Optimal Fertilizer Economics

RY is therelative yield, which is the rate of pasture growth
expressed as a fraction of the rate of growth possible when
soil phosphorus and sulphur status are both high. The ex-
pression for RY is the multiple of two Mitscherlich curves,
one limited by P availability, and one limited by S availabil-
1ty:

> RYp:=1l-exp(-kP*so0ilP):
> RYs:=1l-exp(-kS*so0ilS):

\%

RY=RYp*RYs;
# we do not assign RY at this stage

\%

RY = (1 _ e(—szoilP) )
(1 _ o(—kS soilS))

Fertilizer is assumed to increase fertility immediately af-
ter it is applied. Therefore, the effective levels of P and S
which affect yield are:

> s0ilP:=P+FP;
> s011S:=S+FS+rho* (E0+FEO0) + (kQ/kS) *Q;

soilP := P+ FP
o kQ Q
soilS = S+FS'+,{)(E0+FE0)+—F

Even though plants can take up only inorganic sulphur,
the observed relationship between pasture growth and soil
sulphur is more reliable when related to organic sulphur. This
is why @ has been used to drive the sulphur response. Or-
ganic sulphur is converted to its equivalent sulphate form by
multiplication by a factor of (k@ /kS).

Soil sulphur fertility is described by three variables, soil
organic sulphur (@), extra soil sulphate (5), and unoxidized
elemental sulphur (E0). Each of these variables has an equa-
tion describing the cycling. The simplest is that for elemen-
tal sulphur, £0. Additions to elemental sulphur come from
elemental sulphur fertilizer applications, F'E0. Each year a
proportion (p) of this oxidizes to become sulphate sulphur.
So the accumulation of E0 from year to year is

> EEO:=-rho* (E0+FEOQ) +FEOQ;
EE0 := —p(E0 + FE0) + FE0

Sulphate sulphur dynamics are similar, with contributions
from fertilizer (F'S), oxidation of elemental sulphur, and rain,
Z. The main process affecting the loss of sulphate is leach-
ing, AS, which is driven by rainfall and soil type.

> ES:=-lambda* (S+FS+rho* (E0O+FEQ) ) +Z+FS+rho
> *(EO+FEOQ) ;

ES:=-X(S+FS+p(E0+FE0))
+Z+FS+p(E0+ FE0)

Finally, organic sulphur dynamics consist of only two
terms: losses due to mineralisation, and return of organic
sulphur in dung and leaf litter, which is proportional to the
yield:

> EQ:=-mu*Q+g*RY;
EQ:=-pQ+gRY

We have now described the carryover of the four nutri-
ents: P, E0, S, and (). The software selects values for the
parameters from look-up tables keyed to fertilizer type (p),
pasture type (kP, hP, kS, kQ), soil type (83, Ps, p, A), stock
class (g, al, a2), land slope (A) and climatic zone (Z, A).
These equations give sufficient information to simulate the
dynamics of the soil nutrients from year to year into the fu-
ture.

Economics

Once the increases and decreases in nutrient availability and
pasture yield are predicted, it is necessary to calculate the
economic costs and benefits. The aim is to calculate the op-
timal application of fertilizer (P, FE0O, F'S) to maximize
long term profit from the farm. The revenue from the ani-
mals, which is assumed to be proportional to the amount of
pasture grown, and the cost of applying the fertilizer, are re-
spectively:

> revenue:=r*RY;
> cost:=cP*FP+cS*FS+cEQ0*FEOQ;

revenue :=7rRY
cost :=cP FP + ¢S FS + cE0 FEO

We assume that the costs are incurred at the beginning of
each year, and that the revenue is received at the close of that
year. An economic discount factor, e, is defined as 1/(1 +¢)
where ¢ is the interest rate from alternative investments. Max-
imising profit from the farm then consists of maximising the
“net present value” (NPV') of costs and revenue discounted
and summed over future years [2]:

> NPVt:=alpha”t*revenue-alpha” (t-1) *cost:
> NPV:=Sum(NPVt,t=1..T);

T
NPV :=)  (a‘7RY

t=1
~alt=1) (cP FP + ¢S FS + cB0 FEO))

Optimal control solution

The optimal control problem consists of choosing the fertil-
izer applications in each year to maximize NPV, such that
the dynamics of the state variables, P, E0, S, and @ are
governed by the equations EP, EE(, ES, and E() described
above. In addition a budgetary constraint is introduced, so
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that the total fertilizer expenditure in any one year may not
exceed d: This constraint enables a simple form of risk man-
agement to be practised.

> constraint:=d-cost;

constraint :=d — ¢cP FP — ¢S FS — cE0 FEO

The multi-variable optimal control method for discrete-
time models is given in Clark [1], and consists of forming the
Hamiltonian function, H, and then solving the “Maximum
Principle” and the “Adjpint Equations”, which are based on
partial derivatives of H. The Hamiltonian function is con-
structed by appending the state equations (eg. EP) and the
constraint to the objective function (NPV'). The adjoint mul-
tipliers adP, adE0, adS, and ad() are introduced, as well as
the Lagrange multiplier, €.

> H:=NPV+adP*EP+adEO*EEO+adS*ES+adQ*EQ+
> epsilon*constraint;

H:= (zT: (atrRY

=1
—aft-1) (¢cP FP + ¢S FS + cE0 FEO )) >

+adP (= (P+ FP)+ Ps+ FP
—(al (1 —e(ZAP(PHFP))y 4 49)RY)
+ adE0 (—p (EO0 + FE0) + FE0)
+adS(-A(S+FS+p(E0+FE0))
+Z+FS+p(E0+ FE0))

+adQ (-pQ +gRY)

+e(d— cPFP — ¢S FS — cEQ FEO)

The problem is quite complicated, and in the interests of
finding an approximate solution, it will be assumed that both
elemental sulphur (£0) and sulphate (S) are in equilibrium
at all points in time, ie.,

> E0:=solve(EE0=0,EQ) ;
> S:=solve(ES=0,8);

—p FEO + FEO

p
—AFS —ANFE0 + Z + FS + FEO

A

Also, because we intend to look for equilibrium solu-
tions, where the fertilizer rates and nutrient levels are the
same from year to year, the dependence of the Hamiltonian
on time (t) is dropped. Now defining RY at last, the simpli-
fied Hamiltonian is:

E0 =

g =

> Ey=lsn
> H:=NPVt+adP*EP+adQ*EQ+epsilon*constraint;
> H:=subs (RY=RYp*RYs,H) :

H:=arRY — cPFP — ¢S FS — cE0 FEO

+adP (-B (P + FP)+ Ps+ FP
—(a1 (1 - ~RP(P+FP))Y | 49\ RY)

+adQ (-pQ+gRY)
+e(d—cPFP — ¢S FS — cEQ FEQ)

The first part of the optimal control solution is to solve
the Maximum Principle. That is, the control variables F'P
and F'S must maximize H. Since the constraints operate on
FP and FS, this is straightforward — if the constraints are
not tight, H is maximized when its partial derivatives with
respect to F'P and F'S are zero:

> maxP:={diff (H,FP)=0,diff (H,FS)=0}:
(From this point on, the results are generally too large to
display). The Maximum Principle equations are linear in the
adjoint variables adP and ad(), and we solve for these.

> advars:={adP,adQ};

> advarsx:=solve (maxP,advars) :

advars := { adP, ad@Q }

The second step is to solve the adjoint equations, where
the partial derivatives of H with respect to the adjoint vari-
ables are equated to the change in the adjoint variables from
year to year [1, p.236]. Since we are looking for equilibrium
solutions, the adjoint variables decline by a factor of « each
year [1, p.237]. We substitute the expressions for the adjoint
variables already obtairied:

> adeql:=subs (advarsx,-diff (H, P)=adP
> *(l-alpha”™(-1))):
> adeq?2:=subs (advarsx,-diff (H,Q)=adQ
> *(l-alpha”(-1))):

Two factors appear repeatedly in these equations. One we
denote as ePz, and one as eQz, as they are exponentials in-
volving P and () respectively. Making substitutions for these
expressions reduce the number of variables in the equations.

> reds:=solve({ePx=1-RYp, eQx=1-RY¥s}, {P,Q});

> adredl:=subs(reds,adeql) :
> adred2:=subs (reds, adeq2) :

kSZ kSFS kSFE0
In(eQz )+ + +
Q=— A A A

kQ

reds 1=

P In( ePz) + kP FP
T kP }

_.Outlook™ must solve these adjoint equations to deter-
mine the optimal fertility levels. Since this must be done
automatically, it is necessary to understand the structure of
the equations and their solutions, in order that the computer
algorithm can be robust. Having reduced the problem down
to solving two non-linear equations (adred!, adred2) in two
unknowns (ePz, eQz), Maple now assists in the simplifi-
cation of these equations. The first step is to use the share
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library utility “sprint” to examine the structure of the equa-
tions.

> read ‘c:\\maplev3\\share\\system\\sprint";
> _EnvSprint:=200:
> sprint (normal (adredl)) ;

> sprint (normal (adred2)) ;

—<< 420 >> /(B —14 << %8 >> — << %4 >>
—<< *4 S>>+ << x5 >>) (=14 ePz)
kSeQz)=—<<+8 >>(a—1)/(
(B—14<<*3 >> = << 4 >> — << %4 >>
+<< %5 >>)(—1+4 ePz ) kS eQz )

—<<H66 >> [(g(B -1+ << #3 >>— << %f >>
—<< #4 >>+ << %5 >>)(—1+4 ePz)
<< +46 >>(a—1)
g<<+6 >>(—14+ePz)kSeQra
The denominators on the left and right hand sides of the
two equations differ only by a factor of a. The equations
are thus significantly simplified by the stripping away the de-
nominators. The equations are also converted into expres-
sions.

kSeQz)=—

adredxl:=simplify (numer (op(1l,adredl))
*alpha-numer (op(2,adredl))) :
adredx2:=simplify (numer (op(1l,adred2))
*alpha-numer (op(2,adred2))) :

Both of these expressions are quadratic in eQz.

vV V VYV

LHS:=solve (adredxl, eQx) :
whattype (LHS) ;
RHS:=solve (adredx2, eQx) :
whattype (RHS) ;

VvV V VYV

eTprseq
exprseq

We need to find the value of ePz that gives the same
value of e@z from both quadratics.

Numerical example

The method of solution is best illustrated with an example.
Since both ePz and eQz are exponentials of negative num-
bers, their values should lie in the range 0 to 1. Taking typical
parameter values allows us to plot the relationships specified
by adredzl and adredz? and identify which roots are the
feasible ones. Here LHS[1] and RHS[2] are found to be the
desired roots.

The parameter € is not biologically defined, but is a La-
grange multiplier that allows the expenditure constraint to be
satisfied. It is set initially to O, in which case we are consid-
ering the problem where the farmer's fertilizer expenditure is
unconstrained.

params:={cP=3.0,beta=0.06,alpha=0.9,
kP=0.01, r=300.0, a2=3.0, al=3.0, c¢S=2.0,
kS=0.08, lambda=0.9, hP=0.004, z=3.0,

mu=0.07, kQ=0.05, g=4.0, Ps=3.0}:

vV V VYV

Y

params:=params union {epsilon=0};
> plotsetup (plotoptions="noborder") ;

> plot (subs(params, {LHS[1],RHS[2]})
> ,ePx=0..1,0..1,labels=["ePx , eQx"1]1);

params := {g = 4.0, = 0,Ps = 3.0,a = .9,
kP = .01, ¢S = 2.0,al = 3.0, = .9, kS = .08,
hP = .004,a2 = 3.0, Z = 3.0, = .07,

kQ = .05,8 = .06, cP = 3.0, = 300.0}

0.6
eQx
0.4

Figure 1: Curves along which the adjoint equations are
satisfied.

The plot (Figure 1) shows two mathematically feasible
points when both adjoint equations will be satisfied. How-
ever the right hand intersection corresponds to a negative
value of soilP and soilS, which is biologically infeasible.
Thus, it is the left hand solution which is of interest. This can
be located numerically by finding the root of f = adredz2 —
adredzl which lies to the left of that function's minimum.
Minimum and root-finding methods from Press et al. [4] were
used in the software. For this example, the optimal solution
lies to the left of 0.5:

> optePx:=fsolve (subs (params, LHS[1]-RHS[2])
> ,ePx,0..0.5):

> opteQx:=evalf (subs (ePx=optePx, subs (params
> ,LHS[1]))):

> solns:={ePx=optePx, eQx=opteQx};
solns := { eQz = 09772983640, ePz = .1858351164 }
The optimal fertilizer application rates are then,

> solve(evalf (subs(params union solns,reds))
> ,{FP,FS});

{FS = —.5624999999 () + 23.16241926 — 1. FE0
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,FP = —1.P + 168.2895469 }

The optimal so#lP and so:ulS levels are thus 168.3 and
23.2 respectively for this example. In the absence of a fi-
nancial constraint, the optimal policy is to move to that level
immediately in the first year and maintain it thereafter. In the
software it is assumed that elemental sulphur is not used (i.e.
FEQ = 0) since it is equivalent to an application of F'S.

In the case where an expenditure constraint is required,
the parameter € must be adjusted iteratively until a value is
found such that the cost is exactly equal to the financial con-
straint, d. At this point € is equal to the marginal value of
spending extra money. For example, if £ = 0.7 at this point,
then for every extra dollar made available for fertilizer, NPV
increases by $0.70.

Computer code generation

The ability of Maple to convert expressions into C is very
useful, because Outlook™ must calculate the values of
LHS[1] and RHS[2] in its numerical solution routines, so
that ePz can be adjusted until they coincide. The method
used was to generate code for the quadratic coefficients of
adredz1l and adredz?, and the software then determined
which root was needed. Code for these coefficients is easily
generated, although the coefficient of eQ)z in adredz2 bene-
fits from some substitutions of variables — this shortens the
resultant computer code that Maple generates. Furthermore,
the following powers of ePz occur repeatedly and may be
factored.

> rubble:={ePx” (hP/kP)=ePxl, ePx” ( (hP+kP) /kP)
> =ePx*ePxl,ePx” ((2*kP+hP) /kP)=ePx"2*ePxl};

> adredxl:=subs (rubble,adredxl) :
> adredx2:=subs (rubble, adredx2) :

rubble 1= {ePz(“iPhp) = ePz? ePxl

hP4kP

,eP:n( o) = Py ePz],er(%) — ePT,I}

The expressions for the quadratic coefficients are:

EAl:=factor (coeff (adredxl, eQx, 2)
EBl:=factor (coeff (adredxl, eQx, 1)
ECl:=factor (coeff (adredxl, eQx,0)
EA2:=factor (coeff (adredx2, eQx, 2)

V V V V

)
) s
)
)

Y

templ:=coeff (adredx2,eQx, 1) :
> temp2:=expand(subs({epsilon=el-1,mu=1-ml
> ,beta=1-bl}, templ)):

> EB2:=collect(temp2, [alpha,el,ml]
> ,distributed, factor) ;
> EC2:=factor(coeff (adredx2,eQx,0)) :

EB2 :=(=al ePzePz1 cP kS = cS Xal hP ePxl
—al ¢cP kS 4 ¢S Xal hP ePx ePz1
+ a2 cP kS ePz + al ePzl cP kS

—a2 kP ePz ¢S A+ al cP kS ePx

+ al ePx ePxl kP ¢S XA — a2 cP kS

—al kP ePz cS A\)ml el a

+c¢SAgkQ (ePz —1)(al hP ePz ePxl
—ePzl hPal +b1)el a
—kSr(ePz—1)(al hP ePz ePxl

—ePz1 hP al + b1 ) ml a? + (—a2 cPkS ePx
+cS Aal hP ePzl 4+ al ¢cP kS

—al ePx ePxl kP ¢S A

—al cP kS ePz + a2 cP kS 4 a2 kP ePx ¢S A
+al kP ePz ¢S A\ + al ePx ePxl cP kS

—cS Aal hP ePz ePzl — al ePxl cPkS)el

+kSr(ePz—1)(al hP ePx ePxl
—ePz1 hPal +01)a

These expressions are now coded for the computer pro-
gramme.

> readlib(C) :

> quads:=[gAl=EAl,gBl=EBl,qCl=EC1,gA2=EA2
> ,gB2=EB2,qC2=EC2]:

> C(quads, optimized) ;

> C(quads, filename="quadcoes.c" ,optimized) ;

tl = al*cP;

t5 = ePx-1.0;

€6 = E5%E5;

t7 = 1.0+epsilon;

gAl = -tl*kS*hP*alpha*ePx1*t6*t7;
tll = cP*kS;

tl3 = tll*alpha;

tl5 = ePxl*hP*al;

t1l8 = cS*lambda;

t20 = al*hpP;

t22 = t20*ePx*ePxl;

t24 = alpha*cP;

t27 = kS*ePx;

t32 = ePx*ePx;

gBl = -t7*(tll*ePx-tl1ll-tl13*tl5-kP*ePx

*£18+2.0*t13*t22-t24*kS*beta+t24*t27 *beta
-tll*ePx*alpha+t13-t13*t32*ePx1*t20) ;

£t38 = kP*cS;

gCl = -t38*ePx*lambda*t7;

td45 = alpha*mu;

t46 = kS*r;

t51 = tl18*g*kQ;

gA2 = -al*alpha*hP*ePxl1*t6* (t45*t46
-alpha*r*kS+t46+t5l+epsilon*cS*lambda*g*kQ) ;

t59 = al*ePx;

t62 = t59*ePx1*cP*kS;

t63 = tl1l8*tl5;

t64 = tl*kS;

t68 = tl8*al*hP*ePx*ePxl;

t69 = a2*cP;

£t70 = t69*t27;

t72 = al*ePx1l*tll;
_ £73 = a2*kp; o -

t75 = ePx*cS*lambda;

t76 = t73*t75;

t77 = t1*t27;

t80 = t59*ePx1*t38*lambda;
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t81 = t69*kS;

t82 = al*kPp;

t83 = t82*t75;

t84 = -t62-t63-t64+t68+t70+t72-t76+t77
+t80-t81-t83;

t86 = el*alpha;

£t88 = t22-tl5+bl;

t89 = t5*t88;

t94 = alpha*alpha;

t97 = -t70+t63+t64-t80-t77+t81l+t76+t83

+£62-t68-t72;

gB2 = t84*ml*t86+t51*t89*t86-t46*t5*t88
*ml*t94+t97*el+td6*t89*alpha;

gC2 = -cS*t7*lambda* (-alpha+t45+1.0)
*(-t22-1.0-t59*ePx1*kP+t82*ePx+t73*ePx+tl1l5
+beta) ;

This code was pasted into the numerical optimization por-
tion of Outlook™. Starting with & = 0, the solution (ePz,
e@x) is located iteratively. This is then converted to an opti-
mal nutrient level (soilP, so0ilS). The optimal fertilizer rec-
ommendation (F'P, F'S) is the difference between this level
and the existing nutrient status (P, S). If this fertilizer rec-
ommendation can be implemented within the budgetary con-
straint, it is optimal. Otherwise the Lagrange multiplier € is
iteratively adjusted (using the bisection method) and the pro-
cedure repeated until the constraint is exactly satisfied. The
recommendation at this point is then the constrained opti-
mum. The whole process is repeated for each year, until the
optimal policy for the 10 year time frame has been calculated.

Conclusion

This paper describes how a multi-dimensional optimal con-
trol problem was implemented in Maple. Maple provided a
facility for simplifying and partially solving the problem, and
for converting the less tractable equations into computer code
so that they could be solved numerically.

The algorithm has performed well to date, and calculates
fertilizer strategies which are economically superior to all
other policies, although at times the improvement is small.
When expenditure is unconstrained, the cost of fertilizer in
the first year of the optimal strategy can be very high, as this
is expected to be offset by high profit in future years. Expe-
rience has shown that imposing a constraint on expenditure
can give a less risky policy — initial outlay is significantly
reduced, and long term N PV is still near to that expected
under the optimal unconstrained strategy [5].

Outlook™ runs under Windows and is available from
AgResearch Soil Fertility Service, Ruakura Research Cen-
tre, Private Bag 3123, Hamilton, New Zealand, Tel: +64 7
838 5920, Fax: +64 7 838 5160.
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Tips for Maple Instructors

Robert J. Lopez*

In this, the third column of the series, we again illustrate
some Maple V Release 4 functionality of significance in the
classroom. In particular, we examine the role technology
has in shaping pedagogy. Inescapably, the available technol-
ogy dictates the operable pedagogy. In the pencil-and-paper
world from which we are emerging, the lack of graphics and
convenient numerical calculations, for example, imposed an
analytical style on didactics, overshadowing experimentation
and investigation.

In this issue's column, we consider two major topics.
First, we examine the traditional approach to finding the re-
cursion relation for a power series solution of a differential
equation and compare that approach to one found in [1], the
Maple V Flight Manual. Then, we explore the optimizing
property of the Fourier series. Each of these items reflects
how the available technology influences the pedagogy. In
particular, each requires replacing infinite sums with finite
sums in Maple. '

In a third section, we look at three Maple functionali-
ties that affect the student's view of Maple in the classroom.
First, we consider an error Maple makes in the midst of a
lesson on removable singularities. Then, we contrast plotting
a curve defined vectorially in two and three dimensions. Fi-
nally, we examine some of the difficulties branches pose for
both students and Maple in the computation of curvature of a
circle.

I continue to hope this column becomes a forum where
common problems can be identified and resolved, where use-
ful hints and strategems can be found, and where pedagog-
ical insights can be shared. Hence, I urge all readers who
have their own experiences with Maple in instruction, suc-
cesses and failures alike, to communicate with me by e-mail
(rlopez@rose-hulman.edu), fax(812-877-3198), or letter
(Math Dept., Rose-Hulman Institute of Technology, Terre
Haute, IN 47803). As much as possible, I would like this
column to address real issues, from real classes. Only the
column's readers can make that happen.

Series solutions of ODEs

I recently succeeded in getting Maple to replicate the steps
I learned 35 years ago for obtaining the recursion relation
in a formal power series solution to an ordinary differential
equation. In comparison to a simpler technique appearing
in [1], I conclude that the cherished classical formalism is
probably inferior to a streamlined Maple solution. I'll present

*Department of Mathematics, Rose-Hulman Institute of Technology,
Terre Haute, IN 47803 r . lopez@rose-hulman. edu

both, and let you judge.

> with(student) :
We write an arbitrary second-order linear equation with
variable coefficients.

> qgq =
> diff(y(x),x,x) + x"2*diff(y(x),x) + y(x)
> = 0;

= (@) +2* (2 v(e)) +¥(2) =0
q:= OmZyl z amym y(z) =
Next, write a formal power series as the solution.

> Y :=sum(a[n]*x"n,n=0..infinity);

(o]
Y= E a,z"
n=0

Substitute the series into the differential equation.

> gl := eval(subs(y(x)=Y,q));

(o]
g 1= Z(anm"nz_anmnn)
: —~ ) 72

> a,z"n =
+a? (> — ’>+(Zanm")=o
=0 ’ n=0

All powers of x submit to a combination of simplify and
combine.

> map (simplify@combine,gl) ;

ane" D n? —q, 2D p 42D g0 4 a, a™)

=0

However, the indices on each separate series on the left
of g must be shifted. We have to access and massage each
such series separately. Unfortunately, this requires use of the
”low-level” op command.

> for j from 1 to 3 do
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> vy.j := simplify(combine(op(j,lhs(qgl))));
> od;
(o]
yl = Z (an 22 n? — g, (2 p)
n=0
(o9)
y2 = Z 2" q, n
n=0
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(o)
Y8 = Z anpx"
n=0

Shift indices so the pdwer of x in the general term in each
series is the same.

> y4 := changevar (n-2=k,yl,k);
> y5 := changevar (n+l=k,y2,k);
> y6 := changevar (n=k,y3,k);
[ee]
Y4 = Z (agk 2 (24 k)* — agyra® (24 k)
k=-2
(e}
yh = Zak_l z* (k-1)
k=1

(oe]
y6 = Z ar a*
k=0

Next, each sum must start at the same value of the index k.
Here, we must have k = 1. In the first sum, the terms corre-
sponding to k = -2 and -1 are zero. In the first and third sums,
the terms corresponding to k = 0 must be extracted separately.
In Maple, however, it is difficult to manipulate the indices in
a mathematically meaningful way. We settle for an artifice
permitted by the subs command.

> yda := subs(-2=1,y4);
> y6a := subs(0=1,y6);
o0 -
yha = Z (ag+k z* 2+ k)2 — a4k z* (2+4k))

k=1

(ee]
yba 1= Z ax z*
k=1

I suspect there would be a problem if “—2” or “—1” appeared
in a context other than just the summation limits.
Nonetheless, we are ready to combine the three transformed
series.

> g2 := combine (y4a+y5+y6a);

[ee)

q2 = Z(a2+k e (24 k)% —agyrz® (24 F)
k=1

+ag_12* (k — 1) + ar 2¥)
We want a single coefficient of z¥. Hence,

> g3 := factor(g2);

o0
q3 = ka(z gtk + 3asir k + apyr k?
k=1
+ar_1k—ap—1+ ﬂk)

The coeff command fails here, so we again resort to the low-
level op command to access the summand of q3. (Fortu-
nately, Release 5 will have a summand command to parallel
the integrand command of the student package.)

> g4 := op(l,q3);

q4 = :L‘k(2 Aotk + 3 az+k k + asqi k2 + ap_1k
—ag_1+ax)
Now, coeff succeeds.

> g5 := coeff(g4,x"k);

05 = 2ag4k + 3azir k+ asyr k> +ar_1 k
—ag—1+ ak

Finally, we solve for a2 in terms of a; and ap_1, resulting
in the sought-for recursion relation.

> isolate(g5,alk+2]);
—ap—1k+ar_1—ax
2+3k+ k2
Finally, with yet another artifice, we attend to the k = 0 terms
in the series y4-and y6.

A2+k =

> value (subs (infinity=0,y4+y6)) = 0;
2as +ag =0
Rather than continue with the rest of the classical manipula-
tions, we implement a device from [1] wherein a finite sum
replaces the infinite series Y. The secret is to make the terms

in the finite sum generic, and to span across the general term,
z". Thus,
> Q := sum(alk]*x"k,k=n-1..n+2);
Q= an_1 2"V 4 an 2" + apy 2D
+ ag4n z(2n)
Again, substitute into the differential equation.

> g6 := eval(subs(y(x)=Q,q));

an_1 2D (n — 1)2

q6 = >
ap_qz(®1 (n=1) apz™n? apa™n
a x? + 22 a2
g1 2D (n+ 12 appg 2D (n 4 1)
x? x?
a24n 2T (24 0)2  agpn, 2@ (24 0)
x? x2
" 7:2({1"—1 (=D (n — 1) 4 Bn z"n
ang1 2D (n 4 1) 4+ B24n 2+ (2 4 n))
+an_127D fa, 2™ + Ant1 2t
+asyn M =0
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When in doubt, simplify. This will tame all powers of x.

> g7 := simplify(qg6);

q7 = an 2" + any1 2D 4 agy, 2N

+ p(nt3) ag4nn + 2(Zn) Ant1 M
+2t D g 42" an1n — 2" an_q
— B, 1 8N 4 By g
+an_12p2 4 Ap_1 =1} 4 an 2(n=2) p2
+3ag4n 2" n+ agpna"n? +2a94, 2"
+ any1 2D 4 Ant1 ("D p?
— Gy 2Dy o 9 g7 H3) ao+n + z(Ztn) Ant1
=0

Free of the baggage encumbering Sum, coeff now works. We

map it onto both sides of the equation g7.

> g8 := map(coeff,q7,x"n);

g8 :=an —an_1 +20a34n+an_1n+3a24nn

+ as4n n?=0
Finally, solving for a2, we get, in agreement with our ear-
lier result,

> isolate(g8,al[n+2]);
—Apn—1M — ap + Ap_1

24n24+3n

A24n =

Optimum property of Fourier series

The discovery that for a function f(x) defined on [0, 7], the
coefficients of its Fourier sine series are given by

b, = % foﬂ f(z)sin(n z) da

traditionally involves manipulating a formal infinite sum. In
fact, these coefficients are those which minimize the integral

> q := Int((f(x) -
> Sum(s[n]*sin(n*x),n=1..infinity)) "2,
> x=0..Pi);

q:= /Ow(f(m) - (Z snsin(nz)))? dz

In Maple, however, the differentiation
> diff(q,s[n]);

fails, since Maple does not "’see” the general term s, in the
data structure it uses to represent the infinite sum. Thus, the
traditional pedagogy used here must change if it is to be im-
plemented in Maple. Typically, this change amounts to work-
ing with an explicit finite sum as in

> gl := Int((f(x) -
> sum(s[n]*sin(n*x),n=1..3))"2,x=0..Pi);

ql =
/(; (f(z) — s1sin(z) — s sin(22) — s3sin(3z))* da

Pay particular attention to the change from Sum to sum.
Without that change the following differentiations fail.

> for k from 1 to 3 do

> eq.k := value(expand(diff(gl,s[k]),sin))
> = O;

> od;

eql := —2/ sin(z)f(z)de+s;m=0
0

eq? = —2/ sin(2z)f(z)de+ som =0
0

™
eqd 1= —2/ sin(3z)f(z)dz+ s3m =0
0

Solving each equation for its single Fourier coefficient yields

> for k from 1 to 3 do
> isolate(eq.k, sl[kl);
> od;

/Oﬁsin(x) f(z)dx

81 = 2
T
™
/ sin(2 z) f(z) da
§9 = 2 0
T
™
/ sin(3 ) f(z) da
83 = 2 L
T

from which we generalize to the familiar result stated above.

Well, having to make this compromise left me feeling I
had cheated my students. So, I thought I'd shift the same
computations to a less familiar domain. I supposed a set of
functions pO(x), p1(x), p2(x), ... with two properties:

1) f_ll Pn(2) pm(z)dz =0, n #m

2) [, p(e)? do = gy
I asked “Are these two properties enough to reproduce the
minimization property of the Fourier series?”’

To tell Maple that the functions pO(x), p1(x), p2(x) have
these properties, define the following equations for Property

(1.
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> g01:=Int(p0(x)*pl(x),x=-1..1)=0;
> q02:=Int(p0(x)*p2(x),x=-1..1)=0;
> gl2:=Int(pl(x)*p2(x),x=-1..1)=0;

q01 :=/ pO(z) pl(z)dz =0

~1

q02 :=/_1p0( z) p2(z) dz =0

qw::/ pl(z) p2(z) dz = 0

Then define the following equations for Property (2).

> g00:=Int(p0(x)"2,x=-1..1)=2;
> qll:=Int(pl(x)"2,x=-1..1)=2/3;
> q22:=Int(p2(x)"2,x=-1..1)=2/5;

1
q00 ;=/ p0(z)? da = 2

—i

! 2
q11 :=/ pl(z)*dz = 3

-1

! 2
q22 = / p2(z)’dz = 5

-1
Now set up the same measure of performance as used for
the Fourier series, namely, the integral of the square of the
difference between the function f(x) and an-approximating
sum.

> Q =

> Int(( (x) -s0*p0 (x) -s1l*pl(x)-s2*p2(x)) i
x=-1..1);

Qi= / — 50 p0(z) — s1 pl(z) — s2 p2(z))* da

Differentiate the measure of performance with respect to each
of the three coefficients s0, s1, s2. Set the derivatives equal to
zero to determine the values of the coefficients that minimize
the measure of deviation Q.

> eql := diff(Q,s0) = 0;
> eq2 := diff(Q,sl) = 0;
> eq3 := diff(Q,s2) = 0;

B

~

ii
\,_,

2(f( ) — s0p0(w) — s1pl(x) — s2p2(=))p0(z) do
0

Il

|
[\
—~
=
—~
~—
|
)
S
L=]
S
—~
~—
|
v
~
el
Y
—~
8
~
|
»
[\S)
he)
[\~
—~
~—
~—
el
[
—~
~—
0

1
eqd = /
-1

—2(f(z) — s0p0(z) — s1pl(z) — s2p2(z))p2(z) dx
=0
Progress solving these equations depends on simplifying
them. The parentheses need to be multiplied out, and any
possible integrations done.

> eqg4 := expand(eql);

> eqg5 := expand(eql);

> eqg6 := expand(eq3);
1 1

eat i= =2 [ p0@) (o) do+ 230 [ pO(@)*da
-1 -1

1

+ 251 /_llpO(rc) pl(z)da +2s2 / p0(z) p2

(z)dz
=0

eqs = —2/ pl(z)f(z)dx +2s0 /_lpO(m) pl(z) da

+231/

eqb = —2/ p2(z)f(z) dx + 250 /_1p0(rc) p2(z) dz

1
2de + 252 / pl(z)p2(z)dz =0
-1

1 1
+251/ pl(z) p2( )d1+232/ p2(z)?dx =0

No integrations have been done because everything is
symbolic. Maple knows only properties (1) and (2) apply,
but can't apply them until told. Do this with a simplify com-
mand containing the equations that define Property (1) and
Property (2).

> g0 :=
> simplify(eq4,(qOO,qll,qZZ,qu,q02,q12));

> gl :=
> simplify(eq5, {q00,qll,q22,q01,g02,gl2});

> g2 :=
> simplify(qu,{qOO,qll,q22,q01,q02,ql2});

1
q0 := -2/ pO(z)f(z)dz+ 450 =0
-1
! 4
ql = —2/ pl(z) f(z) dx + 3 s1=0
-1

1

4

g2 = —2/ p2(z) f(z) dz + £ s2=0
-1

Vol. 4, No.3, 1997

55



Tips for Maple Instructors

Solve each equation for the one coefficient it contains.

> isolate(q0,s0);
> isolate(ql,sl);
> isolate(qg2,s2);

s1 = g/ pl(z)f(z)dx

82 = g/1p2(m)f(n;) dx

Generalize these definitions to a formula for the nth coeffi-
cient s,,.

S = [Z—I‘Z’LI] f_ll f(z) pulzx) dx

Now, it was time to ask if such functions exist. Are there
actually functions with properties (1) and (2)? My students
didn't know, be we surely do, that the the functions p, () are
the Legendre polynomials, found in the orthopoly package.

> with(orthopoly) ;
G5 H; L; P, T, U]
A convenient way to access the first five Legendre polynomi-
als uses the loop

> for k from 0 to 4 do
> p.k:=P(k,x);

> od;
p0:=1
pl ==z
3 1
2:=Sg2_ 2
PEmRT Ty
5 3
pli=—at—-z
3 4 15 5, 3
Phi= gt - ety
Consider the function f(x) = sin(nz) on the interval

[-1,1], and compute the coefficients s0, s1, s2, s3, s4 by the
integral formulas derived above.
> for k from 0 to 4 do

> Aflk]:=(k+1/2) *int (sin(Pi*x)*p.k,x=-1..1);
> od;

A() =0
1‘11!—§

™
Az!:()

w2 —15
3

A3 =

A4 =0

Form an approximating sum with these five coefficients. Note
how the new add command lets us avoid the quotes needed
by sum.

> s := add(A[n]*p.n,n=0..4);
5 3
3 (n? - 15) (2% — = x)
§:=3=-+47 % 2
T T

Plot the approximation and the function f(x) on the same set
of axes.
> plot([sin(Pi*x),s],

> x=-1..1,linestyle=[2,1],
> color=black) ;

1+
0.5
- 1\ 0.5 0.5 \ 1
5]
_1«

Miscellaneous Maple observations

In this concluding section we consider three Maple charac-
teristics of consequence for students whose mathematical in-
stincts are still in the formative stages. First, we consider an
item from a discussion of removable singularities. Then we
consider plotting curves defined in vector notation. Finally,
we look at the subtleties of branches in the calculation of the
curvature of a circle.

EVALUATE-AT

The function

> £ := sin(3*x)/sin(4*x);
sin(3 z)

fo= SO0
sin(4 z)

56

MapleTech



Tips for Maple Instructors

is easily found to have a removable discontinuity at x = 0.
Maple correctly evaluates

> q := Limit(£f,x=0);

as

> value (q) ;

In an effort to show that there is indeed a discontinuity at
x =0 wetry

> subs(x=0,£f);

1

a terribly erroneous result that steals all thunder from a lesson
on removable discontinuities. Clearly, Maple has calculated
% and simplified that fraction to 1. The “error” is that
Maple did not evaluate both numerator and denominator to
0. However, observe that if the expression f had been entered

as a function, Maple's behavior would be different.

> F := unapply(f,x);

F:i=x—

> F(0);
Error, (in F) division by zero

So, we observe, there is a difference between evaluating a
function and substituting into an expression. We see this dif-
ference again arising in the case of piecewise-defined func-
tions.

> g := piecewise(x<0,x, x<2,x"2);
._{m <0
9= a2 z<2
> subs (x=1,9);
1 1<0
1 1<2

Substitution does not behave “mathematically” as “plug in
and evaluate” However, if g is redefined as a function, eval-
uation occurs as expected.

> G := unapply(g,x);
G =z — piecewise(z < 0, z, = < 2, a?)

> G(1);

Mike Monagan alerts me to a new paradigm coming in Re-
lease 5. Since subs is not the exact mathematical equivalent
of substitution, a new eval command will support the notion
of “plug in and evaluate at”” Both of the examples above
yield to this new functionality.

PLOTTING CURVES IN VECTOR FORM

The vector representation of a curve is a staple of a multi-
variable calculus course. Hence, representing a helix via the
radius vector R = cos(t) i + sin(t) j + t k is most easily done
in Maple with the syntax

> with(linalg):
> with(plots):

> R := vector([cos(t),sin(t),t]);
cos(t)
R:= | sin(t)
t

A plot of the helix is simply obtained via the syntax space-
curve(R, t = 0..4*Pi) but the analogous syntax for a plane
curve will fail. For example, defining the plane curve

> r := vector([cos(t),sin(t)]);
cos(t)
sin(t)

and using the syntax plot(r, t = 0..2*Pi), fails to yield the
expected circle since Maple treats the vector r as a list of two
functions and plots a sine and a cosine curve. We are forced
to treat the curve parametrically and address the components
of the vector r. Hence, plotting a plane curve defined as a
vector r requires plot([r[1], r[2], t = 0..2*Pi]). Such blurring
of the roles of the vector and list data-structures in Maple
requires students to remember syntactical particulars that add
to the instructional overhead.

CURVATURE OF A CIRCLE

Another staple in a multivariable calculus course is the notion

of curvature of a plane curve. In fact, a standard shake-down

of the definition of curvature is the verification that the cur-

vature of a circle is a constant. This calculuation, however,

requires deft handling of branches of the square root funtion.
We illustrate with a circle centered at the origin.

> q:=x"2 +y"2 =a"2;

g:=22 4y =a?
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First, we obtain y(z) explicitly, and compute the curvature
on the upper and lower semicircles separately.

> gq := solve(q,y):
>yl := qgqll];
> y2 := qql2];

yl =/ —22 4 a?
y2 = —\/—22 + a2

Defining curvature as k = —% we get
[+ D
> kappal[l] :=
> diff(yl,x,x)/(1+diff(yl,x)"2)"(3/2);
> kappal[2] :=
> diff(y2,x,x)/(1+4diff(y2,x)"2)"(3/2);
z? 1
K (=22 +a?)%2 /=22 a2
1= 2
x
14—~ )3/2
(1+ —z2 + a2)
2? & 1
ry = (—.’L‘2 +a2)3/2 [— 22 +a?
= 2
T
1 ———)3/2
(1+ —z2 + az)

If we use simplification with respect to the side relation g,
and a radsimp, we obtain
> radsimp (simplify(kappalll, {q}));
> radsimp (simplify(kappal2], {q}));
1

a

1

a

The difference in signs is significant. In contrast to newer
calculus texts which define curvature with an absolute value,
older calculus texts such as [2], define curvature so as to pre-
serve information about concavity contained in the sign of
y!l. Hence, on the upper semicircle, y(z) is concave down-
wards so y// is negative, whereas the opposite is true on the
lower semicircle. Maple has yielded the correct results!

But we have violated Monagan's Prime Directive: Thou
shalt not use radsimp under any circumstances! That com-
mand exists for backwards compatibility only. Thou shalt
use simplify. It was luck that got us the correct answers. The
weakness of radsimp, and the correct way to deal with the
branches, are illustrated by the following computation based
on implicit differentiation as implemented by the implicit-
diff command.

> yx := implicitdiff(q,y,x);
> yxx := implicitdiff(q,y,x,X);

z
YT 1= ——
Y

YIT 1=
Y e

> kappa := yxx/(l+yx"2)"(3/2);

22 4 ¢
S ————— g
3 (14 =—)3/2

v’ (1+ 7

If we use the same combination of simplify and radsimp as
before, we get

> radsimp (simplify (kappa, {q}));
1

a

Where exactly did we lose the sign information inherent in
the curvature of the branches?

Clearly, simplifying [y2](%) to y® is the culprit. It should
be |y|* so that [y/|y|]® is either 1 or —1, depending on the
branch y represents. The mathematically correct way (and
the proper Maple way) to proceed is to simplify x with re-
spect to the defining circle, then make assumptions on the
signs of a, and y.

> ql := simplify(kappa, {q});
(12
gl = -
3 (=)3/2
y (yZ)

> assume (a>0) ;
> interface (showassumed=0) ;

(Incidentally, my students discovered before I did that the
above interface command builds into the worksheet the sup-
pression of the tilde on assumed variables. The alternative
is to remember during the lecture to use the Options menu.
And it is puzzling that the suppression of the tilde is not per-
manent. Saving the worksheet and re-opening it later finds
the tildes have reappeared.)

Returning to the computation at hand, on the upper semi-
circle, y(z) > 0, so

> assume (y>0) ;
> simplify(ql);
1

a
whereas on the lower semicircle, y(z) < 0, so

> assume (y<0) ;
> simplify(ql) ;

Q|

58

MapleTech



Tips for Maple Instructors

References

[1] Wade Ellis, Eugene Johnson, Ed Lodi, and Dan
Schwalbe: Maple V flight manual, Brooks/Cole,
(1992).

[2] William Anthony Granville, Percey F. Smith, and
William Raymond Longley: Elements of the differen-
tial and integral calculus, Ginn and Company, (1934).

Biography

Robert J. Lopez is a classically trained applied mathemati-
cian with a Purdue University Ph.D. (1970) in Relativistic
Cosmology. After a short stint at the University of Nebraska-
Lincoln, he spent 12 years at Memorial University in St.
John's, Newfoundland, Canada, an odyssey of cod fish, ice
hockey, and long gray winters. At Rose-Hulman Institute of
Technology since 1985 where he pioneered the use of Maple
in the classroom, he has authored books and papers, rep-
resented Maple “on the road” for 30 months, and received
his Institute's awards for both teaching excellence and dis-
tinguished scholarship. He continues to promote technology
as an active partner in undergraduate instruction and curricu-
lum revision.

Vol. 4, No.3, 1997

59



Exploring Population Dynamics with Maple

Walter Middleton and Douglas Curran *

Abstract: The paper outlines the general philosophy of the approach used to introduce discrete-system mod-
eling to undergraduates at the University of Sunderland who are registered in a wide variety of courses in-
cluding education, business and the sciences. A Leslie population model is developed and the underlying
assumptions of its implementation considered. The model is then run and the results discussed. The work is
presented in a form suitable for use by other university instructors.

Introduction

The School of Computing and Information Systems at the
University of Sunderland offers modules in mathematical
modeling principally aimed at students registered in the Uni-
versity Combined Programme (UCP) and the BA(Accounting
and Mathematics) (BAAM) degrees. In the summer of 1992
the BAAM degree was validated and at the same time the
mathematics offered to UCP students was entirely re-written
with the specific aim of including a computer algebra system
as a core, essential part of the resources necessary to enable
students to explore, learn and do mathematics. The system
chosen was Maple. As well as using Maple as a teaching and
learning tool for topics such as the calculus and linear algebra
offered at a variety of levels, staff have integrated Maple into
the modeling courses offered. This presents the students with
a unified approach to both the initial teaching and the prac-
tical application of mathematics. Although the application
considered in this paper is purely numerical, Maple is used
by students who employ its symbolic capabilities throughout
their studies. It is anticipated that the experience gained at
Sunderland by integrating a computer algebra system (rather
than using it as an add-on) into the teaching and learning pro-
cess across a range of related modules will be of use to other
university staff involved in or contemplating similar activi-
ties.

Foundation courses in modeling at
Sunderland

After taking first year courses aimed at giving them an ac-
ceptable minimum background in the calculus, linear algebra
and statistics, second year students are offered a one semester
module titled “The Foundations of Mathematical Modeling”.
Typically, second year classes in modeling are comprised of
students from a variety of disciplines including science, ac-
countancy and education.

Our second year modeling courses are conventional in
the sense that they encourage teams of students to look at
a problem from several viewpoints and use simplifying as-
sumptions and techniques such as developing feature lists
describing the essentials of a problem before attempting to

*University of Sunderland United Kingdom

build a mathematical model. Once this is successfully done,
the students approach the problem of solving a system of
equations and interpreting the solution obtained in terms of
the original model. It is at this stage of the modeling pro-
cess that Maple may be used to advantage. The underlying
philosophy that the solution depends on the assumptions is
stressed throughout and students are positively encouraged
to re-define their assumptions and refine their models to ob-
tain solutions which describe the original scenario ever more
closely.

Exploring the solution stage of the modeling process (by
varying parameters and re-solving) is essential if students are
to obtain a “feel” for the work they are doing and it is at this
stage that computer algebra systems can offer much to prac-
titioners and students alike. We shall now consider a typical
modeling scenario in which students benefit by employing
Maple as a solution tool.

Population modeling

Since 1991 the authors have been involved in TEMPUS
funded projects with Bulgaria and Hungary. From 1991-94 a
project titled “New Approaches to the Teaching of Engineer-
ing Mathematics” involved the authors working with staff of
the Technical University of Sofia, Bulgaria and from 1994 to
the present time the authors have worked with staff from the
Budapest University of Economic Sciences, Budapest, Hun-
gary on a project titled “The Development and Teaching of
Modeling Courses in Information-Based Decision Manage-
ment.” Both projects have used the vehicle of population
modeling to teach students the basic concepts of the mod-
eling process and both projects have faced similar situations
when implementing modeling courses. Commonly, we have
found:

i) classes comprising students who are theoretically ca-
pable and well-schooled in the traditional skills of math-
ematics but who are inexperienced applied mathemati-
cians;

ii) students who have little or no previous experience of
modeling;

iii) at second year level, students have little real experi-
ence of working in teams and many of them find dif-
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ficulty with the concept that the outcome of a problem
scenario depends on the assumptions made to build
a mathematical model and that there are no clear-cut
right and wrong answers;

iv) students who have no experience in the essential role
that computers now play in the analysis and explo-
ration of mathematical models;

v) students who have no experience of working in a math-
ematics laboratory consisting of microcomputers
equipped with suitable software;

vi) students whose assessment regimes consist (almost)
entirely of formal examinations.

Modeling the population of the blue
whale using Maple

Following introductory work in which the students consider
continuous time-variable exponential and logistic population
models, the scenario described below is introduced as the

first serious example of a model using a discrete time-variable.

One of the best known discrete model formulations is that
proposed by P. H. Leslie [1]. The Leslie model predicts the
age structure of a population of animals after a unit period
of time has passed given that the structure at the start of the
time period and the appropriate information regarding mor-
tality and fertility rates is known. Following the work of
Leslie, the development of a typical initial model, together
with some simplifying assumptions is outlined below.

Firstly, since only the females in a population can give
birth, the model considers the female population only. Sec-
ondly, we break the female population up into m + 1 age
groups denoted by 0,1,2,3, -+, m. The number of females
in age group « at time ¢ is denoted by n; ;.

MORTALITY RATES

The proportion of females surviving group z to become mem-
bers of group = + 1 at time ¢+ 1 is denoted by P,. In general,
P, > 0 but P, = 0, since the proportion surviving the last
age group must be zero by definition.

FERTILITY RATES

The average number of female calves born per member of
group x at time ¢ is denoted by F,. We assume that all of
these calves survive to become members of group O at time
t + 1. Further, we assume that the mortality and fertility rates
stay constant over several time periods. The above assump-
tions and notation are used to build the initial model outlined
below.

Relationships are first established giving the number of
females in each age group at time ¢ + 1. Taking the lowest

age group first, the number of members in this group is given
by the formula:

no 1+1 = Fonoy + Fini. + Fong o+ + Funmy

The numbers in the remaining classes follow a clear pattern
which may be represented by the relationships:
ni 41 = Pono,

ng 41 = Pin1,

Nm,t+1 = Pm—lnm—l,t

The above relationships are best expressed in matrix form
as shown below.

no,t+1
n1,t41
n2 141
n3 41 | T
[ my41
[(Fo Fu Fo -+ Fpoy Fo | [ noy |
R 0 O 0 0 ny
0 P1 0 0 0 na .
0 0 P 0 0 n3,1
0 0 0 -+ Pnog 0 || nmy |

The derivation of this model is a challenge for most of
our students presenting, as it does, a considerable increase
in conceptual difficulty when compared with the exponential
growth and logistic growth models described by simple dif-
ferential equations.

The above matrix equation is easily represented as

n;41 = Mn,
from which it is clear that
M1 = Mno

M2 = Mn1 = M2n0
M3 = Mng = M3n0

so that in general, after p time periods, the population may
be described by the matrix equation

MP = Mpno
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The matrix M is square, of order m + 1 and has interest-
ing mathematical properties which students may be asked to
investigate with advantage. However, in terms of the model-
ing process, we need to note that there are m + 1 eigenvalues
A and corresponding eigenvectors x which satisfy

Mx = Ax

and that we can use certain properties of the matrix M and
interpret them in terms of our population model.
The properties are:

i) there exists a unique positive value of A say \,, with
the property that the corresponding eigenvector x can
be thought of as having only non-negative elements;

ii) A, has the greatest absolute value of any eigenvalue
in the system.

The theory supporting these properties is explained in de-
tail to undergraduate students. While we have found that
postgraduate students are capable of deriving the properties
as a set piece of work, this is not normally the case with our
undergraduates.

From a modeling point of view, property 1) tells us that
the Leslie model will always give a population distribution
consisting of positive numbers only. This is important since
it is impossible to consider populations with negative or com-
plex numbers of animals! The eigenvector xq corresponding
to A gives the steady-state age distribution of the popula-
tion.

Property i) also states that the age distribution is unique
since A, is unique. Property ii) tells us that we can easily
find the value of A, by finding the eigenvalue with the great-
est absolute value.

Maple will easily find the complete eigensystem of a ma-
trix so that it is a simple matter to pick out the value of the
eigenvalue ), and the corresponding eigenvector x,.

Model data

The following information has been obtained from studies of
the blue whale [2] and enables us, following the mathematics
above, to build a Leslie model of the population.

1) Female blue whales reach maturity at between four and
seven years of age;

2) the gestation period for a pregnant female is about one
year;

3) asingle calf is born and requires nursing by the mother
for about seven months;

4) nursing mothers do not become pregnant;

5) observations show that in general not more than one
calf is born to a female every two years;

6) the observed male:female ratio in actual catches of blue
whales is roughly 1:1;

7) the rate of breeding for older whales is slightly less
than that of whales in their prime;

8) natural mortality appears to account for the deaths of
about 13% of the whales in any given group except the
final group where the mortality must be 100%;

9) the maximum age of blue whales is about 40 years.

The following table gives the estimated fertility and mortality
rates for the given age distribution of the animal.

Age of Whale 0- 2- 4- 6- 8-
Fertility Rate! ~ 0.00 0.00 0.19 0.44 0.50
Mortality Rate? 13 - 13 13 13 13

Age of Whale 10-  12-  14- 16- 18-
Fertility Rate! ~ 0.50 045 045 045 045
Mortality Rate? 13 13 13 13 13

Age of Whale  20- 22- 24- 26- 28-
Fertility Rate! 045 045 045 045 045
Mortality Rate? 13 13 13 13 13

Age of Whale 30-  32-  34-  36- 38-
Fertility Rate! ~ 0.45 045 045 045 0.00
Mortality Rate? 13 13 13 13 100

! Calves/female born in a two-year period

2 Percentage of deaths in each age group

The information in the table gives rise to a Leslie matrix
of order 20 which is used in the first modeling scenario con-
sidered below. Essentially the whales are assumed to breed
at a roughly constantrate over their later adult life and have a
constant survival rate over their whole life except when they
reach the 38-40 class. The data indicate that no whale sur-
vives this age group.

Exploring the model
The essential Maple commands used are summarized below.
> with(linalg) ;
> P:=([seq(x,1i=0..n)1);
> vals:=evalf (Eigenvals (A, vecs),4);
> x:=evalf (col(vecs,a),k4);
> x:=evalf (evalm(x/x[1]*1000),4);

> map (round, x) ;
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MODEL 1
> with(linalg) :
> P1:=[0.87%$18,0];
P1:=[.87, .87, .87, .87, .87, .87, .87, .87,
.87, .87, .87, .87, .87, .87, .87, .87, .87, .87,
0]

> F1:=[0,0,0.19,0.44,0.5,0.5,0.45%$13,0];

F1:=10,0,.19, .44, .5, .5, .45, .45, .45, .45,
A5, 45, .45, 45, 45, 45, .45, .45, 45, 0]

> Ll:=matrix(20,20,0):
for i to 20 do L1([1,i]:=F1[i] od:
> for i to 19 do L1[1+i,i]:=P1[i] od:

We will now find the eigensystem of L1.

\%

> gysl:=evalf (Eigenvals (L1l,vecsl) ,h 4);

sysl :=[1.111, .7807 + .3187 1,
7807 — .31871, .6132 + .5614 1,
.6132 — .5614 1, .4004 + .7406 I,
.4004 — .7406 I, .1676 + .8317 1,
1676 — .83171, —.09145 + .82191,
—.09145 — 82197, —.3460 + .7418 1,
—.3460 — .7418 I, —.5609 + .5885 I,
—.5609 — .58851, —.8019 4 .1281 1,
—.8019 — .12811, —.7173 4+ .3762 1,
—.7173 - .37621, 0]

Pick out the eigenvector corresponding to the steady-state

> x:=evalf(col(vecsl, 1) ,4);

x 1= [—.6239, —.4881, —.3823, —.2986, —.2327,
—.1814, —.1410, —.1092, —.0854, —.0670,
—.05228, —.04122, —.03273, —.02603, —.02092,
—.01697, —.01396, —.01154, —.009399, 0]

and normalize the population distribution to give a popula-
tion of 1000 for age class 0-2.

> x:=evalf(evalm(x/x[1]1*1000),4);

a := [1000., 782.4, 612.8, 478.7, 373.0,
290.8, 226.0, 175.0, 136.9, 107.4, 83.80,
66.08, 52.47, 41.73, 33.53, 27.20, 22.38,
18.50, 15.07, 0]

The rounded population distribution of the blue whale pre-
dicted from the first model is given by:

> PopModell:=map (round, x) ;

PopModell := [1000, 782, 613, 479, 373,
291, 226, 175, 137, 107, 84, 66, 52, 42, 34,
27, 22, 19, 15, 0]

MODEL 2

The second model assumes that the fertility and mortality
rates used follow the same pattern as those in Model 1 with
respect to the initial age ranges, but after 14 years of age
(about one third of their natural lives) the fertility rates are
assumed to fall in a linear fashion with animals in the last
two classes, like those in the first two, not breeding. The sur-
vival rates also follow the same pattern as those in Model 1
with respect to animals in the initial classes, but are again as-
sumed to fall linearly after the main breeding period of their
life has ended.

The input of the matrix L2 follows the same pattern as
the input of matrix L1; it is in fact, a modified version of this
matrix.

> p2:=[.87, .87, .87, .87, .87, .87, .87,

> 798, .725, .652, .580, .507, .435, .362,
> .290, .217, .145, .072, 0]:

> F2 := [0, O, .19, .44, .5, .5, .5, .458,
> .417, .375, .333, .291, .250, .208, .166,
> .125, .083, .041, 0, 0]:

> L2 := matrix(20,20,0):
> for 1 to 20 do L2[1,i]:=F2[i] od:
> for 1 to 19 do L2[1+i,i]:=P2[1i] od:

> gys2:=evalf (Eigenvals (L2,vecs2) ,4);

sys? = [0, 1.088, .5231 + 48281,
5231 — 48281, .2118 + .5425 1,
2118 — .5425 1, .09085 + .5978 I,
.09085 — .5978 I, —.04870 + .4359 I,
—.04870 — 43591, —.4170 + .1716 I,
— 4170 — 1716 I, —.4213, —.3101 +.29341,
—.3101 — .2934 T, —.1472 + .3870 1,
—.1472 — 38701, —.2346 + .1249 I,
—.2346 — 12491, 0]

> x:=evalf (col(vecs2,2),4);

o 1= [-.7588, —.6059, —.4860, —.3889, —.3117,
—.2495, —.1995, —.1601, —.1179, —.0788,
—.04716, —.02519, —.01176, —.004658,
—.001522, —.0003969, —.0000788, —.00001099,

—.7279107¢, 0]
The rounded population distribution of the blue whale pre-
dicted from the second model is given by:

> PopModel2:=map (round, evalm(x/x[1]*1000)) ;
PopModel2 := [1000, 798, 640, 513, 411,

329, 263, 211, 155, 104, 62, 33, 15, 6, 2, 1,
0,0, 0, 0]
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The second model predicts that blue whales reach a max-
imum age of about 32 years. It is known from the given data
that they reach a maximum age of about 40 years. This sug-
gests that the assumptions made regarding the fertility and
mortality rates should be revised, perhaps allowing a higher
rate of breeding, possibly for longer and/or a higher rate of
survival, possibly for longer.

Once this model is well understood, Sunderland under-
graduates then study a Leslie model of the population of Red
Deer on the Isle of Rhum, Scotland [2]. This model rep-
resents a further increase in difficulty for undergraduates in
that the fertility and mortality rates of the animals have to
be calculated from original data before the Leslie matrix can
be written down. Sunderland postgraduates also study this
model but are expected to be much more independent of the
lecturer in charge of the class.

Conclusion

Once the foundations of the model are well understood, it is
relatively easy to develop and explore other related scenarios
using Maple to do the calculations. Such calculations are te-
dious to say the least if done by hand and can easily act as
a barrier to students wishing to revise their assumptions and
explore a modeling scenario. Once the normalized popula-
tions are calculated the results may be compared in a criti-
cal manner relating the model predictions to the original data
and the assumptions used to build the model. Each model
explored can lead to a different, more refined model, as the
underlying assumptions are developed with experience.

The authors have sought to illustrate that it is possible
to use Maple to explore certain types of modeling scenarios
met typically in the life sciences and that the package can
be used to advantage by students who are not mathematics
majors and do not have a substantial knowledge of Maple.
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