December 2010 36 / 39

Plots of Φ1181895(z)

Arnold (Simon Fraser University) December 2010 37 / 39

Plots of Φ43730115(z)

Arnold (Simon Fraser University) December 2010 38 / 39

The coefficients of Φ40324935(z)

Arnold (Simon Fraser University) December 2010 39 / 39

	Introduction to cyclotomic polynomials
	FFT-based methods
	The sparse power series algorithms
	Low-memory methods

