Fourier Optics with Maple
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Abstract: This paper describes an application of Maple in a first course in Fourier Optics given at Rose-
Hulman Institute of Technology. The course includes a two-hour laboratory using Maple to help with compu-
tation and visualization of the important Fourier theorems. Examples are given for each of the theorems and a
library of frequently used functions is included. These are then applied to solve a simple optics problem. The
final section includes some “pitfalls” that we encountered and suggestions on how to avoid them.

Introduction

The primary problem in optics is to understand how opti-
cal systems process light to form images. Fourier transforms
provide an elegant and practical way to describe these sys-
tems. The Fourier transforming property of a single lens en-
ables us to generate spatial-frequency spectrum of a given in-
put or that of its image at the back focal plane of the lens. Ma-
nipulating the spectral distribution of an input (known as spa-
tial filtering) alters the light distribution in the output plane of
an imaging system. Popular examples of spatial filtering are
edge enhancement, contrast reversal, deblurring, and pattern
recognition.

The first course in Fourier optics is challenging from both
the mathematical and computational requirements. This note
is an outgrowth of a two hour Maple lab that was introduced
to help with the computations and visualization of Fourier
theorems. Each student is provided with a “library' of func-
tions that are frequently used in optics. Procedures are in-
cluded to convert the Maple version of the transforms to the
versions used in the course text. Currently we are using [1],
the classic Introduction To Fourier Optics by J. W. Goodman.

There are a number of Fourier theorems that are essen-
tial in Fourier optics. Proving these theorems is a help in
understanding them, but a greater help to the students is to
demonstrate the theorems for specific functions. This can be
done by comparing the transformed equations or, better yet,
by comparing their plots. We include examples for the linear-
ity, separability, similarity, shift and convolution theorems.

Probably the most important part of an optics course is its
laboratory portion where students set up commonly used op-
tical systems and compare the results with the theory. Some
“experiments' can be done via Maple. In this note we analyze
a simple optical system and show the effects of changing the
pupil size of a lens on intensity distribution of the image. The
final section of this note lists some pitfalls of blindly relying
on the Maple transform package and suggests ways of over-
coming these difficulties.
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Functions frequently used in optics

We define functions called pulse, rect, tri, gaussian, and sinc.

PULSE

> pulse := proc(x,xL,xR)

> Heaviside(x-xL) - Heaviside (x-xR) ;
> end:

> plot(pulse(x,-1,2),
> x=-2..3,tickmarks=[6,3]);
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RECT
> rect := proc(x)
> pulse(x,-1/2,1/2);
> end:

> plot(rect(x),x=-2..2,tickmarks=[5,31);
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The product of rectangular functions, rect(x/a) rect(y/b),
represents in the xy-plane a rectangular aperature with sides
of lengths a and b.

TRI

> tril = proc(x)

> (1+x) *pulse(x,-1,0) + (1l-x)*pulse(x,0,1);
> end:

> plot(tri(x),x=-2..2,tickmarks=[5,3]);

-2 -1 0 1 2
x
GAUSSIAN
> gaussian := proc(x,a)
> exp(-a”2*x"2);
> end:

> plot(gaussian(x,1),
> x=-3..3,tickmarks=[7,31);

SINC
> sinc := proc(x)
> if x = 0 then 1 else sin(Pi*x)/(Pi*x) fi;

> end:

> plot(sinc(x), x = -5..5, tickmarks=[5,3],
> scaling=constrained) ;

The sinc function is the Fourier transform of the rectangular
function.

Maple and the Goodman text use different definitions for
the Fourier transform and its inverse. The relationship be-
tween the definitions are given in the following table.

Fourier transform Inverse Fourier transform
Maple

IS 8(@) T da
Goodman

J‘i’ooog(,b) e(-217er::) dx fjoooG(,l’) e(2ImafX) de

To make it easier for the student to use Maple in sup-
port of learning from the Goodman text we wrote the proce-
dures Fourier and invFourier which implement in Maple the
Goodman definitions of the transform and its inverse. Optical
systems are usually two dimensional, and Goodman uses fX
and fY to represent spatial frequencies along the x-axis and
y-axis, respectively. The Maple command for the one dimen-
sional Fourier transform is fourier(g,x,w). For the Goodman
version we use Fourier(g,x, fX).

o ffooo G(w) eI =) doy

FOURIER

> Fourier := proc(g,x, £X)

> local w,v;

> v := inttrans[fourier] (g,x,w);
> evalc (subs (w=2*Pi*fX,v)) ;

> end:

INVFOURIER

> invFourier := proc (G, fX, x)

> local v;

> v := inttrans[invfourier] (G, £X, x);
> evalc (subs (x=x*2*Pi,2*Pi*v)) ;
> end:

Fourier theorems

In this section we state some of the Fourier theorems that are
used in Fourier optics computations. To assist in understand-
ing these theorems, we apply them to specific functions and,
in some cases, show the results graphically.
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SEPARABLE FUNCTIONS

A function of two variables f(x,y) is separable if f(x,y) = g(x)
h(y). In this case the Fourier transform of f(x,y) is equal to
the product of the transforms of g(x) and h(y), that is
(oo} (oo} -
f_oo f—oo f(.’L‘, y) e( 27 I(z fX+yfY)) dx dy =
f_oooo g(’L) e(—27'r I'zfX) dx
S h(y) e 2TV dy
We demonstrate this theorem by choosing the separable
function f(x,y) = g(x) h(y) = rect(x/a) rect(y/b). This func-
tion represents a rectangular slit with width a and height b.
Since the Maple transform package does not include two di-
mensional transforms, we just integrate twice to transform
f(x,y). Also, since rect is an even function with finite do-
main, we can obtain the Fourier transform of f(x,y) with the
corresponding cosine transform. We show the calculations
below for the case a = 1 and b = 5. Note that in this case
f(z,y) =0 for|z| > 1/2and |y| > 5/2.

> F:=

> int (int (rect (x) *rect (y/5) *

> cos (-2*Pi* (x*fX+y*£fY)),
> x=-1/2..1/2),y=-5/2..5/2);

cos (g 7rfY) sin (g wa) sin(7 fX)
T2 fY fX

F:=2

> plot3d(F, fxX=-2..2,fy=-1..1,axes=FRAMED,
> tickmarks=[5,5,31);

> H:=Fourier (rect(y/5),y,fY);
_ sin(57 fY)
T wfy

+ 2Isin(57 fY) w Dirac(2 7 fY)

> plot3d(G*H, fX=-2..2,fY=-1..1,axes=FRAMED,
> tickmarks=[5,5,3]);

The plots look the same and with a little computation we
see that F = GH, thus the Separability theorem is demon-
strated for this example.

SHIFT THEOREM
If f(z, y) = invFourier{ F(fX, fY') }, then

f(T —-a, Y- b)

= invFourier{ F(fX, fY) e(-T27(afX+bf¥)) },

To demonstrate this theorem, weleta=5,b=2,1(z, y) =
g(z) h(y) = e~*=") e(=¥"). We first find the Fourier trans-
form of f(x,y) using separabilty. We then take the inverse
transform of F(fX, fY) e(-127 (@fX+bfY)) (o obtain f(z —
a,y—b).

> g:=gaussian(x,2); h:=gaussian(y,1);
g:=el™ =

b 5= &)

> G:=Fourier(g,x, fX); H:=Fourier(h,y, fY);
G i= LA a1/ XY
4

H:= \/776(_’r2 1Y)

Then by the separability theorem we have F(fX,fY) = G
(fX) H(fY). We again apply separability to calculate
invFourier{ F(fX, fY) e(~T27(afX+fY)) 1 The terms in-
volving x are denoted by gl and those involving y are de-
noted by hl.

> gl:= invFourier (G*exp (-I*2*Pi*5*fX), fX,x);
_(2mx—10= 2)

gl :=+/m -7-11_—6( =
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> hl:=invFourier (H*exp (-I*2*Pi*2*fY), fY,y);

hi:=+/m %e(~1/4 (2'*”;” 2)

> plot3d(\{gl*hl,g*h\},x=-2..8,y=-2..8, \
> axes=FRAMED) ;

o O O o

> plot(g(3*x),x=-2..2,tickmarks=[7,3]);

=
E——

The gaussian peak in the background is the original func-
tion. The peak in the foreground shows the shift of 5 units in
the x direction and two units in the y direction.

0.
SIMILARITY THEOREM
If Fourier{ g(z,y) } = G(fx, fy), then
Fourier {g(az, by)} = ]al_b| G (%, %)
We now demonstrate the Similarity theorem, in one di- -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
mension, with g(z) = sinc(2)? and with a = 3. *
> g:=x->sinc(x) "2: :
> plot (Fourier(g(3*x),x, fX),fX=-4. .4,
> plot(g(x),x=-2..2,tickmarks=[7,3]); > tickmarks=[9,3]);
l\ O \\
0.27
// 0.1
s i i ~. :
-2 -1°5 -1 -0.5 0o 0.5 1 1.5 2 -4 -3 -2 -1 o il 2 3 !
X £X

z Eigg\z?ﬁzi?g (g](’)() o2y B B E== sy In this example we see that the Fourier transform of the
' ' sinc-squared function is the triangle function. The transform
is flattened and widened when x is replaced by 3 z, as pre-

dicted by the Similarity theorem. The peak value of g(z)
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itself is not changed, but its graph is sharper when x is re- > FT_convo:=Fourier (convo,x, fX) :
placed by 3. The Similarity theorem shows that contrac- > GH:=G*H:

tion of functions in the space domain leads to the broadening
of their Fourier transforms in the spatial frequency domain,
provided a is greater than one. The relations are reversed for
a between zero and one.

> plot (FT_convo, fX=-1..1);

CONVOLUTION THEOREM A ,/\ 2;‘ f ,’\
If Fourier {g(z, y)} = G(fX, fY) and Fourier {h(z, y)} = \ , 1[ f \ i\ [’ ‘-
H(fX, fY), then f‘l | ’\1 fl\
o o ANARINANR
/_ /_ g(s, t)h(x — s,y —t)dsdi -1 o5 | l] \‘\0[’ l\ f‘ \\ f e 1
= invFourier{G(fX, fY) H(fX, fY)}, Il 1\ ’ \]1! \\ | f \ £x
where the double integral is the convolution of g and h. i \ ,f h \l, \I ‘\
We now demonstrate the theorem for the one dimensional j \) \é \j k, |
case with g(x) = Dirac(x+5) + Dirac(x-5) and h(x) = sinc(x). -7
> g:=x->Dirac (x+5)+Dirac(x-5):
> h:=x->sinc(x):
> plot(GH, fX=-1..1);
> G:=Fourier (g(x),x, fX);
G := 2 cos(10 7 fX)
> H:=Fourier x), X H ’
H: 1; rier (h(x),x, £X) ; {:’\1 ’[\\ l}\ {(\l l’\
1= (G I
(Heaviside(—2 7 fX + m) — Heaviside(2 7 fX — )) I \1 ) \‘ f’ \‘ 'I \‘ } \
—%w -1 —o}s\f]‘lq\[\\idh o
(Heaviside(—2 7 fX — m) — Heaviside(2 7 fX +))) ;i s I }l\J \ | ' f!
" V0

> convo:=int (g(s)*h(x-s),s=-6..6);

sin(m (z 4+ 5)) . sin(7 (z = 5))

convo =
m(z + 5) m(xz—5)

Nofe that — 0 for |s| > 6 Thus for this example we see that the Fourier transform
ote that g(s) = 0 for |s] > 6. of the convolution of two functions is equal to the product of
> plot(convo,x=-10..10); their Fourier transforms and the theorem is demonstrated.

1 A
i |
0.8 |
el |
0.4 I’
| 0.2 ,
AWAN B WNE /\,\/\v/x
-10 -5 0 5 1/ 10
Vool Vs
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An optics problem

pupil
%%lﬁif lens |
image
l plane
lightHH I
sourc
|20 cm. | 20 cm. |

Plane waves of monochromatic light (with unit ampli-
tude and wave length = .0001 cm) illuminate a square aper-
ture (sides = 0.05 cm) located at the object plane as shown
in the above Figure. The transmitted light travels through
free space to a square pupil (sides = 1 cm) and a converging
lens of 10 cm focal length. The light transmitted by the lens
propagates through free space to the image plane. We are to
find the image intensity distribution, I;, in the image plane.
Equations describing this system are derived in Chapter V of
Goodman. The vertical axis in the figure is the x-axis. The
y-axis is perpendicular to the plane of the paper and is not
shown. The intensity distribution in one dimension is ex-
pressed as the square of a convolution,

Ii(z) = (ug O h)* = (f2_ ug(s) h(x — s) ds)?,

where ug is related to the square of aperture function in the
object plane, A is related to the input response of the lens and
pupil to a point input ( impulse response), and the symbol O
is used to denote the convolution. For our problem (in one
dimension), ug and & are given by:

ug = rect(20x) and & = invFourier{rect(fX/500)}.

We now compute the inverse transform and convolution
and plot the intensity distribution.

> ug:= rect(20*s);

1 1
ug = Heaviside(20 s + 5) — Heaviside(20 s — 5)

> h:=invFourier (rect((£fX/500)), fX,x);

h =
sin(500 7 z)

Tr

— 2I 7 Dirac(2mz)sin(500 7 z)

> hl:=subs (x=x-s,h);

sin(500 7 (z — s))
w(x —3)
— I Dirac(z — s)sin(500 7 (z — s))

hl :=

> Fi:=int(ug*hl,s=-1/40..1/40);

25 25
—Si(—; 7+ 5007 ) + Si(77r + 500 7 z)

Fi =
T

We can use these finite limits since ug(s) = 0 for |s| >
1/40.

> Ii:=(Fi)"2:
> plot(Ii,x=-0.03..0.03,tickmarks=[7,3]1);

VAVA T \/\N/\ﬁ \

|
|

=-0.03 -0.02 -0.01 0

The above calculations were restricted to the one dimen-
sional case. For this optical system (and for many others) the
functions are separable and thus Ii(x, y) = Li(x)li(y). A plot
of Ii(x, y) is shown below.

> plot3d(Ii*subs(x=y,Ii),x=-0.03..0.03,

> y=-0.03..0.03, tickmarks=[7,7,3],
> axes=FRAMED) ;
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If the sides of the pupil are halved then the function h
is changed. We calculate the resulting image intensity below,
where a trailing s is used to denote the results with the smaller

aperture.

> hs:=invFourier (rect (£X/250), fX,x) :
> hls:=subs (x=x-s,hs):

> Fis:=int (ug*hls,s=-1/40..1/40):

> Iis:=(Fis) 2:

plot(Iis,x=—0.03..0.03,tickmarks=[7,3]);

Y

: /\//\//\\\

2
)

o \
\
\

Ny
0.01 ,0.02 0.03

-0.03 -0.02 -0.01 0

Notice that the intensity modulation of the image (fringes)
is due to coherent illumination of the object and finite size of
the square pupil (diffraction limited imaging).

The accuracy of the Fourier technique in optical process-
ing is astonishing. It makes a powerful teaching and research
tool when its recipes are prescribed with the ease of Maple .

Some pitfalls

We tried to define the rectangular function rect(x) via the
piecewise function rather than the Heaviside function. This

failed, as shown below, since the Maple Fourier package would

not transform the piecewise function.
> rectp:=x—>piecewise(x<—1/2,0,x<1/2,1,0):

> R:=inttrans[fourier] (rectp(x),x,w);

-1
0 2< —5—
R := fourier 1 , Ty W
0 otherwise

In one application of the Convolution Theorem , we tried
to apply invFourier to the product of a sinc function and a
rect function. The Maple package was “unable to handle”.
This difficulty was overcome by noting that e@ImefX) —
cos(2mz fX) + I'sin(2m 2 fX) and applying the Fourier in-
version integral. For an even function, H(fX) = H(-fX), so the
only contribution to the inversion integral will come from the

cosine term. Also, if the function vanishes outside a certain
domain then we need only integrate over the domain where
the function is nonzero. These ideas are shown in the follow-
ing calculations.

> F:=2*sinc (2*£fX):
> G:=rect (fX):

> q:=invFourier (F*G, £X,%);

Error, (in evalc/int)
Unable to handle definite integral

Since F and G are both even functions and G = 0 for | fX| >
1 / 2, the inverse transform is given by:

> ql:=

> simplify(int(F*G*cos(2*Pi*x*fX),

> fX=-1/2..1/2));

Si(m (-1 + x)) — Si(m (z +1))

T

ql :=

This result can be verified by the Convolution theorem
after noting that the integrand in the convolution integral has
compact support.

> ff:=invFourier (F, £X,x):
> gg:=invFourier (G, £X,%) =
> QQ:=
> int (subs (x=s, £f) *subs (x=s-X, gg),s=-5..5);
Si(r —mx) —Si(—mx —7
0q - Sitn=7@) =Si(-me =)
T
Agreement is obtained by noting that Si(x) is an odd function.

The final pitfall that we have noted involves integration
of the exponential form of the sinc function. Maple gives an
incorrect integral. This difficulty can be corrected by apply-
ing the evalc command to the exponential form before inte-
grating. Note that in our library of transform procedures, we
have included the evale command. This pitfall and cure are
demonstrated in the following calculations.

> h:=inttrans[fourier] (rect(x),x,w);
(1/2 T'w) . I
h:=e (m Dirac(w) — —)
w

— e(-1/21w) (m Dirac(w) —

)

g~

> g:=int(h,w);
1
q:i=2 Si(§ w) — mesgn(w)
The correct expression for this integral is 2 Si(). Maple

gives the correct answer if h is separated into its real and
imaginary parts before integration. This is done below,

> he:=evalc (h);
sin(z w)

he = 3= — .‘ZIsin(% w) 7 Dirac(w)

w
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> gl:=int (he,w) ;

q1 =2 Si(% w)

REMARKS

Note that the Dirac functions in the above expressions can
be ignored since Dirac(w) only contributes when w = 0, and
when w = 0 the Dirac functions are multiplied by zero. Thus
h = he = sin(w/2)/(w/2) and q1 is the correct integral.

SUMMARY

These difficulties that have been encountered can be avoided
by: (1) not using the piecewise function, (2) using the cosine
form of the Fourier transform for transforming even func-
tions, (3) using finite limits when the domain of the functions
are finite, and (4) applying the evalc command to transforms
before making additional computations.
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Fitting Logistics to the U. S. Population

William C. Bauldry*

Abstract: We consider fitting a logistic model to the U. S. population in the light of modern courses in
differential equations. A direct logistic fit to the data with least squares is shown to be intractable. An
approach to fitting using divided differences is given and a novel model is developed. We close with suggested

directions for student explorations.

Historical background

Prediction is difficult, especially when it involves
the future. — Mark Twain

Modeling human populations dates back to Graunt's 1662
treatise, Natural and Political Observations [1], on the mor-
tality tables of London; many consider him to be the founder
of demographic analysis. Graunt realised that his estimate of
64 years for the doubling time of London's population, when
applied to the world in general, “shall produce far more Peo-
ple, than are now in it.” (The political economist, Petty, pro-
posed a declining growth rate in 1683.) The most influential
text is British cleric Rev. Malthus' 1798 apocalyptic work,
An Essay on the Principle of Population [2]. Malthus pre-
dicted the world population would grow exponentially with
disastrous results. This essay is still-widely read today. (Ap-
palachian's library has eleven copies of various editions.) The
next advance is due to the Belgian Verhiilst who introduced
the logistic model in his 1845 memoir [3]. Verhiilst modi-
fied the constant growth rate of the exponential model so as
to depend on population size. Limits in demographic data
collection and calculational ability prevented Verhiilst from
making quantitative predictions, but he could show a limit-
ing maximum population. Americans Pearl and Reed (with
several sets of coauthors) wrote a series of very controversial
papers (see [4] for an interesting discussion of the contro-
versy) from 1920 to 1940 modeling the U. S. population lo-
gistically. Pearl was convinced the logistic was the “universal
population model,” and spent many years on further refine-
ments and extensions of the logistic equation. Pearl and Reed
were originally unaware of Verhilst's work.

Recent work gives many reasons why most models, logis-
tics in particular, are unsuitable for predicting human popula-
tion levels. For instance, current models can not account for
increases in technology that affect carrying capacity or social
upheaval. (See, e.g., Marchetti, Meyer, and Ausubel [5].)
Nevertheless, there is value in a logistic fit: Collected data
can be tested for reasonableness. Estimates made between
one census and the next can be checked. Short term predic-
tions can be made. Changes and trends in growth rate can be
sensed. Et cetera.

* Appalachian State U, Boone, NC, wmcb@math.appstate.edu

U. S. population counts

Yearly population values are available from the Historical
Data section of the Census Bureau's web pages
(www.census.gov). We collected the counts and defined
Census as a Maple list of pairs [year,count]. Enter
the decile U. S. census counts.

> Census := [ [1790,3929], [1800,5297],
[1810,72241, [1820,9618], [1830,12901],
[1840,17120], [1850,23261], [1860,31513],

>

> [1870,39905], [1880,50262], [1890,63056],
> [1900,760941, [1910,92407], [1920,105683],
> [1930,123188],[1940,132122],[1950,151684],
> [1960,180671],[1970,204875],[1980,227220],
> [1990,249924]]:

> N := nops (Census) ;

The population values shown are in millions.

For student explorations, the file
YearlyCensusData.m
containing the yearly numbers from 1670 to 1991 is avail-
able from

www.mathsci.appstate.edu/~wmcb/USPop/

To read the data into the variable Pop, execute

> read ‘YearlyCensusData.m:
Now, on to exploring how to fit a logistic model.

Logistic models and data fitting

The Malthusian model is based on the principle
growth o population size.

Expressed as a differential equation, this model is

dP
E/——7'P

where 7 is the constant of proportionality, the growth rate.
It only takes a moment to realize the shortcomings of this
model. Verhiilst's extension was to replace the constant
growth rate with a decreasing rate proportional to the den-
sity in terms of the maximum possible population.

dP P
5_1.<1_Pm).p
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He called this model logistic (though we don't quite know
why). The logistic differential equation is easy to solve by
separating variables and then integrating via partial fractions
— “homework lite.” We find that

Pmaz

(B - )

P(t) =

Define the function:

> logistic :=

> (r,M,Po,t) -> M/(1+(M/Po-1)*exp(-r*t));
where we've used M for P,,4, and Po for P,.

We cannot directly use Maple's 1eastsquare function
from the f£it subpackage of the stat package, since the
logistic equation is not linear in the parameters 7, P45, and
Py. Apparently, we'll have to do the fit manually.

A DIRECT APPROACH

Define the sum of the squares of the errors as SSE.

> SSE := sum(

> ( Census[i][2]

> - logistic(r,M, Po,Census[i] [1]) ) "2,
> i=1..N):

Use standard calculus techniques to minimize SSE.
> params := {r, M, Po}:
> eqns := map2(diff, SSE, params):

Our first step is to find critical points by finding the ze-
ros of the system eqns in terms of the values of params.
While theoretically trivial, finding the roots turns out to be
very difficult since this system of equations is highly nonlin-
ear.

> _time := time():
> fsolve(egns, params) ;
> (time() - _time) * ‘seconds’;

Error, (in fsolve/genroot) cannot converge
to a solution

168.000 seconds

Even supplying fsolve with search ranges (based on
hindsight) doesn't work. Try:
_time := time():
fsolve(egns, params,
{r=0.02..0.03, M=289000..290000,
Po=3900..4000}) ;
(time() - _time) * ‘seconds;
Using Ross Taylor's Newton procedure from the share
library (see ?share) doesn't help. However, Newton does
give valuable clues as to what's going wrong. To read the
procedure from the library and set up its use, enter:

vV VV VYV

with(linalg) :

with(share);

readshare (Newton, numerics);

NewtonEqns := convert(egns, list):

Newton is a procedure in the share library numerics.

We had to convert the system of equations from a set into a

vV V VYV

list as required by Newton. We also needed the linalg
package since Newton's calculations are vector based. Now
give it a try using r = 0.03, Py, = 289000, and Py =
3900.

_time := time():
Newton (NewtonEqgns,
[r=0.03, M=289000, Po=3900],
output:(norm,variables),steps=teststep);
(time() - _time) * ‘seconds';

(See ?Newton for an explanation of the options output
and steps used above.) The output shows the parameters
given more and more infeasible values. Using gradients in
a steepest-descent method also fails. (A Maple worksheet
implementing steepest descent is also available at

V VVVYV

www.mathsci.appstate.edu/~wmcb/USPop/

To help understand why the problem is intractable, consider
the following. Reduce SSE to two variables by setting Py =
3929 and look at a contour plot.

> SSE2 := subs(Po=3929, SSE):

> with(plots) :

> contourplot (SSE2,

> r=0.01..0.04, M=288000..290000,
> grid=(35,35], filled=true);

290000 ¢t
289500
289000 1

M
288500 1

288000 +* — . ’ e
0.010.0150.020.025 0.03 0.035 0.04
r

The change in the surface with respect to r is extremely
small compared to that with respect to M. It's quite difficult
to find a minimum on so uniform a surface. This problem is
similar to “stiffness” encountered in differential equations.

USING DIVIDED DIFFERENCES

We've quickly found that a direct attack using least squares
to estimate the parameters is fruitless. The expressions are
intractable. Using the dynamics of the model to estimate the
parameters 7, Pp,q,, and Py makes for much more interest-
ing analysis and gives students a much better appreciation of
differential equations and modeling in practice.

We are lead to another method of estimating the parame-
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ters by considering the relative growth rate P’/ P.

P (P
it P Pin
= a+4bP
where @ = r and b = —7/Ppnae. Discretizing this formula

with a divided difference gives us

AP
L —a+40bP.

We have an expression linear in Ay P/P and P where the
coefficients @ and b will yield r and Praz.

We still need P,. There is no reason to prefer any one
data point over another as an initial condition. In the logistic
equation, substitute P := 1/N and T":= exp(—rt) to yield

1 1 1
N = +(__ >.T
Pmaz PO Prnaa:
= c+dT.

where ¢ = 1/ P and d = (1/Py — 1/Ppaz). We have
a second linear equation that can be used to determine Fp.
Since the desired parameters appear linearly in these equa-
tions, we can now use Maple's leastsquare for the cal-
culations.

First, load needed packages and define a set of utilities.

with(stats): with(fit):

>

> alias(

> LS=leastsquarel[ [x,y], y=a+b*x, {a,b}]):
> shift := (L,s) ->

> map (unapply ([x[1]-s, x[2]11 ,x), L);
The outline of the fitting procedure is:

1. Shift the data so the abscissas begin at 0.

9. Calculate the relative rates using the relative symmet-
ric divided difference
APy Ppa=Fia 1
P, 7 tipi—tia P

Use least squares on a + bP to estimate 7 and Ppqq.
Apply ezp(—rt) to each year t.

Calculate the reciprocals of the population counts.

o w oA W

. Use least squares on ¢ + dT' to estimate Fp.

Enter the fitting function.

LogisticFit := proc(L)
local S, P, RelDivSymmDiff, i, Ls_fit,
r, Pmax, R, X, Po;

S := shift(L,L[1,1]);

P := S[2..nops(S)-1,21;

RelDivSymmDiff := [seq(
(S[i+1,2]—S[i—l,2])/(S[i+1,1]-s[i—l,1])
/S[i,2], i=2..nops(S)-1)1;

Ls_fit := rhs (LS ([P,RelDivSymmDiff]));

r := coeff(Ls_fit,x,0);

Pmax := -r/coeff(Ls_fit,x,1);

X := evalf(map(unapply(exp(—r*x),x),
S[1..nops(S),11)):
R := map(x->1/x[2], L);

LS_fit := rhs(LS([X,R]));

Po := 1/
(coeff(LS_fit,x,0)+coeff(LS_fit,x,l));

RETURN (r, Pmax, Po) ;
end;

Now estimate the parameters for the data Census.

VVVVVVVVVVVVVVVVVVYV

> evalf (LogisticFit (Census));

102916900417, 289412.0022, 3987.273155

Note how quickly Maple calculated the parameters. We
put these values into logistic to have the desired logistic
function. Remember to translate with ¢ — 1790 to account for
the shift done in LogisticFit.

> the_fit := logistic(",t-1790):
> fnormal (the_fit, 6);
289412.
the_fit := 1+ 715839 e(—-0291690 1+52.2125)

Check the_fit with a plot.

> display (I plot(the_fit, £=1790..2000),
> plot(Census,sty1e=point,symbol:diamond)],
>  view=[1790..2000, 0..270000]);
250000} b
200000t
150000 .
100000 ] ////
50000 ,//’//7//

1850 1900 1950 2000
T

Reed, Pearl, and Kish's 1940 logistic fit to the U. S. popu-
lation (from 1790 to 1940) had Pre, = 184 (million) and
r = 0.0322 [6]. (See §4.5 of Yeargers, Shonkwiler, and Her-
rod [7] for a different method of transforming the logistic
equation to be linear in the parameters.)
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POINTS FOR CLASS DISCUSSION

1. What are the parameter estimates for the full data set?

2. How do the above estimates compare to Reed, Pearl,
and Kish's fit?

3. Which of symmetric, forward, or backward divided
differences gives the best fit?

An excursion into an alternate model

It is clear from the plot above that there are problems with
the logistic fit beginning around 1940, a time of great soci-
etal upheaval and technological advancement. On the other
hand, Pearl, Reed, and Kish's fit is quite reasonable up to
1940. We can posit that the changes in society about 1940
caused a change in growth rate (large immigration) and car-
rying capacity (rapid industrialization). To account for this
change, we fit two separate logistics, allowing an artificial
discontinuity at 1940 as follows:

> Stagel := Census[l..16]:
> Stage2 := Census[16..N]:
> first := logistic(
> evalf (LogisticFit (Stagel)),t-1790):
> second := logistic(
> evalf (LogisticFit (Stage2)) ,£-1940) :
> the_fit := t ->
> piecewise(t<1940, first, second) :
> fnormal (the_fit(t), 6);
187186. ¢ < 1940
1447.0151 e(—-0319240 t+57.1440)
342869. .
otherwise

14 1.62291 e(—-0293698 {+56.9774)

Note the dramatic shift in both growth rate and maximum
population values between the two stages. Check the_fit
with a plot.

For an extension of these concepts, see [5] for an example
of a piecewise fit of four logistics corresponding to four ma-
jor economic periods in U. S. history. In addition, Maple
worksheets defining other models are available at the web
site containing the full data set.

Student projects

There are many sources of data on the world wide web that
students may use. There are also simple experiments, requir-
ing minimal equipment, that groups may perform. Possible
directions for student projects that involve fitting logistics in-
clude:

e U. S. Population

1. Fit a logistic, using the full data set, to the popu-
lation from 1940 onward. How does the new fit
compare to the one developed above? What does
the new fit predict the current population to be?
Compare with the U. S. Census Bureau's value
from the Population Clock web page at

www.census.gov/cgi-bin/popclock

2. Investigate the effects adding Alaska and Hawaii
had on the population counts and fits.

e Experimental Populations

1. Perform R. L. Pearl's 1920 experiment with
Drosophila M. See, e.g., Pearl's [8].

2. Perform Carlson's mass experiment with
Brewer's yeast.

e Diffusion

1. Model the “adoption” of a favorite group's new
musical release.

2. Model the adoption of a new technology; e.g.,
Intel's “MMX”" processors.

For a general survey on modeling diffusion, see [9].

Undergraduate research project!

Many modifications have been made to the logistic model to
improve the fit. One of these is to replace the carrying capac-
ity, or Ppq4., with a function of ¢. Arguments can be made
for constant, linear, or even logistic functions for Prraz(1).
As technological improvements are adopted, resource uti-
lization is improved allowing more individuals to be carried.
However, natural restrictions on resource availability limit

IThe germ of this project was J. Herrod's manuscript “The Changing
Carrying Capacity as Predicted by the U. S. Population Data.”

> display (I

> plot(the_fit(t), t£=1790..2000,

p2 discont=true),

> plot(Census, style=point,

> symbol=diamond) ],

> view=[1790..2000, 0..270000]);
300000

P

250000t
200000t
150000 ¢
100000

50000 -

0 50 100 150 200
t
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the ability to increase the carrying capacity. Hence, a logistic
carrying capacity is feasible.

Assume the carrying capacity is logistic. Insert a logistic
term for P,nqz in the logistic differential equation. Analyze
the resulting dynamics. Create a procedure for estimating the
parameters for this logistic-logistic model.
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Guidelines for Authors

Any user of Maple who has implemented an original,
useful, elegant, or illustrative solution to a particular problem

is invited to submit a description of the solution to MapleTech.

We especially encourage articles which have both technical
merit and are accessible to the general user of Maple. Three
categories of articles are published in MapleTech:

(i) Articles on Maple functionality.
(ii) Articles about the use of Maple in education.
(iii) Articles on research applications of Maple.

Articles in category (i) are usually provided by the Maple
developers. Articles of category (ii) must be as accessible as
possible. Applications in all areas (economics, engineering,
environmental studies, etc.) are accepted. The intent and
category of the article must be made clear by authors within
their articles.

All articles should be roughly 4 to 8 pages long, as they
would appear in double-column format, a 10pt font, on 8.5
x 11 inch paper. The article must be in the form of Unix
compatible IKIgX file in MTN format. It is important that
any results obtained by Maple be reproducible by the gen-
eral user. Within the article itself, Maple input must have the
form:

\begin{mapleinput}
int( exp( -x"2 ), x = 0..infinity );
\end{mapleinput}

The corresponding Maple output should be a IATEX equation
of the form:

\begin{maplelatex}

\ [

{\frac {\sqgrt {\pi }}{2}}
\1]

\end{maplelatex}

To further ensure reproducibility of results, the author must
use a standard and current version of Maple and not his or
her own customized version. All articles developed in Maple
worksheets should can be converted into ISTEX using the
“Export to ISTEX ” facility available as of Maple V Release
3. References, citations etc. .. should be included in MTN
format.

Guidelines and tools for preparing articles for the Maple
Technical Newsletter, as well as ISTEX style files and sample
articles can be obtained via anonymous ftp at ftp.cecm.sfu.ca

under the directory pub/MapleTech at Simon Fraser Univer-
sity. Articles must be written according to the detailed in-
structions contained within the README file (this file ex-
plains the MTN format). Each article must include an ab-
stract, keywords and a short one-paragraph biography from
each of the author(s) which includes fields of interest. Upon
submission, the author(s) must email a postscript file con-
taining their entire article (including figures and plots) to the
editors. The postscript file will then be sent for review. The
ISTEX source files plus postscript files for each of the figures
are to be submitted only to the assistant-editor and only after
the article has been refereed, finalized and accepted by the
appropriate section editor.

All submissions are done via electronic mail — HARD
COPY WILL NOT BE ACCEPTED. Section editors WILL
NOT processISTEX source files. If the article is accepted, au-
thors will be sent a copyright form to sign and an order form
for reprints. For extra reprints, please contact Birkhéuser,
Boston (address and phone numbers supplied by the front
cover information).

Any inquiries or submission should be directed (via email)
to the Editor-in-chief Tony Scott at:

INRIA-Rocquencourt

B.P. 105

78153 Le Chesnay Cedex

France

FAX =01 39 63 57 86

Phone = 01 39 63 51 01

e-mail: Tony.Scott@inria.fr

OR tcscott@maths.oxford.ac.uk
OR scott@cfa.harvard.edu

OR Tony.Scott@inria. fr

OR tcscott@bgumail.bgu.ac.il
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