The Berkowitz Algorithm, Maple and
Computing the Characteristic Polynomial
in an Arbitrary Commutative Ring

Jounaidi Abdeljaoued*

Abstract: Animproved sequential version of the Berkowitz algorithm is given that computes the coefficients
of the characteristic polynomial of an n X n matrix with entries from an arbitrary commutative ring. Some
other methods for solving the same problem are discussed and implemented in the Maple system. Several
tests show that our algorithm runs faster in the most general case.

Keywords: matrix computations, determinant, characteristic polynomial, Berkowitz' algorithm, Gaussian
elimination, computational complexity, parallel computation.

Introduction

The characteristic polynomial plays an important role in
Linear Algebra and has many applications in various areas:
the solution of numerous problems in Mathematics ([16],
[51, [9]), Numerical Analysis ([12], [18]), Computer Algebra
([17], [7]), Computer Science ([3], [20]), Engineering and,
Physics ([19]). Such problems often require the computation
of the characteristic polynomial.

The determinant of a matrix is nothing but the constant
term in its characteristic polynomial. Besides the determi-
nant of the matrix, the knowledge of all the coefficients of
the latter gives us the adjoint of the matrix and its inverse if
the determinant is invertible in the coefficient ring.

Furthermore, the coefficients of the characteristic poly-
nomial of a square matrix yield precise information about
the mathematical objects represented by this matrix. They
might be finite families of vectors, linear maps of finite di-
mensional vector spaces, as well as quadratic forms or mod-
ule structures [9].

For instance, suppose you want to discuss the rank of a
matrix whose coefficients are functions of a parameter with
unspecified values, or to determine the signature of any
quadratic form on the polynomial ring Z[)A] according to the
values of A, or to compute the sum of the principal minors of
a given dimension in a square matrix. All these problems are
naturally solved by computing the coefficients of the charac-
teristic polynomial.

The next section contains a brief discussion of some clas-
sical methods for computing characteristic polynomials. Then
we roughly indicate how Maple functions proceed and when
they fail to solve the problem. Our main purpose, though, is
to present the Berkowitz Method we have implemented in the
Maple System and to illustrate it at the end of this paper by

* Assistant at the “Ecole Supérieure des Sciences et Techniques of Tunis”
(Tunisia), Equipe de Mathématiques de Besangon, Université de Franche—
Comté, 25030 Besangon Cedex. E.Mail: Sonia.Zghal@cck.rnrt.tn

giving some experimental tests on various examples which
show the good practical behaviour of this algorithm for uni-
variate or multivariate matrices, but also for integer matrices
of quite large size. As far as we know, it is the first time this
algorithm had been implemented and tested on a sequential
machine.

Moreover, we will try to make our exposition as self-
contained as possible by giving some relevant preliminary
results from Linear Algebra. From now on we make the as-
sumption that A is a commutative ring with identity.

About some methods for computing the
characteristic polynomial

Given an n X n matrix M with entries in A, the charac-
teristic polynomial of M is the determinant of its charac-
teristic matrix M — X1, € (A[X])"*" where I, is the
n-square identity matrix and X the monic monomial of de-
gree 1 on A. Therefore, the computation of the character-
istic polynomial of a matrix with coefficients in A reduces
to the computation of a determinant with entries in A[X].
So, we are interested in computing the polynomial P(X) =
det (M — XI,) = Y0, piX"~'. Note that po = (—=1)",
pn = det (M) and by the well known Cayley-Hamilton the-
orem, that S 7' p;M" ' = — det (M), .

Besides the conventional minor expansion method which
is very efficient for sparse matrices!, the most widely used
method for computing the determinant is the Gaussian elim-
ination (GE for short).

To compute the determinant of M we perform GE over
the ring R = A with the input matrix A = M. If we want to
compute the characteristic polynomial of M, we work over
the ring R = A[X] with the input matrix A = M — X1,.
Since GE performs divisions in the fraction field of R, we
require, in general, that R be an integral domain.

"matrices with a relatively small number of non zero entries

MapleTech Vol. 4, No.3, pp.21-32; ISSN 1061-5733 (© Birkhiuser Boston 1997 21

Berkowitz Algorithm

Ignoring details of pivoting, we can express the main al-
gorithm of the Gaussian elimination by the following Maple
procedure where A is a given n-square matrix:

Procedure GE (Gaussian Elimination).

for k to n-1 do
for i from k+1 to n do
for j from k+1 to n do

Ali,j] := A[i,j] - A[i, k]l/Alk, k]*
Alk, 3]
od;
Ali, k] :=0
od;

od:

The procedure, GE, transforms the input matrix A to up-
per triangular form using only elementary row operations.
Upon termination, the determinant of A can be recovered as
the product of the diagonal entries in the triangular output
matrix.

The elimination method works well for univariate or nu-
merical coefficients, but it is too costly when dealing with
multivariate entries. The numerators and the denominators
of the intermediate expressions quickly become too long and
the fractions which arise in the calculations become harder
and harder to simplify. To overcome this major disadvan-
tage of the Gaussian elimination, an algorithm due to Jordan-
Bareiss [4] uses exact divisions in the ground ring during the
elimination process. The Jordan-Bareiss method, also called
the fraction-free Gaussian elimination (FFGE for short),
comes from a Sylvester's relation between the minors of the
matrix considered. This was apparently already known to
Jordan [12].

Let A®) be the matrix obtained at the k-th step of the
Gaussian elimination (A(®) = A) and an.‘) its coefficients.
Then the following relation is one of the Sylvester identities
anditholdsforl <k <n-1landl<i,5 <mn:

(k=1) _(k-1)

Ay ay,;
® (k-2 _ | M ki
ij A1 k-1 =
(k=1) _(k=1)
@ip a;j
with the convention that a{;> = 1 and a{? = aij.

ij ij
Therefore, the divisions are exact in the following Maple
procedure using the Jordan-Bareiss Algorithm where details

of pivoting are ignored:

Procedure FFGE (Fraction Free Gaussian Elimination).
dnm:=1;
for k to n-1 do
for i from k+1 to n do
for j from k+1 to n do

Ali,jl:=(Alk,k])*A[i,j]-Ai,k]*
Alk,3j])/dnm
od;
Ali,k]l:= 0
od;
dnm := Alk, k]
od:

A fundamental property of the FFGE algorithm is that af-
ter each iteration of the outer loop, the value dnm: =A [k, k]
will be set equal to the determinant of the k-th principal sub-
matrix of the input matrix. Upon termination, the value of
dnm will be equal to the determinant of the input matrix.

Although ordinary Gaussian elimination requires fewer
arithmetic operations than the Jordan-Bareiss algorithm, the
latter usually runs faster, particularly for multivariate matri-
ces. The Jordan-Bareiss algorithm considerably limits the
growth of the intermediate expressions during the successive
steps of computation.

Both GE and FFGE applied to a matrix over R = A or
R = A[X] require, in the general case, that A be an integral
domain. However, in the special case where R = A[X], we
compute the determinant of M — XTI, where M is over A.
The algorithm FFGE works even when A is not an integral
domain. In particular, the divisor dnm := A[k, k] ateach
stage of the algorithm FFGE will be the characteristic poly-
nomial of the k-th principal submatrix of M. A polynomial
with a leading coefficient equal to %1, and division in the
ring A[X] by a monic polynomial requires only basic ring
operations from A.

This leads to the so-called Jordan-Bareiss modified
method for computing the determinant of a matrix M over an
arbitrary commutative ring via the computation of its charac-
teristic polynomial.

While GE and FFGE require O(n®) arithmetic operations
(with divisions) in the fraction field of A, the Jordan-Bareiss
modified algorithm computes the determinantin O(n®) basic
ring operations from A.

A fourth well known method for computing the charac-
teristic polynomial is based on the Lagrange interpolation
formula,

- (X — =)
P(X)= P(xzy, — where
=3 trw) I 5=y)
= 0<:1<n
i # k
To,T1,...,T, are n + 1 distinct elements of A.
For instance one may choose z; = k for 0 < k£ <

n when A is of characteristic 0 or greater than n. In this
case, performing exact divisions by 2,. .., n is required in A

22

MapleTech

Berkowitz Algorithm

because

"L | det (M — kI,
=3 ,f,“‘,f_,\),) H -

k=0
;e

det (A — X1,

?*I/\

Thus, we have to compute n + 1 determinants with coef-
ficients in A and divide them by integers not greater than n.
This requires O(n*) arithmetic operations in the basic ring
A but uses a relatively small amount of memory location.

The interpolation method can be expressed in the form of
the following Maple procedure:
interpoly:=proc (M:matrix,X:name)

local n,Id,i,3j,N,d,L,Kar:

n:=linalg[coldim] (M)

Id:=array(identity, 1..n, 1..n):

for i to n+l do

d[i] :=linalg[det] (M-evalm((i-1)*Id))
od;

L:=[seqg(d[j], J = 1. n+l)]

Kar:=interp ([$")1, L, X):

Kar
end:

Another method due to Faddeev [15] and J. M. Souriau
[24] uses the fact based on a Newton formula and discov-
ered by the French astronomer Le Verrier [21], that the coef-
ficients py of the characteristic polynomial P(X) = >, pi
X"~ of an n-square matrix M are related to the traces Tr
(M*) of the matrix powers of M, for k ranging from 1 to n,
by the recursive formula:

k-1

—kpr = ZpiTr (M*9).
=0

This method requires division by n! for computing P(X)
(so A must be of characteristic O or greater than n).

We have implemented the Hessenberg Method, among
others, for computing the characteristic polynomial. It uses
elementary transformations that are simultaneously executed
on rows and columns of the given matrix M. This yields an
almost upper triangular matrix H which is similar to M. The
matrix H = (h;;), also called an upper Hessenberg form of
M, is such that h;; = 0 fori—j > 2 and det (M — XI,) =
det (H — XI,,). The characteristic polynomial of M is then
given by a recursive formula which relates the characteristic
polynomial of H to that of a smaller Hessenberg matrix (see
[14] and [9] for details).

Although theoretically efficient (it is O(n?)), this method
is very heavy in practice because of the fast growth of the size
coefficients. In addition, it requires working in a field.

Hence, if A is not a field, these methods are impracticable
and we must call for a method which avoids divisions in the
computation. Of course, the minor expansion method applied
to the characteristic matrix M — XI, € (A[X])"*" of M
is valid for an arbitrary commutative ring, but it is adapted to
sparse matrices and is too costly for dense matrices of large
size. On the other hand, as already seen, the Jordan-Bareiss
modified method obtained by applying the FFGE algorithm
to the characteristic matrix is less costly and is valid in the
general case.

Another method, we will not develop here, is due to Chis-
tov (see [8], [20] and [25] for the complete theory and de-
tailed proofs). It is based on the observation that P(X) =
det (M — X1I,) is the reverse of the polynomial Q(X) =
det (XM — I,,) modulo X"+ (indeed, P(X) = X"Q()).
One computes Q(X) = ((Q(X))~!)~* modulo X™** in the
formal power series ring A[[X]], using the power series al-
gebraic identities:

and (I, — XM,) ZX"M"

where M, and I, denote the principal leading submatrices
of M and I, respectively, and (XM, —) 1), the r-th
diagonal element of the inverse matrix of (X M, — I.).

The Chistov method is valid in the general case and no-
tably more efficient than the methods cited above (namely
Gauss, Jordan-Bareiss and minor expansion) for computing
the characteristic polynomial of a dense and full rank matrix.
It is one of the algorithms we have implemented in Maple for

testing and comparison?.

What does Maple do ?

Maple essentially uses Gaussian elimination or minor expan-
sion or the combination of the two for computing determi-
nants and characteristic polynomials. These two methods
have to deal with univariate rational fractions and large co-
efficients beside the hard problem of polynomial simplifi-
cation. The Maple system switches to the Jordan-Bareiss
fraction-free Gaussian elimination when the entries in the
considered matrices are integers or multivariate polynomials
on the rationals.

Consider the case of an integer input matrix. Maple's
linalg[charpoly] function — which uses a homomorphic imag-
ing scheme to control the size of intermediate coefficients —
still requires a factor of at least O(n) more space and time

2 with a decisive simplification suggested by Arne Storjohann, one of the
referees

Vol. 4, No.3, 1997

23

Berkowitz Algorithm

(bit operations) compared to the improved Berkowitz algo-
rithm we present in the next section, which performs all op-
erations directly over the integers.

In many other cases, the appropriate Maple function from
the “linalg package” fails to solve the problem of the charac-
teristic polynomial. We now give an example to show this.

When you have to compute the characteristic polynomial
of a matrix with entries in the polynomial ring Z [x] , even for
relatively small dimensions, you can see that the Maple func-
tion linalg[charpoly] fails. For example, let A = Mathard
(n,x,y) be amatrix given by the following procedure:

Mathard:=proc(n,x,vy)
local K,1i,7j:
K:=array(l..n,1..n):
for i to n do
for j to n do
K[i,3]:=randpoly([x,y],
coeffs = rand(-5..5)):
od:
od:
evalm(K) :
end:

Take n:=15 and y:=1 which yields a matrix whose coeffi-
cients are random univariate polynomials of Z [x] and try to
compute its characteristic polynomial by means of the
linalg[charpoly] function. An error message occurs after
a long time of calculation (approximately 2 hours) saying:
“System error, ran out of memory” and the
memory allocated reaches 120 Mbytes.

At the same time, the improved Berkowitz algorithm we
are going to present now gives the result in less than one
minute CPU and the memory doesn't go beyond 4.1 Mbytes
(see Appendix II for other examples and tests).

The Berkowitz method

This method uses only basic operations (addition, substrac-
tion and multiplication) in the ground field (here an arbitrary
commutative ring A with a multiplicative unit) to compute
the characteristic polynomial of a given matrix A = (a;;) €
A nxn .

In fact, Berkowitz [6] provided a uniform family of arith-
metic parallel circuits with size O(n®+1*¢) and depth
O(log® n), where € is an arbitrary positive real number and
a the exponent? for n x n fast parallel matrix multiplication
with an O(log n)-depth circuit.

In this way he gave a decisive improvement to the asymp-
totic complexity for the parallel computation of determinants,
characteristic polynomials and adjoints of matrices with en-
tries in an arbitrary commutative ring with arbitrary charac-
teristic.

3The current estimation of ¢ is due to Winograd & Coppersmith, 1987,
with o < 2.376.

A slight modification of the Berkowitz Algorithm allowed
us to improve the complexity result by producing a family
of arithmetic parallel circuits with size O(n®*!logn) and a
precise evaluation of the overhead hidden constantin the “big
07, as well as a simplified version of this algorithm.

It is not our purpose to develop the parallel version of the
Berkowitz Algorithm here. For a detailed exposition, we re-
fer the reader to [6], [13], [1], and [2]. On the other hand,
we will look more closely at the sequential version of the im-
proved Berkowitz Algorithm based on the “Samuelson For-
mula”.

The Maple code of the main algorithm we have called
“berkosam” is given in Appendix I and presented in the sec-
tion “The main algorithm and its complexity” with a de-
rived modular version called “berkomod” and another ver-
sion called “berksparse” which is very efficient and partic-
ularly well adapted to the case of sparse matrices. Finally,
some experimental results are presented in the section “Ex-
perimental results " and recorded on the comparison tables
of Appendix II. For the convenience of the reader, some rel-
evant facts from Linear Algebra are given in the following
preliminaries.

PRELIMINARIES

Let A, = A. For all integers » (1 < r < n — 1) we denote
by:

e I, the identity r x r matrix ;

o A, ther x r submatrix of A built on the first 7 rows and
the first r columns of A that is, A, = (a;;) with1 <7 <7
and1<j<r;

o P.(X)=det(A,— XI,) = YI_ypr—i X' the charac-
teristic polynomial of A, ;

e R, the 1 x r matrix of elements a4, ; suchthat1 < j <
T

o S, the r x 1 matrix of elements a; 41 suchthat1 <7 < r.

For any n-square matrix M = (m;;) € A™*" we denote
by M;; the cofactor of m;; in the matrix M, ie. M;; =
(—1)"*7 det (M[i | j]) where M[i | j] is the submatrix (n. —
1) x (n — 1) of M obtained by deleting the i-th row and the
J-th column of M. Let Adj (M) be the adjoint of M, that is,
the matrix transposed of the matrix (14;;).

It is well known that det (/) can be obtained by means
of a row (or a column) expansion, for instance det (M) =
Z?:l m,-j]\lij (or det (M) = Zr}:l 7TL,‘jM,'j Yand Adj (]\/[)
M = MAdj(M) = det (M) I,.

In particular, one has (XI, — A4,) Adj (A, — XI,) =
— P,(X)I,. Viewed as a polynomial equality whose co-
efficients are matrices in A"*", this identity shows that the
polynomial (XI,— A,) divides the polynomial —P,.(X)I,
and that the quotient is Adj(A, — XI,.), a polynomial of
degree » — 1 in X. The latter is obtained by performing
the analog of an euclidean division in the polynomial ring
AT™*"[X] by the monic polynomial (XI. — A,) with a re-

24

MapleTech

Berkowitz Algorithm

mainder P,.(A4,) = 0. This procedure is due to the famous
algebraic identity known as the Cayley-Hamilton theorem. It
is easy to check that:

Lemma 0.1
Adj(A, — XT,) =
r+1
- Z(A,’f_zpo + oo+ Lpr—g) XTI
k=2
A, S:

By expanding the determinant of the (r+

R, Ar41,r4+1
1) x (r + 1) matrix A,4; along its last row, then expand-
ing the obtained cofactors along their last common column
(which is nothing but S,.) we easily see that:

Lemma 0.2 For all integers n (n > 2)and v (1 < r <
n — 1), given a matrix A € A™*";

det (Ari1) = ary1,r+1 det (A4,) — R.Adj(4,)S,

Applying the two lemmas above to the characteristic matrix
A,41 — XT,41 and using the notations above, we obtain:

Proposition 0.1 : Samuelson's Formula

Pri1(X) = (art1,041 — X)Pr(X) +

S IRAETS)po + oo+ (ReSy)pr—2) XTE.
k=1

ANOTHER FORM OF THE SAMUELSON
FORMULA

We shall give another form of the Samuelson Formula de-
rived by Berkowitz [6]. This yields a very practical algorithm
for computing (without division) the characteristic polyno-
mial followed by the determinant, the adjoint, and the inverse
of a matrix whose coefficients belong to an arbitrary commu-
tative ring.

We use special (n + 1) x n matrices which are Toeplitz
subdiagonal, namely matrices (a;;) wherefor 1 <: <n+1
and1 < j <n, a;; = a(;_j for some sequence (ar)o<k<n
of elements in A with the convention that a; = 0 if 7 < 0.

For each polynomial P(X) = Zzzo ar X"~F with co-
efficients in A, we consider:
ao
ai

e the vector ? = of its coefficients ;

ad
o the special (d + 1) x d lower triangular Toeplitz matrix,
as defined above, associated to the sequence (ar)o<r<d Of
coefficients of P and denoted by Toep (P).

ag 0 0 0
ay ag 0 0
as a ag 0
Thus Toep (P) =)
ao
aq @ad-1 Qd-2 -+ a1

and the Samuelson Formula can be written in the form of
an (7 + 2)-vector equality P11 = Toep (Qr41) X P, where
Qr41 is the polynomialin X: Q,41 = =X +ary1r1 X7+
(B8)X bt (RALE) X +...+(R;A£‘15rl.} Ap-
plication of the relation above to the vectors P, .., Py for

r > 2 and the fact that P = (a—l) = Toep (()1) show
11

that:

Proposition 0.2 The coefficients of the characteristic poly-

nomial P,(X) of any principal submatrix A, (1 <r < n) of
A are given by:

P, = Toep (Qr) x Toep (Qr—1) X --+ x Toep (Q1).

In particular, the characteristic polynomial of the given
matrix 4 € A™*" is given by:

P, = Toep (Qn) X Toep (Qn-1) x -+ x Toep (Q1)

which leads to the Berkowitz Algorithm. Below, we will only
deal with the improved sequential version of this algorithm.

The main algorithm and its complexity

Input: An n-square matrix A € A™*",
Output: The characteristic polynomial P, of A.

(1) Initialize the vector Vect to Vect := (ik)

a1y
(2)for r from 1 ton — 1

- Compute the entries { R, A¥~15,},._, of the Toeplitz
matrix Toep (Qr4+1) ;

- Update Vect into
Vect := Toep (Qr+1) X Vect;

@ Return P, the unique polynomial satisfying
P, = Vect.

THE COMPLEXITY

It is important to emphasize that the computations of step
(2) can be performed much more efficiently when executed
serially by using only dotproducts and matrix-vector multi-
plications instead of matrix-matrix multiplications.

More precisely, instead of computing the matrix powers
A};'“l for 1 < k < r we first compute R,.S, then for & rang-
ing from 2 to r the matrix-vector product AF=15. and the
dotproduct RrA,’f —16,.. In this case, the algorithm is easily

Vol. 4, No.3, 1997

25

Berkowitz Algorithm

shown to involve less than £n* — n® + $n? arithmetic op-

erations (additions/substractions and multiplications) in the
ground ring A.

On the other hand, the parallel version of the algorithm
([61, [11, [2], [13]) computes in parallel the n — 1 Toeplitz
matrices of step (2) and requires O(logn) n-square matrix
squarings in each parallel step. Roughly speaking, this is
why the parallel circuit size supports the asymptotic bound
O(n®*!log n) when using the fast matrix multiplication (o <
3) and leads to sequential time O(n?logn) instead of the
O(n*) above, when using the standard matrix multiplication
(a=3).

It is worthwhile to notice that the complexity bound is re-
duced to O(n?) basic operations for the improved Berkowitz
algorithm, in the case of n X n sparse matrices with O(n)
non zero entries.

THE MAPLE CODES

In Appendix I, we give the Maple code of the improved
Berkowitz algorithm (J. Abdeljaoued, 1994) with the calling
sequence “berkosam (A4, X)” for computing the characteris-
tic polynomial (in X) of the given n-square matrix A. This
code has received great benefit from the suggestions of the
referees who pointed out that the explicit construction of the
Toeplitz matrices is not required and that a slight modifica-
tion provides a very efficient algorithm for sparse matrices.

We call it the simple code in opposition to the “modu-
lar” code berkomod which performs computations modulo
a given ideal in a polynomial ring. In fact, in order to ob-
tain the modular code, we have just adapted the simple code
in a way which enables us to work in a quotient ring like
Z,[z,y]/(P(z),Q(z,y)) where z, y are two independant
variables; P € A[z] and @) € Az, y] are respectively monic
in 2 and .

So, the procedure berkomod with the calling sequence
“berkomod (A, X, var, Ideal,p)” computes by Berkowitz'
method the characteristic polynomial (in X) of A, a given
square matrix with coefficients in Z, [var|/(Ideal) , where p
is a positive integer, var a list of indeterminates and Ideal
a list of polynomials in war. In our examples, we take the
same number of polynomials and indeterminates and require
that Ideal [i] be monic in var [¢]. For this, auxiliary proce-
dures are used to construct such examples and perform the
modular computations. The procedure Matmod creates ran-
dom matrices with polynomial entries in the quotient ring
Z, [var]/(Ideal):

Matmod:= proc(n:posint,var:list,
Ideal:list,p:posint)
local K,1i,73:
K:=array(l..n,1..n):
for i to n do
for j to n do
K[i,j] :=randpoly (var,

coeffs=rand(-5..5)):
K[i,J] :=simpomod(",var,Ideal,p)
od:
od:
evalm(K) :
end:

The procedure simpomod below takes a list of variables
var, a polynomial P from Z[var], a list of polynomials
Ideal in Z [var], a positive integer p and outputs a repre-
sentative of P in the ring Z, [var] modulo Ideal:

simpomod:= proc(P,var, Ideal,p)
local locP,loci:
if not type(P,rational) then
locP:=P:
for loci to nops(var) do
locP:=rem(locP,Ideal([loci],var([loci]):
locP:=1locP mod p:
od:
sort (locP) else P mod p
fi:
end:
The simpomod procedure enables us to obtain the mod-
ular berkomod from the simple procedure berkosam (see
Appendix I).

Experimental results

Both simple, modular, and sparse versions of the improved
algorithm have been experimented with in Maple V (Release 3)
on DEC Alpha-600, Sun Sparc-10, IBM RS/6000 and Mac-
Intosh platforms: the results were really remarkable when
compared with the linalg[charpoly] function and other al-
gorithms we have implemented in Maple, namely Chistov*,
Faddeeyv, Jordan-Bareiss modified, Hessenberg and the Inter-
polation Method (“interpoly”).

The Berkowitz Algorithm referred to as berkosam,
berkomod or berksparse according to the simple, modu-
lar or sparse version, runs faster and, in comparison to others
as shown in our tables, does not blow up for large values of
n with random integer entries or for small values of n and
random polynomial entries with two variables.

However, in some particular cases, there is no significant
difference between Berkowitz and some other algorithms
namely, Faddeev and Jordan-Bareiss modified when dealing
with small rank matrices or Interpolation Method with small
size matrices.

On the other hand, even for simple integral domains, the
Maple function linalg[charpoly] fails for relatively small n x
n matrices with entries in Z[z, y].

For example, to compute the characteristic polynomial of
the 10 x 10 matrix obtained by using the procedure Mathard

4 with its two versions, for dense and sparse matrices

26

MapleTech

Berkowitz Algorithm

(10,z,y) (see Section "What does Maple do?”), the running
time for berkosam is less than 5' CPU while it is 48' 35”
for charpoly. The latter is “Out of Memory” for n := 12
after 2H 30' of computation while berkosam takes 15' 30”
CPU time and 27. 782 Mb of memory allocation for the same
matrix.

In fact, even the Maple linalg[det] function fails in the
computation of the sole determinant of such a matrix for
n := 15 while berkosam terminates and gives the coeffi-
cients of the characteristic polynomial in less than 1H 24'
and 61 Mbytes of memory allocation.

In Appendix II, at the end of this paper, we give some
comparison tables which yield an interesting review of the
capabilities (in terms of running time and memory allocation)
of the seven algorithms written in the Maple programming
language and executed on various examples. Note that for the
fourth group of examples, the rank of the matrices Jou(n,)
for any positive integer n does not exceed 3. This is why the
Faddeev and the Jordan-Bareiss modified methods run faster
in this case. Notice that improved Berkowitz and Chistov
algorithms works very well for sparse matrices with integer
entries.

Conclusion

Some theoretical results about solving triangular systems of
algebraic equations and the related algebraic complexity (see
H. Lombardi's thesis [22]) are strongly relevant to algorithms
absolutely cleared of divisions. The same remark holds for
the quantifier elimination theory which calls upon such al-
gorithms, or for Dynamic Evaluation [11] when a discussion
concerning multivariate polynomials on a field K occurs and
a question like: “is P(z1,%32,...,%,) = 0 modulo Z, 77

where 7, is the ideal generated by

(Pl(.’L‘l), Pz(.’l,‘l,.’llz), e ,Pn(.'L‘l,.'Eg, e ,.’L‘n)),

has to be answered before going on. One method is to com-
pute the subresultant coefficients of the pair of polynomials
(P, P,) according to the variable z, in the polynomial ring
K|21,%2,...,%5] and to reduce the results obtained modulo
the ideal 7,,—; generated by

(Pilzi)s Polwis oa)s « oo s Pumt{@s 8941 5 Br—1))s

For n > 3, this leads to very heavy calculations and a bet-
ter suited solution is to carry out the computations in the
quotient-ring K [z1,22,...,%n] /Zp—1 which may contain
zero divisors.

Now, the advantage of using Berkowitz' method lies in
the very nice property that no division is needed and there-
fore, it is possible to work directly in such a ring with zero
divisors.

The great disadvantage of Gaussian elimination as well
as the fraction-free Gaussian elimination is that they require
the possibility to perform divisions in the coefficient ring of
the matrix. And when it happens that this division is not pos-

sible in such a ring, the linear algebra problems must often
be treated by a suitable algorithm which does not require any
division at all.

Compared with the Chistov method which has the same
parallel and sequential theoretical complexity as the improved
Berkowitz algorithm®, the latter has the major advantage of
running faster in practice beside the fact that instead of com-
puting the characteristic polynomial of a single matrix A , it
actually computes all those of principal leading submatrices
of A. This is why, in the most general case, the improved
Berkowitz method seems to be the best algorithm available
today in practice for computing the characteristic polynomial
over an arbitrary commutative ring.

Acknowledgments

The author is grateful to Henri Lombardi who made this work
possible, Michael B. Monagan for his advice and his active
interest in the publication of this paper, Erich Kaltofen for
suggesting the comparison with the Chistov method, Joachim
Von Zur Gathen for having pointed out the importance of
the empirical experimentation results, Bruno Salvy and the
referees of the Maple Technical Newsletter for their contri-
bution in optimizing and alleviating the Maple codes of the
algorithms and Jo&l Marchand for his precious help in testing
these algorithms on the GDR Medicis machines at the Ecole
Polytechnique.

The author is also greatly indebted to Arne Storjohann for
the thorough job he has done in checking this paper and for
giving improved codes for Berkowitz and Chistov algorithms
beside pointing out the good behaviour of our algorithm in
the case of sparse matrices.

References

[1] J. Abdeljaoued: Sur ['algorithme de Berkowitz pour
le calcul du déterminant dans un anneau commutatif
arbitraire, Prépublication de 1'Equipe Mathématique
de Besangon # 95/21, Université de Franche-Comté,
(Décembre 1994).

[2] J. Abdeljaoued: Algorithmes rapides pour le calcul
du polynéme caractéristique, These de 1'Université de
Franche-Comté, (Mars 1997).

[3] A.V.Aho,]J.E. Hopcroft and J. D. Ulmann: The design
and analysis of computer algorithms, Addison Wesley,
Reading, MA, (1974).

[4] E. H. Bareiss: Sylvester's identity and multistep
integer-preserving Gaussian elimination, Math. Com-
put. 22, pp. 565-578, (1968).

5 They are O(n*). However, the Chistov sequential complexity al-
gorithm is asymptotically (2/3)n* ([2]) while improved Berkowitz is
(1/2)n*.

Vol. 4, No. 3, 1997

27

Berkowitz Algorithm

[5] R. Bellman: Introduction to matrix analysis, McGraw-
Hill, New York, Toronto, London, (1960).

[6] S.J.Berkowitz: On computing the determinant in small
parallel time using a small number of processors, Infor-

mation Processing Letters, 18, pp. 147-150, (1984).

[7]1 D. Bini and V. Pan: Polynomial and Matrix Compu-
tations, Vol. 1 Fundamental Algorithms, Birkhiuser,

Boston Basel Berlin, (1994).

[8] A. L. Chistov: Fast parallel calculation of the rank of
matrices over a field of arbitrary characteristic, Proc.
FCT '85, Springer Lecture Notes in Computer Science

199, pp. 147-150, (1985).

H. Cohen: A course in computational algebraic num-
ber theory, Graduate Texts in Maths, Vol. 138, Springer
Verlag, (1993).

[10] D. Coppersmith and S. Winograd: Matrix multiplica-
tion via arithmetic progressions, Proc. 19th Ann. ACM

Symp. on Theory of Computing, pp. 1-6, (1987).

(11]
new method for computing in algebraic number fields,
Eurocal '85, Vol. 2, Springer Lecture Notes in Com-
puter Science 204, pp. 289-290, (1985).

[12] E. Durand: Solutions numériques des équations
algébriques, Tome II, Masson & Co Editeurs, Paris,

(1961).

[13] W. Eberly: Very fast parallel matrix and polynomial
arithmetic., Technical Report # 178/85, PHD Thesis,
University of Toronto CA, pp. 19-27, (1985).

[14] D. K. Faddeev and V. N. Faddeeva: Computational
methods of linear algebra, W. H. Freeman & Co., San

Francisco, (1963).

[15] D. K. Faddeev and I. S. Sominskii: Collected Problems

in Higher Algebra, Problem No. 979, (1949).

[16] F. R. Gantmacher: Théorie des Matrices, Tome 1,

(Théorie Générale), Dunod, Paris, (1966).

[17] M. Giusti and J. Heintz: La détermination des points
isolés et de la dimension d'une variété algébrique peut
se faire en temps polynomial, to appear in Comptes
Rendus of “Computational Algebraic Geometry &

Commutative Algebra”, Cortona, Italy, (1991).

[18] G. H. Golub and Ch. F. Van Loan: Matrix Computa-
tions, J. Hopkins Univ. Press, Baltimore and London,

(1993).

[19] A.Jenning: Matrix computation for Engineers and Sci-

entists, John Wiley & Sons, New York, (1977).

s

Dora J. Della, C. Dicrescenzo and D. Duval: About a

[20] R. M. Karp and V. Ramachandran: Parallel Algorithms
for Shared-Memory Machines, in Handbook of Theo-
retical Computer Science, Vol. A, J. van Leeuwen Edi-
tor, Elsevier Sc. Publish., Amsterdam, pp. 869-941.

[21] U. J. J. Le Verrier: Sur les variations séculaires des
éléments elliptiques des sept planétes principales: Mer-
cure, Venus, La Terre, Mars, Jupiter, Saturne et Uranus,

J. Math. Pures Appli., 4, pp. 220-254, (1840).

[22] H. Lombardi: Sous-résultants, suite de Sturm, spécia-

lisation, in These de I' Université de Nice, (1989).

[23] P. A. Samuelson: A method for determining explicitly
the characteristic equation, Ann. Math. Statist., 13, pp.

424-429, (1942).

[24] J. M. Souriau: Une méthode pour la décomposition
spectrale et I'inversion des matrices, C. R. Acad. Sci-

ences, 227, pp. 1010-1011, (1948).

[25] 1. Von Zur Gathen: Parallel Linear Algebra, in Synthe-
sis of parallel algorithms (J. H. Reif Editor), Morgan
Kaufmann publishers, San Mateo, California, pp. 573—

617, (1993).

Biography

Jounaidi Abdeljaoued, graduated in Mathematics from the
“Ecole Normale Supérieure” of Tunis in 1966 and post-
graduated from the “Faculté des Sciences” of Tunis
(TUNISIA) in 1974 with a particular interest to Lie algebras
and algebraic semi-groups. He is currently a Teaching As-
sistant of Mathematics at the “Ecole Supérieure des Sciences
et Techniques” of Tunis where he is also concerned with the
use of Computer algebra in Mathematical education. He has
combined his job with preparing a Doctorat Thesis in Com-
puter Algebra, Mathematics and Applications at the “Univer-
sité¢ de Franche-Comté” (Besangon, FRANCE). His doctoral
thesis was completed in March 1997.

28

MapleTech

Berkowitz Algorithm

Appendix I
A

berkosam:= proc (A:matrix,X:name)
local n,Vect,r,C,Ar,R,S,Q,1i,3,t0,tl,wf,polsav;
description ‘berkosam(A,X) computes the characteristic polynomial
in X of the given matrix A by Berkowitz' method’ :
n:=1linalg[coldim] (&) ;
if linalg[rowdim] (A)<>n then ERROR(‘'not a square matrix',A) fi;
if n=1 then RETURN(A[1l,1]-X) fi;
if n=2 then RETURN (normal ((A[1l,1]-X)*(A[2,2]-X)-A[2,1]1*A[1,2])) £fi;
t0:=time () :
Vect:=table([1=-1,2=A[1,1]]); C[1]:=-1;
for r from 2 to n do
for i to r-1 do S[i]:=A[i,r] od:
C[2]:=A[r,xr];
for i from 1 to r-2 do
C[i+2] :=normal (convert ([seq(A[r,j]1*S[j],j=1..x-1)], +7)):
for j to r-1 do
0[j]:=normal (convert ([seq(A[j,k]1*S[k], k=1..xr-1)], +"))
od;
for j to r-1 do S[j]:=Q[j] od;
od;
Cl[r+l] :=normal (convert ([seq(Alr,jl*S[j],j=1..x-1)], +7)):
for i to r+1 do
Q[i] :=normal (convert ([seq(C[i+1-j]*Vect[]j],j=1..min(x,i))], +))
od;
for i to r+l do Vect[i]:=Q[i] od;
od;
polcar:=normal (convert ([seq(Vect [i+1]*X" (n-i),i=0..n)], +7)):
tl:=time()-t0:wf:=(status[2]-w0)/125:wf:=trunc("):
lprint (*The running time is :',tl, ‘m.secs’):
lprint (*The memory allocation is :°,wf, ‘Kbytes'):
polcar:
end:

S A R

The procedure berkosam as well as the Chistov algorithm can be adapted to the particular case of sparse matrices. This is
done for berkosam by a simple modification:
at each stage through the loop for r from 2 to n the sums are taken over integers where the matrix entries are non
zero that is, the set { j/ 1 < j < r-1 and A[r, j] # 0}.

The modular version berkomod is obtained from the simple procedure berkosam by calling the procedure simpomod (see
section “The Maple codes”) after each coefficient computation. For example, we replace the instruction
“for i to r+l do Vect[i]:=Q[i] od” in berkosam by the following one:
“for i to r+l do Vect[i] :=simpomod(Q[i],var,Ideal,p) od”.
Another example: just after the line
“C[i+2] :=normal (convert ([seq(Al[r,jl1*S[j],3=1..x-1)], +)):"”
we add the instruction “ C[i+2] : =simpomod (" ,var,Ideal,p) : ” and soon.
We conclude the procedure berkomod with:
“normal (convert ([seq(Vect [1+1]*X" (n-i),1i=0..n)], +)): simpomod(",var,Ideal,p): ”.

Vol. 4, No.3, 1997 29

Berkowitz Algorithm

Appendix II : COMPARISON TABLES
(Memory allocation in Megabytes)

First Group : randmatrix(n,n)
(Dense integer matrices)

matrix berkosam linalpoly t Faddeev barmodif § Chistov Hessenberg
n=16 CPU Time 1.82” 5.75” 12” 9.65” 295~ 5”7
Mem. Alloc. | 3.014 Mb 4.455 Mb 4,752 Mb 4. 586 Mb 3. 538 Mb 5. 806 Mb
n =920 CPU Time 4.43” 177 28” 24.15” 6.92” 20”
Mem. Alloc. | 3.538 Mb 4.717 Mb 6. 192 Mb 5.111 Mb 3. 669 Mb 12. 500 Mb
n =95 CPU Time 16.60” 41.62” 1'07” 1' 05~ 16.60” 1' 28”
Mem. Alloc. | 3. 800 Mb 4. 848 Mb 6. 978 Mb 5. 635 Mb 1.900 Mb 28. 668 Mb
n = 32 CPU Time 29.75” 2' 127 3'16” 3' 33 43.80” ~ 2H
Mem. Alloc. | 3.931 Mb 4.980 Mb 8. 028 Mb 7.732 Mb 3. 931 Mb ouT*
n = 40 CPU Time 1' 137 6' 217 17" 58” 12' 06” 1' 487 -
Mem. Alloc. | 8. 124 Mb 5.242 Mb 12.480Mb | 12.581 Mb | 4. 062 Mb -
n = 50 CPU Time 304> 21' 05~ 2H 38' 50” | 46' 30~ 4' 37 -
Mem. Alloc. | 8. 386 Mb 5. 897 Mb 21.000Mb | 18.871 Mb | 4.193 Mb -
n = 64 CPU Time 8" 47 1H 16' 26” 13H 15' 45” | 3H 56' 24” 13' 23” -
' Mem. Alloc. | 8. 648 Mb 7.076 Mb 39.600Mb | 31.451Mb | 4.324Mb -
n =198 CPU Time 8H 17' 38~ 71H 33' 31” ~ 170H ~ TH 11H 22' 48” -
Mem. Alloc. | 13. 104 Mb | > 120 Mbytes ouT* ouT* 13. 629 Mb —
1 The Maple linalg[charpoly] function.
} Procedure corresponding to the Jordan-Bareiss modified method.
* OUT means that, after a more or less long time of calculation, an error message “Out of memory”
is returned by the System and that the memory allocation had reached a threshold of about 350 Mbytes.
Second Group : Mathard(n, z, y)
(Matrices with polynomial entries)
matrix berkosam linalpoly Faddeev barmodif Chistov
n =10 CPU Time 4' 04” 48' 35” 53' 31~ ~ 17 13' 177
Mem. Alloc. 16. 119 Mb 90. 500 Mb 97. 000 Mb ouT 20. 705 Mb
5 = CPU Time 15' 30” ~ 1H 25' ~ 1H 10' - 54' 18”
Mem. Alloc. 27.782 Mb ouT ouT - 27. 127 Mb
n=15 CPU Time 1H 23' 24” - - - 5H 28' 28~
Mem. Alloc. 60. 806 Mb - - - 53. 466 Mb
n=10 CPU Time 453”7 47" 25.50” 1'12” 10.10”
&y=1 Mem. Alloc. 4. 062 Mb 9. 924 Mb 7.207 Mb 6. 290 Mb 4. 454 Mb
n=15 CPU Time 42.33” =~ 2H 10' 4' 027 22' 06” 1' 33”
&y=1 Mem. Alloc. 6. 682 Mb ouT 16. 381 Mb 9. 400 Mb 7.207 Mb
n=20 CPU Time 3'26” - 21' 577 3H 24' 477 7 147
&y=1 Mem. Alloc. 5. 110 Mb - 38. 790 Mb 13. 600 Mb 9. 960 Mb
n=25 CPU Time 11' 56” - ~ 1H 10' 23H 54' 55” 24' 527
&y=1 Mem. Alloc. 17. 166 Mb - ouT 20. 000 Mb 20. 050 Mb

30

MapleTech

Berkowitz Algorithm

Third Group : Matmod(n, var, Ideal, p)

(Matrices over polynomial quotient-rings)

1. For var = [z], Ideal =[2® —1] and p=T :

matrice berkomod linalpoly Faddeev barmodif Chistov
=10 CPU Time 2457 14”7 % 43” 4.10”
n=1 Mem. Alloc. 3. 407 Mb 6. 280 Mb 5. 600 Mb 3. 538 Mb
n =12 CPU Time 443~ 2' 037 " 1' 527 7.18”
Mem. Alloc. 3. 538 Mb 17. 900 Mb 5. 800 Mb 3. 538 Mb
n =16 CPU Time 1175”7 ~ 1H 30’ ¥ 8 31”7 18.68”
Mem. Alloc. 3. 668 Mb OuT 6. 670 Mb 3. 800 Mb
2. For var = [¢,y]; Ideal = [H, L] ; and p=11 :
matrix berkomod linalpoly Faddeev barmodif Chistov
n =10 CPU Time 26.62” 34' 04 1' 207 1H 03' 09” 48.15”
Mem. Alloc. 4. 454 Mb 74. 492 Mb 6. 192 Mb 19. 860 Mb 6. 158 Mb
n=19 CPU Time 48.18” ~ 1H 50' i 4H 56' 177 1' 29”7
Mem. Alloc. 4. 454 Mb ouT 26. 478 Mb 7. 600 Mb
n=16 CPU Time 2' 04 - " ~ 58H 4
Mem. Alloc. 4. 848 Mb - ouT 13. 104 Mb
3. For var = [z,y] ; Ideal = [H,L]'; and p =17 :
matrix berkomod linalpoly Faddeev barmodif Chistov
n=10 CPU Time 27.55” 38' 13” 1' 28”7 1H 10' 01” 50.27”
Mem. Alloc. 4. 324 Mb 76. 472 Mb 4. 586 Mb 21. 098 Mb 6. 028 Mb
n=192 CPU Time 49.78 " ~2H 2' 43 SH 27" 49 1' 33”
Mem. Alloc. 4. 586 Mb OuT 4.717 Mb 27. 520 Mb 7. 992 Mb
n=16 CPU Time 2' 117 - 7' 207 ~ 84H 40' 4' 25”7
Mem. Alloc. 4. 848 Mb - 5.372Mb ouT 14. 284 Mb

t We have taken H = 2® —5zy+1 and L =¢* — 3y + 1.
* Means that Faddeev is not applicable in this case (since p < n).

Vol. 4, No. 3,

1997

31

Berkowitz Algorithm

Fourth Group : Jou(n,z) !

(Matrices with very small rank)

matrix berkosam linalpoly Faddeev barmodif Chistov
CPU Time 6.27” 9” 4.55” 6” 14”
=10 | Mem. Alloc. | 4.980Mb | 4.600Mb | 4.455Mb | 4.586Mb | 5.110Mb
n =15 CPU Time 1' 00” 5' 107 16.47” 26” 2' 08”
Mem. Alloc. 7. 207 Mb 13.200 Mb 4.717 Mb 5. 504 Mb 7. 338 Mb
n =920 CPU Time 5' 09” = 3H 30' 43” 1'12” 10' 55”7
Mem. Alloc. 11. 400 Mb ouT 5. 668 Mb 7.077 Mb 10. 352 Mb
0= 925 CPU Time 19' 01”7 =~ 3H 30' 1'39” 2'37” 44' 217
Mem. Alloc. 17. 429 Mb ouT 7. 240 Mb 7. 863 Mb 18. 476 Mb
t Jou(n,z) is an n x n matrix with entries J;;(x) € Z[2] given by the formula:
Jij@)=a*(z—i5)* + (@ +j)(z+i)* +z forl<i,j<n
It is of rank < 3 for all = and every positive integer n. Notice the striking superiority
of the Faddeev and the Jordan-Bareiss modified methods in this exceptional case.
Fifth Group : randmatrix(n, n, sparse)
(Sparse integer matrices)
. matrix berksparse chisparse * linalpoly barmodif Faddeev
n = 32 CPU Time 513" 35727 59.23” 15.73” 2' 137
Mem. Alloc. 3. 668 Mb 4. 062 Mb 4. 848 Mb 4. 848 Mb 4. 586 Mb
n = 50 CPU Time 217 56” 5' 32» 4' 327 12' 297
Mem. Alloc. 3. 930 Mb 4. 586 Mb 5. 110 Mb 6. 945 Mb 5. 504 Mb
e = 6 CPU Time 427 2' 00” 14' 46” 7' 107 32! 35"
Mem. Alloc. | 4. 062 Mb 4. 848 Mb 5. 240 Mb 6. 814 Mb 6.028 Mb
n =128 CPU Time 6' 277 20' 38” 4H 29' 43” 8H 17" 55” stopped
Mem. Alloc. | 4.978 Mb 7. 076 Mb 18. 346 Mb 16. 774 Mb > 19 hours
n = 200 CPU Time 29' 207 2H 00' 19” stopped stopped -
Mem. Alloc. 5. 110 Mb 21. 098 Mb > 16 hours > 16 hours -

¥ The sparse version of Chistov's algorithm.

32

MapleTech

