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Abstract: Differential equations with piecewise continuous coefficients or piecewise continuous perturbation
often arise in physics and engineering. For example, forcing terms of electro-magnetic field type are often
discontinuous in the presence of shielding materials. And in control theory, (optimal) controls are often
discontinuous, for example, bang-bang optimality results. The author designed and implemented the new
piecewise facility in Maple V Release 4. In this paper we show how to use symbolic methods using

piecewise functions for control theory problems.

Introduction to Piecewise functions

In Maple V.4 the implementation of piecewise was
replaced and the functionality significantly extended. The
new implementation of piecewise is based on the theory of
closed form solutions of ordinary differential equations with
piecewise continuous coefficients [Moh94], [Moh95],
[Moh96], [Jeffrey]. The theory provides a normal form for
piecewise functions over the real axis, and an extension of the
classical symbolic algorithms for integration and solutions
of differential equations to equations whose coefficients are
piecewise continuous functions. The symbolic approach to
piecewise functions, in contrast to the numeric approach, al-
lows us to manipulate piecewise functions where the bound-
ary of the pieces can depend on parameters. Note, the default
value if not provided as the last argument of piecewise is 0.
For example

> assume (a>0) ;

> piecewise (x<0,-x,X);
{ - <0
x otherwise

> convert (abs(a-"),piecewise,X);
—rz—a =< -—a

a+zx <0

a—x z<a

r—a a<x
Control theory

In mathematical control theory one tries to find an optimal
control to a system modeled by a differential equation. The
optimality of the control is determined by a side relation,
often an integral, which is to be maximized or minimized.
Given a differential equation

y = f(y,u)
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and a cost function J(y(t), u(¢)) the problem of optimal con-
trol consists of finding the control function w«(t) such that
the cost function J is maximized or minimized. We solve
the problem by finding a prototype control function depend-
ing on parameters such that a certain instantiation of the pa-
rameters represents the optimal solution. This problem is
in general unsolvable. But with appropriate constraints on
the control function, for example, that it is bounded e.g.,
—a < u(t) < p, classes of problems where the ansatz for the
control functions is known can be identified. In these cases
the Pontryagin maximum principle [Barnett75] predicts that
the optimal bounded control function is piecewise continu-
ous.

If we know the synthesis function « (the control func-
tion depending on parameters), then the problem of optimal
striking, optimal control, can be solved using the theory un-
derlying piecewise. This means, having an ansatz for the
function u(t), we have to solve a differential equation with
piecewise perturbation or piecewise coefficients.

Example 1: parking a rocket car

We start with a simple illustrative example: The problem is
to park a car. The car is initially stationary and has to be
moved a certain distance d. This car is a so called rocket-car,
since it uses fuel to brake.

The differential equation modeling the rocket-car with
acceleration u(t) is easily found:

y// — 7

We study two different cost functions, one minimizes the
parking time, the other takes fuel costs into consideration.
The latter is realized by using a parameter % in the cost func-
tion J, indicating if it is more important to use less fuel, in
which case £ is small, or to park in less time. The smaller J5,
the less resources, time and fuel, we need to park.

T T
J1:/ 1dt, Jg:/ k+ |u|dt.
0 0
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The acceleration is bounded: —1 < u < 1 and we assume
that the braking and acceleration forces are identical (rocket).
Time-optimal First we consider the problem of time-

optimality by optimizing J;. Given a fixed parking distance
d, the goal is to park in minimum time 7'. Since the control
function is bounded the control is bang-bang. It is clear from
the modeled problem that there is one switch. «(t) models
maximum acceleration until time point 7'/2 and then maxi-
mum braking until 7. We make the ansatz:

> u:=piecewise(t>=0 and t< T/2,1,t>=T/2

5 and t<T,-1);

u'—{l —t<0and t—-1/2T<0

T 1-1 1/2T-t<0andt— T<O0

The formal parameter T (the total time) is positive. This
leads to the following assumptions:
> assume (T>0) ;

> convert (u,piecewise, t);

0 t<0
u=d ! t<1/2T

-1 t<T

0 T<t

Maple computes the solution of the model equation under
the initial conditions y(0) = 0 and D(y)(0) = 0.

> dsolve({diff(y(t),t,t)=u,y(0)=0,D(y) (0)=0}

> . ylE));:
0 t<0
1{247 t<1/2T
y(t) = —1/2¢2 —1/4 T2 +¢T ¢t< T
1/4 T? T<t

Note that the solution is constant for ¢ > T, since the
car stops at time point 7'. The parking distance is TT2 For a
given distance d the shortest possible parking time is 2 V.
No further optimization is needed. Fig. 1 shows the position
y(t) of the car at time ¢ with T' = 4. The phase diagram Fig. 2
(x-axis: y(t), y-axis: y'(t)) shows two parabolic curves, the
acceleration and braking.

4 o 2
/ / \
3 / 1.5 / N
Vg / X
/ / \
2 / 1t / \
/ / \
/./ / \
1 / 0.5 \
A / \,
1 2 3 4

Rocket car, x-axis time ¢,
y-axis path y(t).

Phase diagram of car,
x-axis y(t) path, y-axis
speed y'(¢).

Second, we examine the problem of fuel cost. The idea is
to accelerate the car for a certain time b, let it coast, and then
brake to a stop. The ansatz of the control function models
maximum acceleration until time point b, coasting until time
point T' — b where T is the total time, and then maximum
braking until time 7.

> u:=piecewise(t>=0 and t<b,1,t>T-b and

> t<T,-1);

u-:{l —t<0and t—0b<0
" l-1 T-b-t<Oand t-T <0

The parameters must satisfy the following constraints; the
time the car can accelerate has to be smaller than half the
total time until we have to brake again, and the acceleration
time is greater than 0. This results in the assumptions b >
0,b < T/2,

> assume (b>0,b<T/2) ;

> u:=convert (u,piecewise, t);

we get
0 t<o0
1 t<b
u:=4q 0 t<T-b
-1 t<T
0 T<t

Again we solve the differential equation assuming that
the car is initially stationary.

> dsolve({diff(y(t),t,t)=u,y(0)=0,D(y) (0)=0},
> vi{E) )i

0 t<0
1272 t<b

y(t) = ¢ tb—1/2b? t<T-b
—t2/2 4 Tb4+tT—-1/2T2 - b® t<T
Tb — b2 T<t

Again y(t) is constant for ¢ > T'. The distance “driven”
in time T is y(T') = Tb — b,
Next we compute the cost function

T
Jzz/ i + Juldt.
0

> J:=int (k+abs(u), t=0..T);
J:=kT +2b

Since the parking distance is d = y(T') = Th—b? and the
fuel efficiency factor is k, the optimal values for the param-
eters b and T of the control function can be computed using
the above relation. For example if d = 3, and k£ = 1/8 then:

> solve(d=b*T-b*b,T);
d + b2
b
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> subs(T=",J) :JJ:=subs (d=3,k=1/8,");
3+ b?

1/8 +2b

Now we compute the minimum of J:

> solve(diff (JJ,b)=0);evalf(");

1/17v/51,-1/17V51
4200840252, —.4200840252

If k decreases, meaning that fuel efficiency is more im-
portant, the acceleration time b decreases, and it takes longer
to park the car. While, if k increases, we can park faster but
need more fuel.

Plotting the phase diagram Fig. 3 we see the two parabolic
curves joined with a straight line.

The phase diagram of fuel efficient parking. x-axis y(t)
path, y-axis speed y'(t)

Example 2: maximizing the fish
harvest

We consider the stock of a species of fish. The aim is to
maximize the total number of fish caught in a fixed amount
of time. At the beginning of the fishing season the stock is
filled up to maximum. The growth of the stock is assumed
to be logistic. Fishing regulations set a maximum permitted
rate for the harvesting of fish that is proportional to the size
of the stock. The model equation (nonlinear) is

y=2y—y*—uy 0<u<k

where y is the size of the stock and  is the harvesting rate,
limited by k.

To get a “feeling” for the differential equation we plot
solutions for different initial values (Figure 4): In [Guidera]
this logistic differential equation is examined further.

\

dsolve ({diff (y(t),t)=2*y(t)-Sy(t)"2$,
y(0)=a}),y(t));

y(t) =2 (1 = M>_l

Y

a

> f:=unapply(rhs("),a):

plot ({£(1/2),£(1),£(5/4),£(2),£(5/2),£(3),
f(4)}, t=0..3);

vV Vv

Solutions to the fish stock model equation with different
initial conditions.

Note the nonlinearity of the model equation — the equa-
tion has an attractor at y(t) = 2. In this state as many fish are
born as die.

The cost function J models the amount of fish harvested

over the time T',
T
J = / uy dt.
0

We make some assumptions: (i) the maximal fishing rate is
bigger than the growth of the stock, (ii) the stock is maxi-
mal at the beginning and (iii) we have enough time T', longer
than the time needed to fish the stock to zero. In our ex-
ample we assume that the maximal permitted fishing rate is
%. Following the Pontryagin maximum principle the control
function is piecewise continuous. We make the ansatz for the
control function. First, for the period a, we harvest with the
maximum rate. Then we fish at the rate corresponding to the
highest growth rate of the stock, which is the maximum of
the right-hand side of our model equation,

> maximize (2*y-y*y);

1

resulting in 1. Near the end of the fishing season we will
empty the stock with the maximal permitted rate.

Vol. 4, No.3, 1997

35



Using “Piecewise” to Solve Classes of Control Theory Problems

> assume (0<a, a<b,T>b) ;

> u:=piecewise(t>0 and t<a,5/2,t>=a and
> t<b,;1.:5/2)%

> u:=convert (u,piecewise, t) ;

5/2 t<a
1 t<b
5/2 b<t

\4

rhs (dsolve(diff(y(t),t)=2*y(t)-Sy(t) "2$
> -u*y(t),y(t)));

3a-30
e .
_QC%ﬂ—ﬁ/zb—%e_%lﬁ-%a*—%x -'LSU,
2.3
e2 2°
_ - <b
30_;211,4_,,4.]2.;._8%.:—%!)_5/2873 b+% a+%:€ =
1 b<z

3 —3 3
(3e” 2 btatda_g o} by2-8eT btiatd s

> sol:=":

Next we compute the integral J = fOT sol u dt which
gives us the amount of fish caught over the period T". This
calculation cannot be done with the help of numeric integra-
tion since we have to integrate the solution of a differential
equation with parameters.

> J:=int(sol* u,t=0..T);

3 3 g
c In(—-4e?2a— — +5e—%b+2“) +5b—6a+
2 2b
+In(—6e® +5e2 * 4 2¢eb) — In(—4 +5e/2 %)+
E ln(_Gea+1/2T + 53 atl/2T +6el/2T+b _ 46%1’)
2

_ZT_ g 111(—6€a+1/2b+5e%a+1/2b+28%b)

The last step is to find the maximum of J for the parame-
ters a and b. Plotting J gives a first feeling for the values for
a and b. We compute the symbolic solution'.

> res:=subs(T=10,J) :diff(res,a) :diff(res,b):
> solve({"","},{a,b}): evalf(");

{b = 3.772588722,a = .3646431136},

{b = 5.964651630+6.2831853081,a = .0006796345112},

I'This computation needs a large computer.

{b =9.554380954, a = 9.554380954 + 6.2831853081}

Assuming that T, the total time is limited by 10, we find
thata = .36 and b = 3.7 is the optimal solution. Fig. 5 shows
the stock size as we fish using the optimal control function.
To verify, one can also compute @ directly by computing the
time the stock needs under the maximal fishing rate, u=%, to
reduce the stock from 2 to 1.

> dsolve({diff(y(t),t)=2*y(t)-Sy(t)"2$-
> 5/2*y,y(0)=2},y(t)):
> solve(rhs(")=1,t);

resulting in @ = 2 In(6/5) with is 0.3646431136.

0«5
0 2 4 6 8 10
3~
The size of the stock over one season.
Conclusion

We presented a method to solve certain control theory prob-
lems by using a symbolic ansatz for the control function,
computing the symbolic solutions of the model equation
which depend on parameters, and then optimizing the param-
eters to find the optimal control function. The main advan-
tage of the approach can be seen in cases where the cost func-
tion depends on the solution of the model equation. In this
case numerical methods are not suitable. The implementa-
tion of the new piecewise in MapleV.4 provides the func-
tionality needed to handle symbolic solutions to these classes
of problems.
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Exploring the State Space Dimension of the Earth's
Surface Mean Temperature: False Nearest

Neighbors (FNN) Method

Rafael M. Gutierrez!

Abstract: The state space dimension of the earth's surface mean temperature is explored. The false nearest
neighbors (FNN) method is used to investigate the embedding dimension of the temperature data. The surro-
gate data method gives some evidence to distinguish the temperature data from colored noise. The minimum
dimension to unfold the possible attractor and the attractor dimension itself are estimated for a time scale of

years.

Introduction

The atmosphere involves many processes with complex re-
lations between them. The experimental data obtained from
measurements of any observation of the atmosphere in gen-
eral has important experimental limitations. Some of them
are the limited precision of measurements, small data sets,
different kinds of contamination such as noise, variety of ex-
perimental data acquisition methods for the same data set,
different experimental errors, etc. These two aspects, the
underlying complexity and the experimental limitations, can
make atmospheric data appear “chaotic”. In the old sense
of the word, chaos implies a random or stochastic behav-
ior. That is, an absolute absence of deterministic relations.
Within the context of nonlinear dynamics the modern con-
cept of chaos permits deterministic relations between the dif-
ferent degrees of freedom of a system.

Evolving methods in nonlinear dynamics are used to char-
acterize and extract interesting and useful information from
irregular signals. This information can be used in the con-
struction of a deterministic model with a predictive power
beyond statistical estimations. In this process, an important
initial step is the estimation of the state space dimension of
the system from a time series of measurements. The state
space dimension is the minimum and sufficient number of
variables needed to represent the system within a particular
space and time scale.

The dimension of the state space can be estimated from
the data with different methods. The most popular methods
are: singular value decomposition [1, 2], saturation of system
invariants [2, 3], the method of true vector fields [2], the box
counting methods [1, 4, 5, 6], a new method of the power
spectra [7], and the false nearest neighbors (FNN) method [2,
8, 9]. In this paper we implement the FNN method to show
how it could give valuable information about the dynamics

tPhysics Department, Group of Applied Science, New York University.
On leave of absence from Centro Internacional de Fisica CIF, Santafé de
Bogotd, COLOMBIA. Research supported in part by Colciencias, COLOM-
BIA, rmg4939@is.nyu.edu

of the earth's surface mean temperature based on a small data
set of experimental measurements.

It is important to point out the effects of having a small
noisy data set. Noise is formally infinite dimensional, it al-
ways wishes to be unfolded in a larger dimension than the
dynamical signal of interest requires. Therefore, the mini-
mum dimension to unfold the dynamics may be shifted to
larger dimensions and a small number of FNN may remain
for any embedding dimension when the time series is con-
taminated with noise. An extensive study has shown that the
FNN method is rather robust against contamination, in par-
ticular for normal noise [8]. The main reason for this is be-
cause the FNN method does not rest on distance evaluation
for its accuracy as many other methods do [10]. This method
is also fairly accurate for small amounts of data, as small as
100 observations [8]. However, for small and noisy data sets
the sensitivity of a given system may be high and the results
must be carefully judged understanding that the finest details
of the attractor may be lost.

The data

The OAK Ridge National Laboratory provides synopsis of
frequently used global-change data [11]. Of this valuable
information, we will use the global temperature anomalies
obtained from instrumental surface air temperature records
compiled by K. Ya. Vinnikov, P. Ya. Groisman and K. M.
Lugina. This data has been mainly taken from the World
Weather Records, Monthly Climatic Data for the World, and
Meteorological Data for Individual Years over the Northern
Hemisphere Excluding the USSR. This information was com-
pleted and improved using other data and methods that are
explained and referred to in reference [11].

The original set of data (1356 data points correspond to
the 12 monthly mean temperatures from 1881 to 1993 in
chronological order), is given with two decimal digits of ac-
curacy. We transform this data in order to fully exploit the ca-
pability of Maple to perform exact rational arithmetic. With
this we obtain improved precision and conciseness for repet-

38 MapleTech Vol.4, No. 3, pp.38-45; ISSN 1061-5733 (© Birkhéuser Boston 1997



False Nearest Neighbors (FNN) Method

itive operations on data of similar magnitude [12]. The data
is initially stored in the list denoted by T'm.

We can transform the data into positive integers and sub-
sequently transform the resulting floating point data into ra-
tional data preserving the chronological order. We store the
rational data in the list T'm7.

> Tmr:=map (x->convert ( (x+1.2)*100,
> rational),Tm) :

The sum of the 12 monthly data of each year divided by
12 gives the annual mean of the 113 years of data stored in
the list Tan. Each of the N components of the list T'an is
a positive rational within the range 61.0833, 171.5833. In
figure 1 we present the data stored in the list T'an where the
years 1 to 113 correspond to 1881 to 1993.

> years:=[seq(i,i=1..N)]:
> pair:= (x,y) -> [x,v]:
> figl:=zip(pair,years,Tan):

> plot(figl,labels=[‘year’,  anT ],
> tickmarks=[3,2]);

an? | I/\

|
100 f
!

0 o — 100

Figure 1: The data of the earth's surface mean temperature
anomalies in positive rational numbers. The mean is taken
annually, T'an, and the years 1 to 113 correspond to 1881 to
1993.

The False Nearest Neighbors (FNN)
technique and its implementation

In order to have a real representation of the trajectories of
any system in its state space, the dimension of a Euclidean
space R? must be large enough to unfold the dynamics of
the system without ambiguity [2, 13]. This Euclidean space
is called the embedding space and its dimension is the em-
bedding dimension. The embedding dimension must show
the closeness of two different points (states of the system at
different times) when it really exists, not as a consequence
of an artifact of having chosen d too small. If the chosen

value is too large all of the system invariants can be uncov-
ered, but this will result in greater computational costs [2].
Therefore, it is very important to estimate the minimum em-
bedding dimension for a system with unknown state space
dynamics. Topological arguments relate the dimension of the
attractor in state space d 4, with the embedding dimension d,
by d4 < 2d+1[2,13, 14, 15]. The attractor is the subset of
points of the state space to which the dynamics of the system
is confined after trends have died out.

To reconstruct the embedding space from the time series
of samples, we create a set of d-dimensional vectors. Our
time series of measurements is represented by x(n), where n
indicates the time at which the measurement was made. The
d-dimensional vectors are represented by y(n) = [z(n), z(n+
T), -, 2(n + (d — 1)T)]. The components z(n), z(n + T),
.-+, 2(n 4 (d — 1)T) are the delay coordinates of the vector
or point y(n) in the d-dimensional embedding space. The de-
termination of the time delay T, requires information which
is independent of the topological arguments. This allows any
reasonable choice for T' [2, 13, 14, 15].

In order to give a prescription of the optimal value of T
some methods have been introduced [7, 9, 16, 17, 18, 19, 20,
21]. Some of these methods use a conditional probability of
observing two different values at two different times. The
most popular method of this kind uses the so-called average
mutual information I(t), defined by

1) = Y Pla(n),a(n+1)

Pla(n), »(n + )]
xlog, (P[mm)]P[m(nH)]) i

where the sum is taken over all the pairs (z(n), z(n+t)), and
Plz(n),z(n+t)] and P[z(n)] are the conditional probability
of observing the two data separated by time ¢, and the proba-
bility of independently observing the data z(n) respectively.
The first minimum of I(¢) is considered a good prescription
for the time lag T' [2, 9, 10]. However, as a prescription, val-
ues of T close to that of the first minimum must not change
the results. Due to space limitations we do not show here the
application of I(t) to the temperature data. The I(t) for the
annual mean temperature data has a first broad weak mini-
mum for values of t=1 or 2. When I(t) does not show any
clear minimum and it decreases fast it does not lose its role
as a good selector of 7. Without much grounds beyond in-
tuition, T'=1 or 2 are generally used, or choose T such that
I(t)/I(0) ~ 5 [10]. We use T'=1 which is consistent with
these considerations.

The topological considerations of the FNN technique to
estimate the state space dimension are based on the following
methodology.

First, we embed the one dimensional time series x(n)
into d-dimensional vectors y(n). For d = 1 we have y(n) =
a(n), for d = 2 we have y(n) = [z(n),z(n + 1)] and con-
tinuing to any dimension d we obtain y(n) = [z(n),2z(n +
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1),-++,2(n + (d — 1))]. For each of these different dimen-
sional embeddings we find the nearest neighbor (NN) of each

point y(n).

The following procedure M N D(d) creates the (N — (d —
1)) x d matrix T'and, for any dimension d. The rows are the
d-dimensional points y(n).

> MND:=proc (d: :posint)

> local n, m;

> global N, Tand, Tan;

> Tand:=matrix (N-d+1,4d) ;

> for n to N-d+1 do

> for m to d do

> Tand[n,m] : =Tan [n-1+m]
> od od end:

The procedure NN D(d), finds the NN for each point
y(n) and the distances between each pair of points.

> NND := proc (d::posint)

> local n,m,mid,midt,midtt;
> global N,Tan, Rdl, near;
> for n to N-d+1 do

> mid:=10000. :

> for m to N-d+1 do

> midt::student[distance](row(Tand,n),
> row(Tand,m)) ;

> midtt:=evalf (midt) ;

> if n<>m and midtt<mid then
> mid:=midtt near[n] :=m
> fi od;

> Rdl[n] :=mid

> od end:

Second, we follow the method presented by Kennel,
Brown and Abarbanel [8] to determine the false nearest neigh-
bors FNN. This method consists of two criteria which must
be satisfied simultaneously. The minimum value of d for
which both criteria are satisfied is considered a good estimate
of the embedding dimension.

The first criterion is given by

[o(n + ) = 2 (n + d)
R4(n)

> Rtol )

where 2(n + d) and ' (n + d) are the d 4+ 1 components of
the d-dimensional point y(n) and its respective NN. Rg(n)
is the distance between y(n) and its NN in d-dimensions.
Rtol is some threshold value around 10 [8]. This criterion
measures the ratio of the distance between a point and its
d-dimensional NN in (d + 1)-dimensions, to the distance be-
tween the same two points in d dimensions. With Rtol = 10,
this inequality tells us that the distance between a point and
its NN measured in d + 1 dimensions is more than 10 times
the distance between the same two points measured in d di-
mensions. When this happens, the NN is considered to be-
come a false nearest neighbor (FNN).

The procedure RTOLD(d, Rtol) finds the number of
FNN using this first criterion.

RTOLD := proc (d::posint,
Rtol: :positive)
local n,FNN1;
global Rdl, Tan, near,rtol, rtoll;
FNN1:=0;
for n to N-d-1 do
if Rd1[n]=0 then Rd1l([n]:=1/1000 fi;
if near([n]< N-d and Rdl[n]<>500 then
rtol[n] :=abs(Tan[n+d+1] -
Tan[near [n]+d+1]) /Rd1l[n]
else rtol[n]:=0 fi ;
if rtol[n]>Rtol then FNN1:=FNN1+1 fi;
od;
print (*FNN1=", FNN1);
end:
The implementation of the second criterion uses an es-
timate of the size of the attractor. The attractor is the Eu-
clidean subspace spanned by the points y(n). The size of the
attractor Ra, is not very well defined. It can be estimated by
either the size of the range of the data calculated above, the
standard deviation of the data, or the estimation of Kennel et

al.[8] given by

VVVVVVVVVVVVVVYV

1 N
Rd? = = > lz(n) - a2 3)

where
LN
T=— Z z(n). “4)

N is the number of data points (N = 113 annual means).

Since the attractor on any d-dimensional Euclidean space
is finite, the distances between points and their NN cannot
always increase as much as ten times or more. Therefore, the
application of the first criterion to identify the FNN, will fail
for those NN far from their corresponding points. That is, for
values of Rg(n) ~ Ra. In these cases the second criterion
gives an additional constraint. The FNN are identified when
the distance of the point and its NN in (d + 1) dimensions
becomes about twice the size of the attractor, Ripi(n) =
2Ra[8]. For the second criterion the threshold parameter is
(Rat1(n)/Ra) > Atol =~ 2.

The procedure RDRA(d, Atol, Ra) counts the number
of FNN using the second criterion .

> RDRA := proc (d::posint,
> Atol::positive,Ra::positive)
local n,RdlRa,Rd1Raf, Tandl,FNN2;
global Tand;
FNN2:=0;
Tandl:=extend(Tand, 0,1) :
for n to N-d do
Tandl[n,d+1] :=Tandl[n+1,1] od:
for n to N-d do
if near([n]<N-d then
RdlRa:=student [distance]
(row(Tandl,n), row(Tandl,near[n])) /Ra
fi;
RdlRaf:=evalf (Rd1lRa) :
if RA1Raf > Atol then FNN2:=FNN2+1 fi

VVVVVVVVVVVVYV
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> od;
> print (*FNN2=", FNN2);
> end:

The procedure DIM ENSION, with parameters Rtol,
Atol, Ra and dmaz, incorporates all of the previous routines
to find the number of FNN using the first and the second cri-
teria. The procedure NN D() is included in DIM ENSION
to replace the procedure NN D(d) for d = 1. The most time
consuming instruction in NN D(d), which calculates the dis-
tances between points for any dimension, is replaced by a
simple substraction of two values in NN.D().

> DIMENSION
> local d;
> global N,Tan,Rdl,result;
> linalg([vector]
(3*dmax) ;
for 4 to dmax do
print (*dimension=",d); result[d] :=4d;
MND (d) ;
if d=1 then
NND1 () else
NND(4d) f£fi;
RTOLD (d,Rtol); result[d+1]:=FNN1;
RDRA (d,Atol,Ra); result[d+2]:=FNN2;
od end:
DIMENSION can be used for different values of the
two parameters Rtol and Atol, the size of the attractor Ra,
and for any dimension up to dmaz. Nevertheless, since both
criteria are parametrically independent, for certain calcula-
tions the use of only some of the routines in DIM ENSION
can be more efficient than the whole procedure. It is partic-
ularly important when the use of the subprocedure RDRA

can be avoided.

:=proc (Rtol,Atol, Ra, dmax)

\

VVVVVVVVYV

Testing the method

In order to test the Maple code and the FNN method we have
performed two different calculations. The first test analyzes
data of a known dynamical system with and without noise
added. This calculation tests the method and the code with
small data sets and estimates the effects of noise. The sec-
ond calculation applies the method of surrogate data which is
used to differentiate chaotic determinism from colored noise
[22].

For the first calculation we use 113 data points of one
variable of the well known Lorenz model [23]. The Lorenz
attractor has a fractal dimension (non-integer dimension)
slightly larger than two (2.06), and the minimum dimension
to unfold the Lorenz attractor is 3. The minimum embedding
dimension is not necessarily the smallest integer larger than
the attractor dimension. The Lorenz chaotic data is stored in
the list chalal . We calculate the nominal size of the attractor
as before to get Ra ~ 8. To add noise in different proportions
to the chaotic data we write the following commands:

> readlib(rand): ranfe:=rand(-8..8):

> for n to 113 do

> chalan[n]:=chala[n]+ranfe()*p od:

> chalanl:=convert (chalan,list):

The command ran fe generates a random number within
the nominal size of the attractor. This number is then mul-
tiplied by the parameter p which indicates the proportion of
noise added to the clean chaotic signal. We then apply the
same FNN procedures of section 3 to the chaos data with
p=0,p=.05and p = .2 corresponding to clean or 0%, 5%
and 20% noise added. In figure 2 we plot these results.

As expected, the clean data of the Lorenz model with em-
bedding dimension 3 has zero FNN at Rtol = 5. When the
data has noise the results change, i.e. the zero value of FNN
for embedding dimension 3 is attained for larger values of
Rtol, 9 and 13 for 5% and 20% of noise added respectively.
It is also an expected result: The presence of noise tends
to increase the dimension of the dynamics or, what may be
equivalent, it tends to increase the value of Rtol with which
we obtain zero FNN at a fixed embedding dimension.

Lorenz data

70 t
60 T
50 1 1
40t
FNN
30 1
20 1
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Figure 2: Lorenz chaotic data. The values of the tolerance
parameter Rtol at which the number of false nearest
neighbors FNN, becomes zero for the fixed embedding
dimension d = 3. For the clean data, 0% noise added,
FNN=0 for Rtol = 5. For the same chaotic data with 5%
and 20% of noise added we get FNN=0 for Rtol = 9 and
Rtol = 13 respectively.

The second calculation gives some evidence to distinguish
the temperature data from colored noise. The idea is to de-
stroy the possible determinism underlying the time series
maintaining linear aspects of the data set. The new data set
is called the surrogate data. If a given characteristic of the
dynamics has the same value for the original and the surro-
gate data, the low dimensional chaotic nature of the original
data is doubtful. The unwindowed Fourier transform algo-
rithm [22] generates a surrogate data consistent with a linear
Gaussian process representing a colored random source. This
surrogate procedure takes the Fourier transform of the data,
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then the phase of each Fourier component is set to a random
value, and finally the inverse Fourier transform is taken to
go back to the time domain. This process preserves the cor-
relation function and the power spectrum which are linear
aspects of the data.

In order to implement the surrogate method using the
fast Fourier transform available in MapleV4 (FFT), we in-
crease the temperature data set from 113 to 128 data points
by adding 15 data points equal to the mean value of the tem-
perature time series (~ 110). The extended data is stored
in the array T'aext. This arbitrary extension of the origi-
nal data generates small changes on the results of the FNN
method. Our interest is to compare the extended data with
expected determinism with its surrogate data without deter-
minism. The extended original data is complemented with a
list of 128 zeros, stored in the list nadal, for the correspond-
ing imaginary parts and then the pairs are transformed using
the FFT command. The randomization must be symmetric
in order to obtain zero for all the imaginary parts of the data
when the inverse Fast Fourier transform (iFFT) is applied.
Next we present the Maple code to generate the surrogate
data of the extended temperature time series.

> readlib (FFT) :

> Taext:=array(l..128):
> nada:=array(1l..128):

> for n to 113 do Taext[n]:=Tan[n]:
> nadal[n]:=0 od:

> for n from 114 to 128 do
> Taext[n]:=110. :nada[n]:=0 od:

> FFT(7,Taext,nada) :

> for n to 128 do
> faseT[n]:=arctan(nada[n] /Taext[n]) od:

> faseTl:=convert (faseT, list):

> ranfa:=rand(-1560958232..1560958231) :

After FFT is applied, the conjugated phase of the first
element is found for the element N/2+1, the second element
corresponds to the last element IV, the third corresponds to
the element N — 1, and so on, i.e. the conjugated pairs are
(L, N/2+1),(2,N),(3, N - 1),---,(N/2,N/2 + 2). The
following commands randomize symmetrically the phases of
the transformed time series

> alefas:=ranfa()/1000000000:

> faseT[l]:=alefas:faseT[65]:=-alefas:
> for n from 2 to 64 do

> alefas:=ranfa()/1000000000.
faseT[n] :=alefas

faseT[128-n+2]:=-alefas
od:

The array faseT" now has the symmetrically randomized
phases. Next we calculate the real and complex part in polar
form and then apply the iFFT.

VvV V Vv

Surrogate
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FNN
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Figure 3: The extended data and its surrogate data from the
temperature time series. For the extended data we get
FNN=0 for Rtol = 13 with the embedding dimension fixed
at d = 3. In the same conditions for the surrogate data the
number of FNN never goes to zero.

In figure 3 we present the results of the FNN method applied
to the original extended data and to the surrogate data for the
fixed embedding dimension d = 3. For the surrogate data the
number of FNN does not go to zero for Rtol up to 20. For
the extended data the FNN goes to zero for Rtol = 14. This
result may indicate that the dynamics can be captured in a
three-dimensional embedding space and that the determinism
involved is lost when the data is surrogated. For different
embedding dimensions the dynamics are not captured and so
the surrogate data creates only minor changes, which actually
happens for d = 2 and d = 4. Despite the small data set
this may be evidence to distinguish the time series data from
colored noise.

Results

The work of Kennel, Brown and Abarbanel [8] shows the ro-
bustness of the FNN method with respect to data with noise.
It also gives the dependence on the values of the threshold
parameters Rtol and Atol, as well as the dependence on the
size of the data set Ra. The conclusions were obtained from a
careful and extensive application of the method to some well
known chaotic systems, with and without added noise[8].
The time series of these systems were obtained from numer-
ically solving the corresponding nonlinear equations or map-
pings.

In contrast, in this work we make a similar analysis for
experimental data of the time series of the measured earth's
surface mean temperature anomalies of the last 113 years.
This implies naturally noisy data, a much smaller data set,
and a highly complex and unknown state space dynamics of
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the system. The corresponding differential equations or map-
pings are not known. Despite all of these limitations we find
interesting results which can be useful for the construction of
a model of this complex system.

For the first criterion we calculate the effects of the thresh-
old Rtol. In figure 4, we have the number of FNN for Rtol =
5,10 and 15, respectively.

First Criterion

Figure 4: The number of FNN using the first criterion. The
3 lines correspond to Rtol = 5,10 and 15 from the thinner
to the thicker respectively.

As explained above, the value of d for which the number of
FNN is zero gives an estimate of the embedding dimension.
In figure 4, the results are d = 3, 4, and 5 for Rtol = 5,
10 and 15, respectively. Kennel et al. have shown that the
effective embedding dimension degrades for a small data set
(N ~ 100) and large Rtol. Topological arguments identify
the FNN for Rtol > 10 however, this value may have to be
adjusted considering the presence of noise and other partic-
ularities of the attractor and the time series representing it.
From our results the value of Rtol that best fits these two
conditions is Rtol = 10. Therefore, the corresponding esti-
mate of the embedding dimension is d ~~ 4.

For the second criterion with Atol = 1.5, 2, we calculate
the number of FNN for Re = 21, Ra = 72 and Ra = 110,
figure 5,

SecondCriterion

35 ¢
30 1

25 ¥

Figure 5: The number of FNN using the second criterion.
The thinner line corresponds to Atol = 1.5 and the thicker
one to Atol = 2. The attractor size is Ra = 21.

The number of FNN increases with increasing d after a small
decrease. This behavior is less pronounced for Atol = 1.5
than for Atol = 2. If the size of the attractor Ra = 21
was a good estimate, these results could be evidence of a
high-dimensional chaotic signal (noise), or a consequence of
a high signal to noise ratio [8]. Both values of Atol = 1.5, 2,
for Ra = 72 and Ra = 110 give zero FNN for any dimen-
sion d.

The first criterion estimates a low dimensional chaotic
behavior of the earth's surface annual mean temperature, d ~
4. The second criterion does not add conditions on the results
of the first criterion for the number of FNN. If we consider
the correct attractor size defined by Kennel et al. Ra ~ 72,
the number of FNN given by the second criterion is always
less than the number of FNN from the first criterion for any
dimension d.

FirstCriterion

tthreshold

Figure 6: The number of FNN for the first criterion for
d = 1 to 8. The three values in the first axis are Rtol = 5,
10 and 15 respectively.

Vol. 4, No.3, 1997

43



False Nearest Neighbors (FNN) Method

Figures 6 and 7 show the domains of the threshold param-
eter Rtol and the size of the attractor Ra, where it is valid
to estimate the minimum embedding dimension. These do-
mains are determined when the number of FNN is zero or
very small, i.e. the flat regions of figures 6 and 7.

SecondCriterion

-

P
P -
B

tthreshold

Figure 7: The number of FNN using the second criterion for
Atol = 2 and d = 1 to 8. The three values in the first axis
are the estimated size of the attractor Ra = 21, 72 and 110.

Conclusion

The FNN method estimates the minimum embedding dimen-
sion once the right range of the threshold parameters and the
appropriate size of the attractor have been determined. Un-
der these conditions the most suitable values of the different
parameters are Rtol < 10, Ra < 72 and Atol = 2. The
minimum embedding dimension will be the first dimension
at which the number of FNN is zero for the two criterion.
Figures 6 and 7 show that the two criterion are satisfied for
an embedding dimension d ~ 4.

Using the surrogate data we have found evidence to dif-
ferentiate the temperature data from colored noise however,
some contamination is certainly present. The presence of
noise in such a small data set may shift this estimate to larger
dimensions, thus the actual minimum embedding dimension
may be somehow smaller. Therefore, our estimate of the em-
bedding dimension d cannot be more precise than 3 < d < 4,
In order to guarantee the preservation of all the dynamical
and topological properties of the attractor in the embedding
or reconstructed space, the attractor dimension d 4 must be in
the range d 4 < d—;l ~ 1to 1.5 < 2[14, 15]. Although this
range of dimensions for the attractor guarantees the conser-
vation of all of its properties, the dimension of the attractor
may be larger and all of its properties are still conserved for
the same range of embedding dimensions.

In the context of nonlinear dynamics this result implies
that the dynamics of the present complex system has only
three or four active degrees of freedom. Thus, the earth's

surface annual mean temperature represented by our time se-
ries could be modeled by a system of three or four coupled
differential equations with some nonlinearities. These non-
linearities reduce the space where the solutions are confined,
i.e. the attractor, to be less than two-dimensional. However,
this conclusion is limited by the conditions of the data and
the considerations we have made. Namely, the small data set,
the unknown and untreated noise, the time delay prescription
and the estimated value for the tolerance parameters.
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Use of Maple V to Solve a Multi-Variable Optimal
Control Problem in Fertilizer Economics

Simon Woodward*

Abstract: Optimal control problems involve calculating the optimal inputs to a dynamical system over time
in order to maximize some objective function. The example described here is the optimal application of
phosphorus and sulphur fertilizer to grazed pastures on New Zealand livestock farms, in order to maximize
the net present value of farm profits for ten years into the future. Maple is used to solve the Maximum
Principle and Adjoint equations, and to generate computer code to calculate almost-optimal fertilizer policies.
This code was used in a software package, Outlook™, which is designed to assist farmers in planning their

fertilizer expenditure.

Introduction

Optimal fertilizer application involves trading off between
the costs of buying and spreading fertilizer and the benefits
of increased farm production. This is complicated because
fertilizer nutrients carry over in the soil from one year to the
next, so that investment in fertilizer in the present contributes
a stream of benefit through future years.

We have developed proprietary decision support software,
named Outlook™, to assist New Zealand sheep, beef, and
dairy farmers in planning their fertilizer expenditure on a 10-
year time horizon. Outlook™ models the changes in soil nu-
trient status from year to year resulting from application of
fertilizer, predicts the resulting pasture and animal produc-
tion, and calculates the profit. This enables a farmer or farm
consultant to assess the relative profitability of different fer-
tilizer policies.

As well as simulating given policies, Outlook™ is able
to calculate the long term profit-maximising fertilizer policy.
This is done by applying optimal control theory to the nutri-
ent dynamics equations. The original version of Outlook™
considered only phosphate dynamics [2] and the economic
optimization of that model is described in Woodward [5].
The software has now been updated to consider the coupled
dynamics of both phosphorus and sulphur, the two most im-
portant nutrients in New Zealand pastoral farming. This pa-
per describes how Maple V was used to generate the eco-
nomic optimization subroutine in this latest version of
Outlook™.

Nutrient dynamics

The biological basis for the software is a dynamic nutrient
carryover model, described in Metherell et al. [3]. This is a
coupled system of four difference equations describing the
carryover of soil phosphate (P), unoxidized elemental sul-
phur (E0), above-equilibrium soil sulphate (S), and
phosphate-extractable organic soil sulphur (Q).

*AgResearch Whatawhata, Hamilton, New Zealand.
woodwards @agresearch.cri.nz

Some of these terms require additional explanation.
Firstly, P is a conceptual measure of total plant available
phosphorus, including both organic and inorganic compo-
nents. It is calibrated to Olsen extractable phosphorus [2].
Secondly, although,the phosphate extraction technique ex-
tracts only a fraction of soil organic sulphur, phosphate ex-
tractable sulphur (@) is used as a representative for total or-
ganic sulphur, since ) is well correlated to pasture yield.
Thirdly, immediately following fertilizer application soil sul-
phate levels rise sharply and increases in pasture yield are
observed. These transient effects are represented by the vari-
able S. Thereafter sulphate levels rapidly drop to a low level
in equilibrium with organic sulphur, at which time S tends to
zero and the effect of sulphate on pasture growth is subsumed
into the effect of Q.

Initial soil nutrient status (P (1), E0(1), S(1), Q(1)) is
determined from soil testing and fertilizer history. The dy-
namics equations take the form (using P as an example),

Piy1 - P =1 (P, E04,5,Q:, FP, FE0,, FS;)

where FP;, FEQ, and F'S, are respectively the rates of P,
E0, and § fertilizer application at the start of year t. We
denote the right hand side EP.

Soil phosphate (P) cycling is affected by four main pro-
cesses. Firstly there are contributions of phosphate from fer-
tilizer, F'P. Secondly, there is slow release of phosphate in
the soil, Ps. Thirdly, there are losses of P and FP to vari-
ous processes in the soil, (P + FP). And lastly, there is a
term for the loss of P due to uptake and transfer by grazing
animals. The change in P status from year to year is then:

> EP:=-beta* (P+FP) +Ps+FP- (al*RHp+a2) *RY;
EP:= —-B(P+FP)+ Ps+ FP — (al RHp + a2 ) RY
RHp is the relative concentration of phosphorus in the
herbage, and depends upon the P fertility:
> RHp:=l-exp(-hP*so0ilP);
RHp :=1- e( —hP s0ilP)
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