Optimizing and Parallelizing the Modular GCD Algorithm

Michael Monagan
Centre for Experimental and Constructive Mathematics
Simon Fraser University
British Columbia

PASCO 2015, Bath, England
July 10, 2015

This is joint work with Matthew Gibson
Compute $G = \gcd(A, B)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$.
Compute $G = \text{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$.

Compute G modulo primes p_1, p_2, \ldots and recover G using Chinese remaindering.
Problem

Compute $G = \text{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$.

Compute G modulo primes p_1, p_2, \ldots and recover G using Chinese remaindering.

Let $\bar{A} = A/G$ and $\bar{B} = B/G$ be the cofactors.

Let $A = \sum_{i=0}^{da} a_i(x_2, \ldots, x_n)x_1^i$.

Let $B = \sum_{i=0}^{db} b_i(x_2, \ldots, x_n)x_1^i$.

Let $G = \sum_{i=0}^{dg} g_i(x_2, \ldots, x_n)x_1^i$.

Let $t = \max_{i=0}^{dg}$ terms g_i.

Interpolate $g_i(x_2, \ldots, x_n)$ modulo p from $2t + \delta$ univariate images in $\mathbb{Z}_p[x_1]$ using smooth prime p.
Problem

Compute $G = \text{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$.

Compute $G \mod p_1, p_2, \ldots$ and recover G using Chinese remaindering.

Let $\bar{A} = A/G$ and $\bar{B} = B/G$ be the cofactors.

Let $A = \sum_{i=0}^{da} a_i(x_2, \ldots, x_n)x_1^i$. $CA = \text{GCD}(a_i(x_2, \ldots, x_n))$.

Let $B = \sum_{i=0}^{db} b_i(x_2, \ldots, x_n)x_1^i$. $CB = \text{GCD}(b_i(x_2, \ldots, x_n))$.

Let $G = \sum_{i=0}^{dg} g_i(x_2, \ldots, x_n)x_1^i$. $CG = \text{GCD}(CA, CB)$.

Let $t = \max_{i=0}^{dg} \# \text{terms } g_i$. $\Gamma = \text{GCD}(a_{da}, b_{db})$.

Observation: Most of the time is recursive GCDs in $n - 1$ variables and evaluation and interpolation not GCD in $\mathbb{Z}_p[x_1]$.
Compute $G = \text{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$.

Let $A = \sum_i a_{i,j}(x_3, \ldots, x_n)x_1^i x_2^j$. \hspace{1cm} CA = \text{GCD}(a_i(x_3, \ldots, x_n)).$

Let $B = \sum_i b_{i,j}(x_3, \ldots, x_n)x_1^i x_2^j$. \hspace{1cm} CB = \text{GCD}(b_i(x_3, \ldots, x_n)).$

Let $G = \sum_i g_{i,j}(x_3, \ldots, x_n)x_1^i x_2^j$. \hspace{1cm} CG = \text{GCD}(CA, CB).$

Let $s = \max_{i,j} \# \text{terms } g_{i,j}$. \hspace{1cm} \Gamma = \text{GCD}(LC(A), LC(B)).$

Interpolate $g_i(x_3, \ldots, x_n)$ modulo p from $2s + \delta$ bivariate images in $\mathbb{Z}_p[x_1, x_2]$ using smooth prime p – increased cost but
Bivariate Images

Compute \(G = \text{GCD}(A, B) \) in \(\mathbb{Z}[x_1, x_2, \ldots, x_n] \).

Let \(A = \sum_i a_{i,j}(x_3, \ldots, x_n)x_1^ix_2^j \). \(CA = \text{GCD}(a_i(x_3, \ldots, x_n)) \).

Let \(B = \sum_i b_{i,j}(x_3, \ldots, x_n)x_1^ix_2^j \). \(CB = \text{GCD}(b_i(x_3, \ldots, x_n)) \).

Let \(G = \sum_i g_{i,j}(x_3, \ldots, x_n)x_1^ix_2^j \). \(CG = \text{GCD}(CA, CB) \).

Let \(s = \max_{i,j} \# \text{terms } g_{i,j} \). \(\Gamma = \text{GCD}(\text{LC}(A), \text{LC}(B)) \).

Interpolate \(g_i(x_3, \ldots, x_n) \) modulo \(p \) from \(2s + \delta \) bivariate images in \(\mathbb{Z}_p[x_1, x_2] \) using smooth prime \(p \) – increased cost but

- Usually \(s \ll t \) which reduces evaluation and interpolation cost.
Bivariate Images

Compute \(G = \text{GCD}(A, B) \) in \(\mathbb{Z}[x_1, x_2, ..., x_n] \).

Let \(A = \sum_i a_{i,j}(x_3, ..., x_n)x_1^i x_2^j \). \(CA = \text{GCD}(a_i(x_3, ..., x_n)) \).
Let \(B = \sum_i b_{i,j}(x_3, ..., x_n)x_1^i x_2^j \). \(CB = \text{GCD}(b_i(x_3, ..., x_n)) \).
Let \(G = \sum_i g_{i,j}(x_3, ..., x_n)x_1^i x_2^j \). \(CG = \text{GCD}(CA, CB) \).
Let \(s = \max_i j \# \text{terms } g_{i,j} \). \(\Gamma = \text{GCD}(\text{LC}(A), \text{LC}(B)) \).

Interpolate \(g_i(x_3, ..., x_n) \) modulo \(p \) from \(2s + \delta \) bivariate images in \(\mathbb{Z}_p[x_1, x_2] \) using smooth prime \(p \) – increased cost but

- Usually \(s \ll t \) which reduces evaluation and interpolation cost.
- Usually \(CA, CB, \Gamma \) are smaller so easier to compute.
Compute $G = \text{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_i a_{i,j}(x_3, ..., x_n)x_1^i x_2^j$.
Let $B = \sum_i b_{i,j}(x_3, ..., x_n)x_1^i x_2^j$.
Let $G = \sum_i g_{i,j}(x_3, ..., x_n)x_1^i x_2^j$.
Let $s = \max_{i,j} \# \text{terms } g_{i,j}$.

$CA = \text{GCD}(a_{i}(x_3, ..., x_n))$.
$CB = \text{GCD}(b_{i}(x_3, ..., x_n))$.
$CG = \text{GCD}(CA, CB)$.
$\Gamma = \text{GCD}(\text{LC}(A), \text{LC}(B))$.

Interpolate $g_{i}(x_3, ..., x_n)$ modulo p from $2s + \delta$ bivariate images in $\mathbb{Z}_p[x_1, x_2]$ using smooth prime p – increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.
- Increases parallelism in interpolation.
Bivariate Images

Compute $G = \text{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$.

Let $A = \sum_i a_{i,j}(x_3, \ldots, x_n)x_1^i x_2^j$. \hspace{1cm} CA = \text{GCD}(a_i(x_3, \ldots, x_n)).
Let $B = \sum_i b_{i,j}(x_3, \ldots, x_n)x_1^i x_2^j$. \hspace{1cm} CB = \text{GCD}(b_i(x_3, \ldots, x_n)).
Let $G = \sum_i g_{i,j}(x_3, \ldots, x_n)x_1^i x_2^j$. \hspace{1cm} CG = \text{GCD}(CA, CB).
Let $s = \max_{i,j} \# \text{terms } g_{i,j}$. \hspace{1cm} \Gamma = \text{GCD}(\text{LC}(A), \text{LC}(B)).

Interpolate $g_i(x_3, \ldots, x_n)$ modulo p from $2s + \delta$ bivariate images in $\mathbb{Z}_p[x_1, x_2]$ using smooth prime p – increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.
- Increases parallelism in interpolation.

1. Optimize serial bivariate Gcd computation.
2. For $n > 2$ parallelized (Cilk C) evaluation and interpolation.
3. Benchmark against Maple and Magma.
Bivariate Gcd computation.

Input $A, B \in \mathbb{Z}_p[y][x]$. Output $G = \text{GCD}(A, B)$, \bar{A} and \bar{B}.

Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in $\mathbb{Z}_p[x]$ **incrementally** until $G(x, y)$ does not change.
Test if $G | A$ and $G | B$. If yes output G, $\bar{A} = A / G$, $\bar{B} = B / G$.
Bivariate Gcd computation.

Input $A, B \in \mathbb{Z}_p[y][x]$. Output $G = \text{GCD}(A, B)$, \bar{A} and \bar{B}.

Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in $\mathbb{Z}_p[x]$ **incrementally** until $G(x, y)$ does not change.
Test if $G|A$ and $G|B$. If yes output $G, \bar{A} = A/G, \bar{B} = B/G$.

Cofactor recovery method. (Brown 1971)
Interpolate y in G, \bar{A}, \bar{B} from univariate images
$g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$.
After k images we have

$$A - G\bar{A} \equiv 0 \pmod{M} \quad \text{and} \quad B - G\bar{B} \equiv 0 \pmod{M}$$

where $M = (y - \alpha_1)(y - \alpha_2) \cdots (y - \alpha_k)$.
Stop when $k > \max(\deg_y A, \deg_y B, \deg_y G\bar{A}, \deg_y G\bar{B})$.
Cofactor recovery method for $\mathbb{Z}_p[y][x]$

Interpolate y in G, \bar{A}, \bar{B} from univariate images
$g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$ in batches until one of G, \bar{A}, \bar{B} stabilizes.

Case G stabilizes: obtain remaining images using univariate \div:
$g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$
thus replacing the Euclidean algorithm with an evaluation.
Bivariate Gcd optimization.

Cofactor recovery method for $\mathbb{Z}_p[y][x]$

Interpolate y in G, \bar{A}, \bar{B} from univariate images

$g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$

in batches until one of G, \bar{A}, \bar{B} stabilizes.

Case G stabilizes: obtain remaining images using univariate \div

$g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$

thus replacing the Euclidean algorithm with an evaluation.

Case \bar{A} stabilizes: obtain remaining images using univariate \div

$\bar{a}_i = \bar{A}(\alpha_i, x), g_i = A(\alpha_i, x)/\bar{a}_i, \bar{b}_i = B(\alpha_i, x)/g_i$

thus replacing the Euclidean algorithm with an evaluation.
Figure: Image Division Optimizations

- Brown’s Algorithm
- Classical Division Method
- Maple 18
- Early G and \bar{B} stabilization
For dense A, B in $\mathbb{Z}_p[x_3][x_1, x_2]$ we parallelize evaluation of A and B in blocks of size j using a FFT of size j, run the bivariate GCDs in parallel, and parallelize interpolation of G, \tilde{A}, \tilde{B} in batches of coefficients.
Parallel experiments in Cilk C

For dense A, B in $\mathbb{Z}_p[x_3][x_1, x_2]$ we parallelize evaluation of A and B in blocks of size j using a FFT of size j, run the bivariate GCDs in parallel, and parallelize interpolation of G, \tilde{A}, \tilde{B} in batches of coefficients.

The algorithm is recursive and needs a lot of pieces of memory. We allocate large blocks of memory and use it as a stack. Memory for each bivariate Gcd is all preallocated.
Benchmarks \(A, B \in \mathbb{Z}_p[x_1, x_2, x_3] \), \(\deg A = \deg B = 200 \).

jude 2 x E5-2680 v2 CPUs, 10 cores, 2.8 GHz (3.6 GHz turbo).

Table: Real times in seconds, \(p = 2^{62} - 57, 1373701 \) terms

<table>
<thead>
<tr>
<th>(\deg(G))</th>
<th>(\deg(\widetilde{A}))</th>
<th>(-\text{opt})</th>
<th>(EA%)</th>
<th>1</th>
<th>8</th>
<th>16</th>
<th>20</th>
<th>Conv</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>190</td>
<td>13.10</td>
<td>11.9</td>
<td>4.79</td>
<td>0.84</td>
<td>0.54</td>
<td>0.48</td>
<td>0.37</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>12.39</td>
<td>28.8</td>
<td>5.79</td>
<td>0.92</td>
<td>0.55</td>
<td>0.49</td>
<td>0.27</td>
</tr>
<tr>
<td>70</td>
<td>130</td>
<td>11.29</td>
<td>36.9</td>
<td>6.47</td>
<td>0.99</td>
<td>0.56</td>
<td>0.49</td>
<td>0.21</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>9.93</td>
<td>41.0</td>
<td>6.72</td>
<td>1.00</td>
<td>0.57</td>
<td>0.50</td>
<td>0.18</td>
</tr>
<tr>
<td>130</td>
<td>70</td>
<td>8.38</td>
<td>27.5</td>
<td>5.29</td>
<td>0.80</td>
<td>0.46</td>
<td>0.40</td>
<td>0.18</td>
</tr>
<tr>
<td>160</td>
<td>40</td>
<td>6.52</td>
<td>14.4</td>
<td>4.16</td>
<td>0.66</td>
<td>0.39</td>
<td>0.34</td>
<td>0.20</td>
</tr>
<tr>
<td>190</td>
<td>10</td>
<td>4.50</td>
<td>1.8</td>
<td>3.44</td>
<td>0.58</td>
<td>0.37</td>
<td>0.33</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Benchmarks $A, B \in \mathbb{Z}_p[x_1, x_2, x_3]$, $\deg A = \deg B = 200$.
gaby two E5-2660 CPUs, 8 cores at 2.2 GHz (3.0 GHz turbo).

Table: Real times in seconds, $p = 2^{62} - 57$, inputs have 1373701 terms

<table>
<thead>
<tr>
<th>Deg</th>
<th>\bar{A}</th>
<th>$A \times B$</th>
<th>GCD</th>
<th>$A \times B$</th>
<th>GCD</th>
<th>MGCD</th>
<th>$#\text{CPUs}$</th>
<th>POLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>190</td>
<td>2.22</td>
<td>70.98</td>
<td>77.22</td>
<td>33.34</td>
<td>6.35</td>
<td>1.83</td>
<td>0.47</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>25.65</td>
<td>267.16</td>
<td>920.48</td>
<td>159.71</td>
<td>7.75</td>
<td>2.13</td>
<td>0.35</td>
</tr>
<tr>
<td>70</td>
<td>130</td>
<td>25.62</td>
<td>439.80</td>
<td>1624.6</td>
<td>462.09</td>
<td>8.72</td>
<td>2.35</td>
<td>0.28</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>25.43</td>
<td>453.27</td>
<td>1526.2</td>
<td>900.65</td>
<td>9.11</td>
<td>2.43</td>
<td>0.24</td>
</tr>
<tr>
<td>130</td>
<td>70</td>
<td>25.69</td>
<td>436.11</td>
<td>1559.2</td>
<td>14254</td>
<td>7.11</td>
<td>1.92</td>
<td>0.23</td>
</tr>
<tr>
<td>160</td>
<td>40</td>
<td>25.44</td>
<td>282.04</td>
<td>934.45</td>
<td>7084.3</td>
<td>5.63</td>
<td>1.52</td>
<td>0.26</td>
</tr>
<tr>
<td>190</td>
<td>10</td>
<td>2.23</td>
<td>77.28</td>
<td>90.30</td>
<td>2229.8</td>
<td>4.69</td>
<td>1.29</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Current work

Let \(G = \sum_{i=0}^{dg} g_i(x_2, \ldots, x_n)x_1^i. \)
Let \(t = \max_i \#g_i. \)
Let $G = \sum_{i=0}^{\deg} g_i(x_2, \ldots, x_n)x_1^i$.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: $O((\#A + \#B)t)$.
Current work

Let \(G = \sum_{i=0}^{dg} g_i(x_2, \ldots, x_n)x_1^i \).
Let \(t = \max_i \# g_i \).

- Most of the time is evaluation: \(O((\#A + \#B)t) \).
- Have parallelized evaluation in batches of points.
Let \(G = \sum_{i=0}^{dg} g_i(x_2, \ldots, x_n)x_1^i \).
Let \(t = \max_i \#g_i \).

- Most of the time is evaluation: \(O((\#A + \#B)t) \).
- Have parallelized evaluation in batches of points.
- Have parallelized on \(i \) sparse interpolation of \(g_i(x_2, \ldots, x_n) \).
Let $G = \sum_{i=0}^{dg} g_i(x_2, \ldots, x_n)x_1^i$.
Let $t = \max_i \#g_i$.

- Most of the time is evaluation: $O((\#A + \#B)t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_i(x_2, \ldots, x_n)$.
- Need to switch to bivariate images.
Current work

Let $G = \sum_{i=0}^{dg} g_i(x_2, \ldots, x_n)x_1^i$.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: $O((\#A + \#B)t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_i(x_2, \ldots, x_n)$.
- Need to switch to bivariate images.

Thank you for attending my talk. Questions?