
Primitive PRS Algorithm
We describe the algorithm and give Maple code for the prim-
itive fraction-free algorithm that we used to compute a gcd
in L[x] for comparison with SparseModGcd algorithm. We
think of computing in L as computing modulo the triangu-
lar set M = {m1, . . . , mr}. To avoid fractions, we first set
f1 := f̌1, f2 := f̌2 and M := {m̌1, . . . , m̌r}. Now suppose we
apply the Euclidean algorithm to compute the gcd of f1 and
f2 modulo M . We would divide f1 by f2. In the ordinary
division algorithm we would invert the leading coefficient u
of the divisor f2, an algebraic function. The coefficients of
the inverse of u would have fractions in F = Q(t1, . . . , tk).

To avoid fractions here we compute instead v, a quasi-
inverse of u, an element of D[z1, . . . , zr] satisfying vu = c
for some constant c ∈ D = Z[t1, . . . , tk]. Now we divide f1

by vf2 using pseudo division (mod M). And we make the
pseudo remainder “primitive”, i.e., we compute and cancel
out any common factor in D from the coefficients.

To compute the quasi-inverse v we first apply the (ex-
tended) Euclidean algorithm to m̌r and u viewing them as
elements of K[zr] where K = F [z1, ..., zr−1]/〈m1, ..., mr−1〉.
Again, we want to avoid fractions so we use pseudo-division.
We perform pseudo-division in D[z1, . . . , zr−1][zr]. We ob-
tain s, t, c satisfying

smr + tu = c where c ∈ D[z1, . . . , zr−1].

Here c does not involve zr but may involve z1, . . . , zr−1.
Next we recursively compute a quasi-inverse w of c satisfying
wc ∈ D and hence v = wt is a quasi-inverse of u and we
reduce wt modulo M using pseudo-division. Here is the
algorithm in Maple code.

macro( ‘mod‘ = MOD );
MOD := proc(f,M,Z) local r,i;

r := expand(f);
for i to nops(M) do r := prem(r,M[i],Z[i]) od;
r;

end:

# This uses the reduced PRS
QuasiInv := proc(x,M,Z)
local u,r0,r1,r2,t0,t1,t2,pq,mu,i,z,beta;

if M=[] then return 1 fi;
u := primpart(x,Z);
r0,r1,t0,t1,beta := M[1],u,0,1,1;
z := Z[1]; # main variable
while degree(r1,z)>0 do
r2 := prem(r0,r1,z,’mu’,’pq’);
divide(r2,beta,’r2’);
divide(mu*t0 - pq*t1,beta,’t2’);
r0,r1,t0,t1,beta := r1,r2,t1,t2,mu;

od;
if r1=0 then error "inverse does not exist" fi;
if nops(M)>1 then
r1 := r1 mod (M,Z);
t1 := t1 mod (M,Z);
i := QuasiInv(r1,M[2..-1],Z[2..-1]);
t1 := i*t1 mod (M,Z):

fi;
primpart(t1,Z);

end:

PrimitivePRS := proc(f1,f2,x,M,Z)
local xZ,i,r0,r1,r2;

xZ := [x,op(Z)];
r0 := primpart(f1,xZ);
r1 := primpart(f2,xZ);
while r1 <> 0 do

i := QuasiInv(lcoeff(r1,x),M,Z);
r1 := primpart(i*r1 mod (M,Z), xZ);
r2 := prem(r0,r1,x) mod (M,Z);
r2 := primpart(r2,xZ);
r0,r1 := r1,r2;

od;
r0;

end:


