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Motivation

Suppose that f (x) and g(x) are dense polynomials in K [x ] where
K = Q(α1, . . . , αt) is an algebraic number field and {α1, . . . , αt} is an
algebraically independent set over Q.

Question

How can we compute h(x) = f (x) · g(x) efficiently?
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Representing f (x) ∈ Q(α1, . . . , αt)[x ]

First, we must find a way to represent a polynomial f ∈ Q(α1, . . . , αt)[x ]
in a computer.

Fact

K (α1, . . . , αt)[x ] ∼= K [x , u1, . . . , ut ]/〈m1, . . . ,mt〉, where
mi := mi (ui ) is the minimal polynomial for αi over K .

Thus we can consider f as a (t + 1)-variate polynomial in
Q[x , u1, . . . , ut ]/〈m1, . . . ,mt〉.
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Representing f (x) ∈ Q(α1, . . . , αt)[x ]

We also need to choose a data structure to represent the polynomials.
We will use a recursive dense data structure (recden in Maple).

recursive ⇒ nested list

dense ⇒ terms with zero coefficients are stored in the list
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The recden data structure

Example

Let f (x , y) = 13 + 8x2y − 4
√

2y 2 ∈ Z7(
√

2)[x , y ] with x >lex y .

> f:= 13 + 8*x^2*y - 4*z*y^2 :

> F:= rpoly(f,[x,y,z],7, z=RootOf(a^2-2));

2 2 2

F := (x y + 6 + 3 z y ) mod <z + 5, 7>

> lprint(F);

POLYNOMIAL([7, [x, y, z], [[5, 0, 1]]],[[[6], 0, [0, 3]], 0, [0, [1]]])

[7, [x, y, z], [[5, 0, 1]]] ⇐⇒ Z7[x , y ]/〈z2 − 2〉.
[[[6], 0, [0, 3]], 0, [0, [1]]]: recden representation of f (x , y).
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The recden date structure
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Näıve Multiplication Strategy

1 convert f (x), g(x) ∈ Q(α1, . . . , αt)[x ] to recden polynomials
F (x),G (x) ∈ Q[u1, . . . , ut , x ]/〈m1, . . . ,mt〉 where mi = mi (ui ) is the
minimal polynomial of αi over Q.

2 multiply F (u1, . . . , ut , x) and G (u1, . . . , ut , x) “naively”, i.e., multiply
each term in F by each term in G , etc.
Note:

F · G =

 m∑
j=0

t∑
i=1

di−1∑
k=0

(
ci ,kuk

i

)
x j

 ·
 n∑

j=0

t∑
i=1

di−1∑
k=0

(
c̃i ,kuk

i

)
x j

,

where di = deg(αi ).

⇒ O(mn
∏t

i=1 di ) arithmetic operations. slow!
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Naive Multiplication - Problem 1

Problem 1: more variables in polynomial = more “complicated” recden
data structure

Example

> f:= a + b + c + d + e;
f := a + b + c + d + e

> rpoly(f,[a,b,c,d,e],7);
(a + b + c + d + e) mod 7

> lprint(%);
POLYNOMIAL([7, [a, b, c, d, e], []],
[[[[[0, 1], [1]], [[1]]], [[[1]]]], [[[[1]]]]])

⇒ longer time to access all the elements in the list.
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Solution to Problem 1

Solution: multiple extensions −→ single extension. How?

Theorem

Let K be a subfield of C and α, β ∈ C be algebraic over K . Then there
exists γ ∈ C that is algebraic over K such that K (α, β) = K (γ).

How to find γ:
Let α2, . . . , αm be the conjugates of α(= α1) and let β2, . . . , βn be the
conjugates of β(= β1). Define the set

S =

{
αr − αs

βt − βu
: r , s ∈ {1, . . . ,m}, t, u ∈ {1, . . . , n}, t 6= u

}
.

Now let c ∈ K\S .
Proof of above theorem tells us that K (α, β) = K (γ := α + cβ).
This is a bit of work... We will randomly choose c instead (more on this
later).
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Solution to Problem 1 (ctd.)

Corollary

Let K be a subfield of C and let α1, . . . , αn be algebraic over K . Then
there exists α ∈ C, algebraic over K , such that K (α1, . . . , αn) = K (α).

Proof.

If n = 1 then let α = α1. So suppose that n ≥ 2. We repeatedly apply
previous theorem:
K (α1, α2, . . . , αn) = K (α1, α2)(α3, . . . , αn)

= K (β2, α3, . . . , αn) where K (β2) = K (α1, α2),
= K (β2, α3)(α4, . . . , αn)
= K (β3, α4, . . . , αn) where K (β3) = K (β2, α3)
= · · ·
= K (βn) = K (α).
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Solution to Problem 1 (ctd.)

So the previous theorem and corollary tells us that we can always find γ
such that

Q(α1, . . . , αt)[x ] = Q(γ)[x ].

i.e.,

Q[u1, . . . , ut ][x ]/〈mα1(u1), . . . ,mαt (ut)〉 = Q[z ][x ]/〈mγ(z)〉.
Once γ is found, we can express f as a bivariate polynomial in
Q[x , z ]/mγ(z).
⇒ simpler recden data structure!
In fact, it is a list of n := degx(f ) lists of length at most d := deg(γ):
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Naive Multiplication Problem 2

Problem 2: “Naive” multiplication is slow : O(n2d2)
Solution: Use the fast Fourier Transform (FFT): O(nd2 + dn log2 n)
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Solution to Problem 2: Multiplication using FFT

Suppose we wish to multiply f (x , z), g(x , z) ∈ Zp[z ][x ]/〈mγ(z)〉.
N ← smallest power of 2 greater than degx(f ) + degx(g).

ω ← primitive Nth root of unity

Multiplication using the Fast Fourier Transform (FFT) works as follows.
A ←

[
f (1, z), f (ω, z), . . . , f (ωN−1, z)

]
B ←

[
g(1, z), g(ω, z), . . . , g(ωN−1, z)

]
C ← [A[1] · B[1], A[2] · B[2], . . . ,A[N − 1] · B[N − 1]]

h ← C [1] + C [2]x + · · ·+ C [N − 1]xN−1 ∈ Zp[x , z ]/〈mγ(z)〉

H ← N−1 ·
[
h(1, z), h(ω−1, z), . . . , h(ω−(N−1), z)

]
return C [1] + C [2]x + · · ·C [N − 1]xN−1 (= f (x , z) · g(x , z))
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Naive Multiplication Problem 3

Problem 3: coefficients of the polynomials belong to Q
⇒ rapid growth of numerators and denominators

Example
Let

f (x) =
83375

3698

√
2 +

58523

37544
x ∈ Q(

√
2)[x ]

and

g(x) =
9085

702
+

75149

20728

√
2x ∈ Q(

√
2)[x ].

Then

f (x) · g(x) =
757461875

2595996

√
2 +

6265547875

38326072
x +

531681455

26355888
x +

4397944927

778212032

√
2x2

=
757461875

2595996

√
2 +

23188917472191595

126264707638992
x +

4397944927

778212032

√
2x2.

Solution: map Q to Zp where p is a “suitable” prime (and map back to
Q after multiplying).
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A Better Multiplication Strategy

Hence our strategy for finding the product of f and g will be:

1 Find fp, gp ∈ Zp(α1, . . . , αt)[x ] from f , g ∈ Q(α1, . . . , αt)[x ].

2 Convert fp, gp ∈ Zp(α1, . . . , αt)[x ] to
fγ , gγ ∈ Zp(γ)[x ] = Zp[x , z ]/〈mγ(z)〉.

3 Find hγ := fγ · gγ ∈ Zp[z , x ]/〈mγ(z)〉 using FFT.

4 Convert hγ to a polynomial in Zp(α1, . . . , αt)[x ].

5 Use rational number reconstruction on hγ to find
h := fg ∈ Q(α1, . . . , αt)[x ].
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Multiplication Step 2: Zp(α1, . . . , αt)[x ] −→ Zp(γ)[x ]

Recall: we need to find c2, . . . , ct ∈ Zp such that
Zp(α1, . . . , αt)[x ] = Zp(γ = α1 + c2α2 + · · ·+ ctαt)[x ].

Fact

Let deg(αi ) = di for i = 1, . . . t and deg(Zp(α1, . . . , αt)) =
∏t

ı=1 di := d .
Suppose that we randomly choose a set of numbers χ := {c2, . . . , ct},
where each ci ∈ Zp.
The probability of choosing the “wrong” χ such that
Zp(α1, . . . , αt)[x ] 6= Zp(γ = α1 + c2α2 + · · ·+ ctαt)[x ] is approx. d2

p .

Our prime p is large (more on this later), so d2

p will be small.
In light of the above fact, we will pick the the numbers c2, . . . , ct at
random.
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Multiplication Step 2: Zp(α1, . . . , αt)[x ] −→ Zp(γ)[x ]

Lemma

Let deg(Zp(αi )) = di and deg(Zp(α1, . . . , αt)) =
∏t

i=1 di = d. Then

B1 := {1, γ, γ2, . . . , γd−1} and B2 := {αj1
1 α

j2
2 · · ·α

jt
t , ji = 0, 1, . . . , di − 1}

are bases for Zp(α1, . . . , αt) = Zp(γ).

We are given fp and gp whose coefficients are expressed in terms of the
elements in B2.
How to change these to be expressed in terms of the elements in B1?
Answer: use a change of basis matrix.
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Multiplication Step 2: Zp(α1, . . . , αt)[x ] −→ Zp(γ)[x ]

We would like to build a d × d change-of-basis matrix
C =

[
γ0, γ1, γ2, . . . , γd−1

]
, where each column

γ i = (α1 + c2α2 + · · ·+ ctαt)i is expressed as a linear combination of
elements in B2 = {αj1

1 α
j2
2 · · ·α

jt
t , ji = 0, 1, . . . , di − 1}

[So that C−1 is a change-of-basis matrix from B2 to B1].
But in recden data structure, the γ i ’s may not all be of length d ...

Example

Let our field be Z7(α1, α2) with α1 =
√

2 and α2 =
√

5. Then
γ =
√

2 +
√

5. In recden with α1 > α2,
γ0 = [[1]]
γ1 = α1 + α2 = [[0, 1], [1]]
γ2 = (α1 + α2)2 = [0, [0, 2]]
γ3 = (α1 + α2)3 = [[0, 4], [3]]

So we need a new data structure.
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Multiplication Step 2 - : Zp(α1, . . . , αt)[x ] −→ Zp(γ)[x ]

Definition

A completely dense representation (cdr) of f in K [x1, . . . , xn] is a list
of coefficients of f written in increasing order of lexicographical ordering
on x1, · · · , xn. This data structure stores every coefficient of f up to
xd1

1 · · · xdn
n , where di is the largest degree of xi in f .

Example

Let f (x , y) = 8x2y − 4y + 13 ∈ Z7[x , y ]. The cdr stores the coefficients of
f in the following order (with y ≺lex x):

1, y , x , xy , x2, x2y .

So the cdr of f is: [ 6, 3, 0, 0, 0, 1 ].
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Let us extend the idea of cdr to fields with extensions.

Definition

A completely dense representation (cdr) of f in
K [u1, . . . , ut ]/〈m1, . . . ,mt〉 is a list of coefficients of f written in
increasing order of lexicographical ordering on u1, · · · , ut that stores every
coefficient of f up to ud1−1

1 · · · udt−1
t , where di = deg(mi ).

Example

Let f (x , y) = x2y 2 + x + y + 3 ∈ Z7[x , y ]/〈x2 − 3, y 3 − 2〉. Then
f (x , y) ≡ x + 3y 2 + y + 3. Every polynomial in this polynomial ring can
be written as c0 + c1y + c2y 2 + c3x + c4xy + c5xy 2 where each ci ∈ Z7.
That is, every polynomial in cdr (with y ≺lex x) in this polynomial ring is:

[c0, c1, c2, c3, c4, c5].

So f (x , y) = [3, 1, 3, 1, 0, 0].
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Multiplication Step 2: Zp(α1, . . . , αt)[x ] −→ Zp(γ)[x ]

Using the cdr data structure, each γ i = (α1 + c2α2 + · · ·+ ctαt)i will be
of length d (= deg(γ)).
So we can build a d × d change-of-basis matrix C
(note: this matrix C will be used for going from B1 to B1 in Step 4,
namely hγ = fγgγ ∈ Zp(γ)[x ] −→ hp ∈ Zp(α1, . . . , αt)[x ]).

We require C−1 mod p to go from B2 to B1.

Problem: What if C is not invertible in Zp?
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Choosing the “Right” Prime

There are two restrictions on the prime p:

1 p must be a Fourier prime (i.e. a prime of form k · 2r + 1, k odd and
r ≥ R, where 2R is the smallest power of two greater than
degx(f ) + degx(g)).

2 C must be invertible in Zp.

We will further restrict p to be between 230 and 231.5, so that all numbers
arising from our algorithm can be stored in a 64-bit machine without
overflow.
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Choosing the “Right” Prime

We will choose a Fourier prime as follows.

Step 1. randomly choose a prime p ∈ (230, 231.5).

Step 2. check if remainder upon dividing p − 1 by N is zero. If so,
this p is a Fourier prime. If not, go back to Step 1.

Fact

Out of all Fourier primes between 230 and 231.5 for a given N = 2R and
d = deg(γ), the probability that a random Fourier prime divides det(C ) is
at most

max

{
d/2 + Rd

8.7458× 107
,

(d/2 + Rd) · 2R

9.8163× 108

}
.
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Choosing the “Right” Prime

Example

Suppose we wish to multiply two polynomials f (x) and
g(x) ∈ Zp(α1, . . . , α4)[x ] with degx(f ) + degx(g) = 500. If deg(αi ) = 5
for each i = 1, . . . , 4 then d = 45 = 1024. Also, N = 29. So we expect, on
average, to find an “unfortunate” prime p with probability of at most

max

{
1024/2 + 9 · 1024

8.7458× 107
,

(9 · 1024 + 1024/2) · 29

9.8163× 108

}
= 0.0050739

≈ 5/1000.

i.e., if we pick a random Fourier prime between 230 and 231.5 with
N = 500 and d = 1024, we expect to choose an “unfortunate” prime with
the probability of approximately 5 in 1000.
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Summary of the Multiplication Procedure

Overall cost of the improved multiplication algorithm is
O(d3 + nd2 + dn log2 n).
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Benchmarks

All computations were performed on a Mac OS X with 2.4 GHz Intel Core 2 Duo and 2 GB of
1.07 GHz RAM. For all cases we used p = 3037000453, the largest prime for which arithmetic is
done in the 64-bit machine.
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Benchmarks

α1 is a root of z4 − 94− 7z3 + 22z2 − 55z ,

α2 is a root of z4 − 62 + 87α3
1 − 56α2

1 + (−83−+97α3
1 − 73α2

1 − 4α1)z + (80−
10α3

1 + 62α2
1 − 81α1)z

2 + (−75− 44α3
1 + 71α2

1 − 17α1)z
3, and

α3 is a root of z4 + 42− 10α3
2 − 7α2

2 − 40α2 + (−92− 50α3
2 + 23α2

2 + 75α2)z +
(37 + 6α3

2 + 74α2
2 + 72α2)z

2 + (29− 23α3
2 + 87α2

2 + 44α2)z
3.

27 / 27


	Motivation
	Representing f(x)
	Example

	Multiplication using FFT
	Multiplication
	Multiplication Strategy

	Choosing the ``Right" Prime

