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Differential algebra

@ A mathematical theory (Ritt, Kolchin) which permits to
process systems of differential equations symbolically, e.g. in
computer algebra systems.

@ A subtheory : the differential elimination (Ritt, Seidenberg).




Differential elimination

Polynomial differential system

"A" differential system
Differential elimination "equivalent”  to the input system but
(Rosenfeld-Grobner) "simpler" since it involves
"hidden" differential equations
Ranking "consequences” of the system.
“The" output system is a regular differential chain. J

Rankings indicate the sort of sought differential equations.

Technically, a ranking is an “admissible” total ordering on the
derivatives of the dependent variables.
In the case of ODE in two dep. vars. u(t) and v(t) it might be :

> US>SV>SU>V > U
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@ Index reduction



Index reduction

Example : a DAE (Hairer, Wanner)

The unknowns are three functions x(t), y(t) and z(t).

x(t) = 0.7-y(t)+sin(2.5-2(t))
y(t) = 1.4-x(t)+ cos(2.5-z(t))
1 = X2(t) + y%(t).

Equivalent polynomial DAE

x(t) = 0.7-y(t)+s(t) s(t) = 25-z(t)-c(t)
y(t) = 14-x(t)+c(t) ¢e(t) = —2.5-z(t)-s(t)
1 = 3(t) +y2(t) 1 = s%(t)+c(t).

Differential elimination helps integrating the DAE by computing
o the underlying ODE z(t) = something

@ a complete set of constraints on initial values




Index reduction

Synthesis

Differential Algebra

@ A MAPLE package still under development which implements
differential elimination methods.

@ It improves the MAPLE diffalg package (1996).
@ It is just an interface for the BLAD libraries.

4

Bibliothéques Lilloises d’Algébre Différentielle

@ BLAD is a tower of five open source C libraries.

@ The LGPL license permits anybody to use freely BLAD, even
for commercial purposes.
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Theory g g
Differential algebra

A derivation over a ring R is an operation R — R such that
d(a+ b)=da+ b, d(ab)=(6a)b+ adb.

A differential ring is a ring equipped with finitely many derivations
which commute pairwise.

A set of polynomial differential equations is a subset of a
differential polynomial ring R = K{U} (K field of coefficients, U
finite set of differential indeterminates = dependent variables).

Example : R = Q{x,y,z,s,c} endowed with 6 = d/dt. J



Theory

Solutions compatible with differential elimination

Inference rules applied by the algorithms

Let a, b be two differential polynomials of R
Q@ a=0and b=0=a+b=0

Q@ a=0and b=?=ab=0
Q@ a=0=06a=0
Q ab=0=a=00rb=0

The set of the differential polynomial equations which are

consequences of a given input system is a radical differential ideal
of R.

Solutions need : C*° + domain

@ Formal power series

@ Functions analytical over some domain




Theory

RosenteldGroebner (ODE)

RosenfeldGroebner represents the radical differential ideal J
generated by a given system as an intersection of radical differential
ideals /; :

J=hn---Nl,

Each I is presented by a regular differential chain Cj.

A regular chain is a rewrite system with “good” properties.
The ranking fixes the lefthand sides of the rewrite rules.

Fix the ranking --- 0 >V > u > v. Then
vi—v=0, v2-2=0
is a regular chain, and is viewed as
b—v/v, V-2




Theory

Regular chains permit to compute NormalForm

Normal forms are normalized notations for expressions, assuming
that variables satisfy the regular chain equations.

Assume the regular chain C is
i—v/v, V-2

Then
NF(2u,C) =NF(2v/v,C)=vV

(]

substitution of the lefthand sides by righthand sides

(]

algebraic inverses computation

(]

a=b mod I iff NF(a, C) = NF(b, C).
NF(a,C) =0iffa € I.

Every linear combination of normal forms is a normal form.

(]

(]



Theory

RosenteldGroebner (PDE)

RosenfeldGroebner “computes all” the integrability conditions (the
coherence property of Rosenfeld and Seidenberg).

The following rewrite system C is not a regular chain.
ux — v, u, —0.
Indeed normal forms are not unique :
NF(uyy, C) = v, ? =07

RosenfeldGroebner completes (in the Knuth-Bendix sense) the
rewrite system by inserting new equations :
ux —v, u,—0, v, —0.




Theory
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Normal forms

The idea

@ A polynomial ring R

@ A polynomial system C of R (it is a regular chain — to be
defined)

@ An ideal / associated to C (in a sense to be defined)

4

In Differential Algebra

Let C be a regular chain and a be a polynomial of R. Then

NF(a, C) :S

is a rational fraction such that q is regular and p/g = ain R/I.




Normal forms

Non differential : |X| = |C|

Point : C is triangular

fi(x1) =0, fa(xe,x1) =0,...,f(Xny...,x1) =0

@ Euclidean division. Bézout.

@ | is the ideal generated by C.

@ One can decide zero and regularity in R//.

@ One can try to make C monic (idéaux premiers 3 usage
commercial).

@ If monic, C is a Grobner basis. Use the Grobner normal form,

which is a polynomial.




Normal forms

Non differential : |X| > |C|

Denote T = {t1,...,tp}.

fi(x, T)=0, fh(x,x, T)=0,...,fo(Xn,...,x1, T) =0

'

Point : the ideal

I = M~1(C)N R, where M denotes the multiplicative family
generated by the leading coefficients of C.

@ Key theorem : The nonzero elements of Q[T] are regular in
R/I (holds also if M is generated by the separants).

@ Back to the former case. The normal form is a rational
fraction p/q with p € Q[T, X] and g € Q[T].

C is a regular chain if C can be transformed as a monic triangular
set Cp, in the ring Ry = Q(T)[X].




Normal forms

Non differential : squarefreeness

If the separants of a regular chain C are regular in R/I then the
chain is said to be squarefree.

Point : Lazard’s lemma

If C is a squarefree regular chain then / is radical.




Normal forms

Differential : ODE

R = Q{U} where U = {u1,...,un}.
The x; and t; are derivatives of elements of U.

i(x, T)=0, f(x,x1, T)=0,...,fo(Xn,...,x1, T) =0

Point : C is differentially triangular

The x; and t; must not be derivatives of any x.

C is a differential regular chain if
o C is a squarefree regular chain (in the non differential sense).

o C is differentially triangular.

Not completely straightforward since the key theorem relies on
Macaulay's unmixedness theorem which applies in (some)
Né&therian rings.




Normal forms

Differential : PDE

There are finitely many derivations which commute pairwise. )

Point : the coherence property
A finite condition on cross-derivatives.

C is a differential regular chain if

@ C is a squarefree regular chain (in the non differential sense).
@ C is differentially triangular.

@ C is coherent.




Normal forms
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BLAD internals

The goal

Integrating differential elimination methods within scientific
computation libraries (MINPACK, GSL).

Applications

@ Index reduction for DAE

@ QSSA for chemical systems

@ Parameters estimation |

Applications of applications
@ Model reduction in cellular biology




BLAD internals

BLAD structure

A tower of five libraries

ba0 Memory management. Parsers. Exceptions.

bav Variables. Rankings.

bap Differential polynomials. A multivariate gcd algorithm
close to that of MAPLE.

bad Differential systems. Regular chains.
Rosenfeld-Grébner. Normal Forms. Change of ranking.

bai Numerical integrators for regular chains. C code
generation. DOP853.




BLAD internals

First choices

C language (POSIX)

@ One chooses the language and its standard libraries.

@ Basic features. Rather precise specifications. Portability.

@ The language imposes restrictions on memory management,
which in turn imposes restrictions on the data structures.

The GMP programming scheme

alloc size pointer

0 8 12

mpz_t 12 8 | | |

~__ ¥

mpz_init (n);
mpz_init_set (p, 1);
mpz_add (n, n, p);




BLAD internals

Memory management

Two different/compatible mechanisms are available ]

Concerns taken into account

o Garbage collection must be incorporated in the mathematical
algorithms.

@ It imposes restrictions on the code and the data structures.

@ It must permit a powerful exception handling mechanism
(catching errors; timeout/memout; inversion of a zero divisor)

Other concerns

@ Thread-safety

@ Multi-core processors




BLAD internals

The two stacks mechanism

output par. e D |:| |:| current stack (free)
input pars. -
4

Step 1
P A
aux. stack (free)
[ ] e
Step 2
3
e
temporary data | | ! | | | current
record \—/ .
| L | | | | current
Step 3
[l TR Sl |
|:| ' Vo 1 aux. stack




BLAD internals
Faugére's mechanism

Step 1

k (fi




BLAD internals

Variables and rankings

@ One global table of all BLAD variables :
independent variables, derivatives of dependent variables.

@ To each variable is associated one positive integer per ranking.
The greater the number, the greater the variable.
Numbers are recomputed each time a variable is created.




BLAD internals

Polynomials

Variant of the distributed representation.
Change of rankings + access to coefficients not too costly.
GMP integers + rational; GMP + machine modular numbers.

A= —x’y+10xyz2 —3xy+5xz+22-2
B := coeff (A, x, 1)

) E clot E\/

-1} 10| 3| 5 1 =2

X“y| xyz=| Xy Xz z 1

last monomial
ivide each monomial by x




BLAD internals

Regular chains

A regular chain is endowed with structural properties :
@ prime ideal ?
o differential ideal ?
and with desired properties :
@ autoreduced chain?
@ primitive chain?
@ squarefree chain?

@ normalized chain?

@ coherent chain?




BLAD internals
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The principle of the QSSA

The two-time-scales standard form : fast and slow

Assuming ¢ is small, approximate

k:f(x7y7€)7 Ey:g(X,y,E)
by

*=f(x,y,0), 0=g(x,y,0).

The problem

There is no general method to find out if a given system can be
transformed into the above form. In general, fast and slow variables
are obtained by a change of coordinates.

For chemical reaction systems

Given fast and slow reactions, the transformation is algorithmic. A
difficult step of the process just amounts to differential elimination.




QSSA
The Henri-Michaelis-Menten approximation

The basic enzymatic reaction system

k
E+S——C-—* . E4+pP
ka
The initial ODE model :
E = —khES+(k+k)C,
$ = —kES+kC,
C = klES—(k2+k3)C,
P = kC.

The approximation, assuming ki, ko > k3

Vimax S
K+S

G=_

Vmax and K being constants




QSSA

The Henri-Michaelis-Menten approximation

E —kiES+ kyC+ k3 C,
initial S = —kES+k C,
model C = kES—k C—ksC,
P = kC.

Red terms are the contributions of the fast reaction.

E —F1 + k3 C,
S = -F,
F. Lemaire's DAE  C = F, —k;C,
P = kC,
0 = kkES—kC.

The fast reaction is assumed to be at equilibrium.
The contribution of the fast reaction is an unknown function Fj.
The reduced model is the result of the elimination of F; in the DAE.
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Biological modeling

Cellular modeling by generalized chemical reaction systems

ODE (relatively small systems) _) nonlinear ODE

modeling /
approaches
\ linear, piecewise linear
qualitative modeling, ...

many other approaches
(stochastic, discrete ...)

Difficulties : need for model reduction

ODE systems quickly get very large, overparameterized.
ODE systems are very accurate but a model should not involve
more information than the data it comes from.




Biological modeling

A single autoregulated gene
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Biological modeling

The generalized chemical reactions system

G+P,——H, G-—LG+M, H-LH+M,
0
ML mep, mM.g p_2 .y
ki
Pi+P — Py (1§i§n—1).
k=~

Polymerisation reactions are assumed to be fast.
Random variables G and H are the two states of the gene.
Other variables are concentrations :

o M for the mRNA,

@ P; for the polymer of order i.




Biological modeling
The initial ODE system

G OH— G P,

H = —0H+aGP,,

M = piG+pyH—0mM,

P = BM—6pP+2A1+Ar+ -+ A,1,
P = —A1+A 2<i<n-1),

P, = —A,1+0H—aGP,

where A; = (ki” Pis1 — k" P; P).

The right handside of some ODE depend on mixtures of fast and
slow terms : these variables should not be considered as fast.

QSSA : replace the A; by variables, add equilibrium conditions and
eliminate.




Biological modeling

The reduced model

G = 0(p—G—GP"),
M = XG+opu— M,
p _ na(n-G-GP")+i(M—P)
o n—1 ’
> (i +1)Ki P

i=0

@ Numerically, the integral curves of the reduced model fit with
the ones of the initial model.

@ The reduced model is simple enough : a symbolic qualitative
analysis could be carried out to prove that a Hopf bifurcation
(i.e. an oscillating behaviour) occurs if and only if n > 9.
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Parameters estimation

Parameters estimation

Differential elimination transforms nonlinear least squares problems
into linear ones by guessing a starting point for a Newton like
method.




Parameters estimation

Statement of the problem

@ a parametric ODE system (four parameters ke, Ve, ki2, ko1) :

xi(t) = —kiaxi(t)+ ko1 xo(t) — k\:lxixll((tt))’
)'(2(1.') = k12 Xl(t) = k21 Xg(t).
°
some measures : t x1(t)
x1(t) is observed; 0.00000e — 01 5.00000e + 01

x(t) is not observed 0.50000e — 01 4.45078e + 01

1.50000e 4- 00 4.95270e — 02

@ possibly some extra information : xo(0) =0; ke = 7.

-

Estimate the values of the unknown parameters V., kio, ko1.




Parameters estimation

There exists a purely numerical method

© Give random values to ki, ko1, Ve.

@ Integrate numerically the ODE and get a graph for x;(t).
50 T

T T T T T
observed curve of xI —
simulated curve of x1 —]
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© If the error is too large, update kis, ko1, Ve by the Levenberg-
Marquardt method and goto step 2.



Parameters estimation

There exists a purely numerical method

© Give random values to ki, ko1, Ve.

@ Integrate numerically the ODE and get a graph for x;(t).

2(5) \ ' observed curve of xI — |

sk simulated curve of x1 i
35F .

== N W
oot o
—TT T
Loy

0 02 04 06 08 1 12 14 16

The Levenberg-Marquardt method ends in a wrong local minimum
ko = .16, kip=.76, V.=82.8.

Should be
koy = .5, kip=3, V.=101.



Parameters estimation

Differential elimination for guessing good initial values

xi(t) = —kiaxa(t) + ko xo(t) — k\e/:-)gl((tt))’

)'Q(t) = klgxl(t)—k21X2(t).

Q Eliminate the non observed variable xy(t) using
RosenfeldGroebner or, better, PARDI.

%1 (x14ke)?+[kio+kot ] x1 (x1+ke)>+[ Ve x1 ke+[ko1 Ve] x1 (x1+ke).

@ Evaluate the ODE for many different values of t.
By linear least squares, estimate the [parameters blocks].

© Solve the parameters blocks w.r.t. parameters :
kip = 0.45, ko =1.65, V. =87.29.

© Run the optimization method starting from these values.



Parameters estimation

There are (numerical !) difficulties

The parameters change during the optimisation process, leading to
stiffness. However, in the context of chemical reactions systems,
QSSA could be performed at runtime.

Difficulty to numerically evaluate the derivatives. J

Getting the parameters from the [blocks| may be difficult.
Over the example, this is easy :

ki + ko1 = valuey, Ve = valuey, ko1 V. = values.




Parameters estimation

There are (numerical !) difficulties

The parameters change during the optimisation process, leading to
stiffness. However, in the context of chemical reactions systems,
QSSA could be performed at runtime.

Difficulty to numerically evaluate the derivatives. J

Getting the parameters from the [blocks| may be difficult.
In general, beware algebraic relations amongs blocks :

ki{+ ko1 = value;, V. = valuey, ky1 Ve = values.




Parameters estimation
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Parameters estimation

Conclusion

Differential elimination is a tool that could be embedded in the
main numerical libraries (say, MINPACK). J

© One needs to provide software : easy to use MAPLE packages,
libraries easy to plug in existing software.

@ One needs also to prove the usefulness of these methods on
convincing applications.
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