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Polynomial Composition and Decomposition

Functional Composition
Let g , h ∈ F[x ], for a field F.
Compose g , h as functions f (x ) = g(h(x )) = g ◦ h
A (generally) non-distributive operation (but not always):

g(h1(x ) + h2(x )) , g(h1(x )) + g(h2(x ))

Decomposition
Given f ∈ F[x ], can it be decomposed?
Do there exist g , h ∈ F[x ] such that f = g ◦ h?

f = x 4 − 2x 3 + 8x 2 − 7x + 5
f = g ◦ h

g = x 2 + 3x − 5 h = x 2 − x − 2
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Tame and Wild Decomposition

Let F be a field of characteristic p and f ∈ F[x ] monic of degree n .

Normalize f , g , h to monic and original: h(0) = 0

f is tame if p - n

f is wild if p |n

Traditionally this describes the ramification of F(x ) over F(f (x )).
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Let F be a field of characteristic p and f ∈ F[x ] monic of degree n .

Normalize f , g , h to monic and original: h(0) = 0

f is tame if p - n

f is wild if p |n

Traditionally this describes the ramification of F(x ) over F(f (x )).

Tame decomposition (mathematically)
Ritt (1922) describes all tame decompositions and
“ambiguities”.

For a fixed s , there are either 0 or 1 monic h ∈ F[x ] of degree
s with h(0) = 0 such that f (x ) = g(h(x )).
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Tame and Wild Decomposition

Let F be a field of characteristic p and f ∈ F[x ] monic of degree n .

Normalize f , g , h to monic and original: h(0) = 0

f is tame if p - n

f is wild if p |n

Traditionally this describes the ramification of F(x ) over F(f (x )).

Wild decomposition (mathematically)
Life is much more difficult

(Giesbrecht, 1988) For a finite field F of characteristic p, there
are f ∈ F[x ] of degree n with > nλ logn monic, original,
h ∈ F[x ] of degree s ≈

√
n such that f (x ) = g(h(x )),

where λ = (6 log p)−1.
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Tame and Wild Decomposition

Let F be a field of characteristic p and f ∈ F[x ] monic of degree n .

Normalize f , g , h to monic and original: h(0) = 0

f is tame if p - n

f is wild if p |n

Traditionally this describes the ramification of F(x ) over F(f (x )).

Wild decomposition (mathematically)
On the bright side, there are at most (n − 1)/(s − 1)
indecomposable monic, orginal h ∈ F[x ] of degree s such that
f (x ) = g(h(x )).
(Von zur Gathen, Giesbrecht, Ziegler, 2010)
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Algorithms for Polynomial Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f = g ◦ h ⇐⇒ h(x ) − h(y) | f (x ) − f (y)

Works as long as you can factor. Potentially exponential time.
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Algorithms for Polynomial Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f = g ◦ h ⇐⇒ h(x ) − h(y) | f (x ) − f (y)

Works as long as you can factor. Potentially exponential time.

Kozen & Landau (1987)
First polynomial-time algorithm for tame case. Noticed that the
high-order coefficients of f do not depend on (monic) g .

find h , then g .
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Algorithms for Polynomial Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f = g ◦ h ⇐⇒ h(x ) − h(y) | f (x ) − f (y)

Works as long as you can factor. Potentially exponential time.

Giesbrecht & May (2004)
Except for a very special case (Dickson polynomials), easily
handled, Barton & Zippel’s algorithm runs in polynomial time!

Mark Giesbrecht Algorithms for Additive and Projective Polynomials 4/24



Algorithms for Polynomial Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f = g ◦ h ⇐⇒ h(x ) − h(y) | f (x ) − f (y)

Works as long as you can factor. Potentially exponential time.

Theorem: Fried (1970) – Schur’s Conjecture
Let f ∈ Q[x ] be indecomposable of degree n > 1.
• If n is not an odd prime, then (f (x ) − f (y))/(x − y) is

absolutely irreducible;

• If n is an odd prime, and it is not the case that
f (x ) = αDn(a , x + b) + β for α,β, a , b ∈ Q, where a = 0 if
n = 3, then (f (x ) − f (y))/(x − y) is absolutely irreducible.

Indecomposability Dickson or Irreducible (G & May 2005)
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Algorithms for Polynomial Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f = g ◦ h ⇐⇒ h(x ) − h(y) | f (x ) − f (y)

Works as long as you can factor. Potentially exponential time.

Von zur Gathen (1988,1990)
Nearly linear time decomposition in tame case.
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Algorithms for Wild Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f = g ◦ h ⇐⇒ h(x ) − h(y) | f (x ) − f (y)

Works as long as you can factor. Really exponential time.
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Algorithms for Wild Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f = g ◦ h ⇐⇒ h(x ) − h(y) | f (x ) − f (y)

Works as long as you can factor. Really exponential time.

Zippel (1991): Polynomial decomposition via Galois theory
If f = g ◦ h then there exists a field L such that

F(f (x )) ( L ( F(x ),

and L = h(x ) for some h ∈ F[x ].

Find subfields by adapting Landau & Miller’s (1985) algorithm to
find subfields between Q and Q(α) (for algebra algebraic α).

Polynomial time, at least in principle
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Additive Polynomials

Additive or linearized polynomials are those such that

f (x + y) = f (x ) + f (y)

Non-linear additive polynomials only exist in F[x ] if F has prime
characteristic p, and have the form

f = a0x + a1x p + a2x p2
+ · · ·+ anx pn ∈ F[x ].

Example

Let F125 = F5[θ]/(θ
3 + θ+ 1).

f = x 25 + (3θ2 + 4θ+ 2)x 5 + (3θ2 + 4θ+ 2)x

is an additive polynomial, and
f = (x 5 + (θ2 + θ+ 4)x ) ◦ (x 5 + 3θx )

= (x 5 + (2θ2 + 4θ+ 2)x ) ◦ (x 5 + (θ2 + 2θ)x )
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Ore’s Legacy

In 1932-4, Oystein Ore wrote four seminal papers for finite fields,
differential algebra, and computer algebra

1 O. Ore, Formale Theorie der linearen Differentialgleichungen, J.
reine angew. Math., v. 168, pp. 233-252, 1932.

2 O. Ore, Theory of Non-Commutative Polynomials, "Annals of
Mathematics", v. 34, no. 22, pp. 480–508, 1933.

3 O. Ore, On a Special Class of Polynomials, Trans. Amer. Math.
Soc., v. 35, pp. 559-584, 1933.

4 O. Ore, Contributions to the Theory of Finite Fields, Trans. Amer.
Math. Soc., v. 36, pp. 243-274, 1934.

[1,2] form the basis for modern computational theory of LODEs
(Ore_algebra,OreTools)

[3,4] have had great influence on theory of finite fields
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Ore Polynomials in Computational Algebra

Additive polynomials are employed in

Error correcting codes

HFE and other cryptosystems

Mathematical constructions in algebraic function fields

General fun and parlour tricks.

Despite their large (exponential) degrees we will see that we
can compute very efficiently with them.
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The Geometry of Additive Polynomials

Denote the set of all additive polynomials over Fq as

Fq [x ; p] =
{
a0x + a1x p + ... + anx pn ∈ Fq [x ]

}
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The Geometry of Additive Polynomials

Denote the set of all additive polynomials over Fq as

Fq [x ; p] =
{
a0x + a1x p + ... + anx pn ∈ Fq [x ]

}
Assume f ∈ Fq [x ; p] squarefree of degree pn

f squarefree ⇐⇒ f ′ = a0 , 0

Roots Vf of f form an Fp-vector space of Fq of dimension n .

If W is any Fp-subspace of Vf , and
h ∈ Fq [x ] has roots exactly W (i.e., h(W ) = 0)

h ∈ Fq [x ; p] and ∃g ∈ Fq [x ; p] such that f = g ◦ h .

If W is also σq -invariant, then h ∈ Fq [x ; p]
σq is known as the Frobenius automorphism
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The Geometry of Additive Polynomials (2)

Example

Again let F125 = F5[θ]/(θ
3 + θ+ 1), and

f = x 25 + (3θ2 + 4θ+ 2)x 5 + (3θ2 + 4θ+ 2)x

Then

µ = RootOf
(
x 4 + (θ2 + 3θ+ 4)x 2 + (3θ2 + 4θ)x + (4θ2 + θ)

)
ν = RootOf

(
x 4 + (4θ2 + 2θ+ 1)x 2 + (4θ2 + 2θ)x + (4θ2 + θ)

)
Vf = {αµ+ βν : α,β ∈ Fp} ⊆ F512

σq =

(
3 3
2 3

)
(after some ugly calculations)

Probably not the best way to work with additive polynomials...

Mark Giesbrecht Algorithms for Additive and Projective Polynomials 10/24



Right Composition Factors as EigenVectors of σq

Given f ∈ Fq [x ; p] of degree n , let’s find

#
{
h = x p + ax ∈ Fq [x ; p] : ∃g ∈ Fq [x ; p] with f = g ◦ h

}
The number of right composition factors of f degree p
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Right Composition Factors as EigenVectors of σq

Given f ∈ Fq [x ; p] of degree n , let’s find

#
{
h = x p + ax ∈ Fq [x ; p] : ∃g ∈ Fq [x ; p] with f = g ◦ h

}
The number of right composition factors of f degree p

= number of 1-dimensional σq -invariant subspaces of Vf

= number of eigenvectors of σq

Remember, σq : Vf → Vf is a Fp-linear map
σq acts like an n × n matrix over Fp
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Right Composition Factors as EigenVectors of σq

Given f ∈ Fq [x ; p] of degree n , let’s find

#
{
h = x p + ax ∈ Fq [x ; p] : ∃g ∈ Fq [x ; p] with f = g ◦ h

}
The number of right composition factors of f degree p

= number of 1-dimensional σq -invariant subspaces of Vf

= number of eigenvectors of σq

Remember, σq : Vf → Vf is a Fp-linear map
σq acts like an n × n matrix over Fp

New questions:

How many eigenvectors can an n × n matrix over Fq have?

How can we compute this?
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Right Composition Factors as EigenVectors of σq (2)

How many eigenvectors can a matrix have?
Look at the (rational) Jordan form in Fn×n

p

Example: degree p2 (n = 2): the number of ways of decomposing
f = x p2

+ a1x p + a0x

= (x p + b0x ) ◦ (x p + c0x )

Put σq in rational Jordan form; there are only four possibilities:

σq ∼
(

0 α

1 β

) (
λ 1
0 λ

)
,

(
λ 0
0 µ

)
,

(
λ 0
0 λ

)
,

Here λ,µ,α,β ∈ F∗p , λ , µ and y2 − βy − α ∈ Fp [y ] is irreducible.
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Right Composition Factors as EigenVectors of σq (2)

How many eigenvectors can a matrix have?
Look at the (rational) Jordan form in Fn×n

p

Example: degree p2 (n = 2): the number of ways of decomposing

f = x p2
+ a1x p + a0x

= (x p + b0x ) ◦ (x p + c0x )

Put σq in rational Jordan form; there are only four possibilities:

σq ∼
(

0 α

1 β

) (
λ 1
0 λ

)
,

(
λ 0
0 µ

)
,

(
λ 0
0 λ

)
,

0 1 2 p + 1

Here λ,µ,α,β ∈ F∗p , λ , µ and y2 − βy − α ∈ Fp [y ] is irreducible.

An f ∈ Fq [x ;σ] of degree p2 can have only 0, 1, 2, or p + 1 right
composition factors of degree p.
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Right Composition Factors as EigenVectors of σq (3)

Example: degree p3 (n = 3): the number of ways of decomposing
f = x p3

+ a2x p2
+ a1x p + a0x

= (x p2
+ b1x p + b0x ) ◦ (x p + c0x )

σq ∼
(
λ
λ
λ

)
,

(
λ 1
λ
λ

)
,

(
λ 1
λ 1
λ

)
,

(
λ 1
λ
µ

)
(
λ
λ
µ

)
,

(
λ
µ
ν

)
,

(
λ

)
,

( )

Mark Giesbrecht Algorithms for Additive and Projective Polynomials 13/24



Right Composition Factors as EigenVectors of σq (3)

Example: degree p3 (n = 3): the number of ways of decomposing
f = x p3

+ a2x p2
+ a1x p + a0x

= (x p2
+ b1x p + b0x ) ◦ (x p + c0x )

σq ∼
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λ
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,
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p + 2 3 1 0
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λ
λ
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,

(
λ 1
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λ

)
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λ 1
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λ

)
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λ
µ

)
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,
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Right Composition Factors as EigenVectors of σq (3)

Example: degree p3 (n = 3): the number of ways of decomposing
f = x p3

+ a2x p2
+ a1x p + a0x

= (x p2
+ b1x p + b0x ) ◦ (x p + c0x )

σq ∼
(
λ
λ
λ

)
,

(
λ 1
λ
λ

)
,

(
λ 1
λ 1
λ

)
,

(
λ 1
λ
µ

)
p2 + p + 1 p + 1 1 2(
λ
λ
µ

)
,

(
λ
µ
ν

)
,

(
λ

)
,

( )
p + 2 3 1 0

An f ∈ Fq [x ;σ] of degree p3 can have only

0, 1, 2, 3, p + 1, p + 2, or p2 + p + 1

right composition factors of degree p.
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General categorization of number of composition factors

How many composition factors of degree p can an additive
polynomial of degree pn have? Sn is the set of possible numbers:

S0 = {0}

S1 = {0, 1}

S2 = {0, 1, 2, p + 1}

S3 = {0, 1, 2, 3, p + 1, p + 2, p2 + p + 1}

S4 = {0, 1, 2, 3, 4, 2p + 2, p2 + p + 2, p3 + p2 + p + 1}
...

...

In general #Sn =
∑

06k6n P(k), where P(k) is the number of
additive partitions of k .
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Efficient Counting of Composition Factors

Roots of f ∈ Fq [x ; p] of degree pn may be in an extension field of
high degree (O(pO(n2))).

Can’t really compute directly with Vf .
Want algorithms which take time poly in n log p (not pn )

Mark Giesbrecht Algorithms for Additive and Projective Polynomials 15/24



Efficient Counting of Composition Factors

Roots of f ∈ Fq [x ; p] of degree pn may be in an extension field of
high degree (O(pO(n2))).

Can’t really compute directly with Vf .
Want algorithms which take time poly in n log p (not pn )

Look at the ring structure of Fq [x ; p]
Fq [x ; p] is a (non-commutative) ring under the + and ◦

Left (and right) Euclidean ring: LCLM and GCRD operations.

No unique factorization (but Jordan-Hölder and Krüll Schmidt
give a lot of structure to factorizations)

Fast algorithms for +, ◦, lclm and gcrd (time O(n3 log2 q)).
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Efficient Counting of Composition Factors

Roots of f ∈ Fq [x ; p] of degree pn may be in an extension field of
high degree (O(pO(n2))).

Can’t really compute directly with Vf .
Want algorithms which take time poly in n log p (not pn )

Example: F125[x ; 5] again – a left Euclidean ring

f = x 25 + (3θ2 + 4θ+ 2)x 5 + (3θ2 + 4θ+ 2)x

g = x 25 + (3θ2 + θ+ 3)x 5 + (4θ2 + 2θ+ 2)x

f + g = 2x 25 + (3θ2 + 2θ+ 3)x 5 + (4θ2 + 3θ+ 2)x

f ◦ g = x 625 + (4θ2 + 2)x 125 + · · ·+ (2θ2 + 3θ+ 1)x

lclm(f , g) = x 125 + (θ2+ 3θ+ 1)x 25 + (2θ2 + 3)x 5 + (2θ2 + 2θ+ 3)x

gcrd(f , g) = x 5 + 3θx
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The Centre of Things

The centre of Fq [x ; p] is also very useful:

centre(Fq [x ; p]) = Fp [x ; q ] =
{∑

αix q i ∈ Fp [x ]
}
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}

� Fp [y ] the usual (commutative) polynomials!∑
06i6n

αix q i 7→
∑

06i6n

αiy i for a0, . . . , an ∈ Fp

A cool trick
Given any f ∈ Fq [x ; p] we can find a left multiple in the center.
Can do this with O(n3 log2 q) operations in Fq .
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}

� Fp [y ] the usual (commutative) polynomials!∑
06i6n

αix q i 7→
∑

06i6n

αiy i for a0, . . . , an ∈ Fp

A cool trick
Given any f ∈ Fq [x ; p] we can find a left multiple in the center.
For example (again in F125):

f = x 25 + (3θ2 + 4θ+ 2)x 5 + (3θ2 + 4θ+ 2)x ∈ Fq [x ; 5]

f ∗ = x 1252
+ 4x 125 + 3x ∈ Fp [x ; 125]

f ∗ is the minimal central left multiple (mclm) of f
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The Centre of Things

The centre of Fq [x ; p] is also very useful:

centre(Fq [x ; p]) = Fp [x ; q ] =
{∑

αix q i ∈ Fp [x ]
}

� Fp [y ] the usual (commutative) polynomials!∑
06i6n

αix q i 7→
∑

06i6n

αiy i for a0, . . . , an ∈ Fp

A cool trick
Given any f ∈ Fq [x ; p] we can find a left multiple in the center.
For example (again in F125):

f = x 25 + (3θ2 + 4θ+ 2)x 5 + (3θ2 + 4θ+ 2)x ∈ Fq [x ; 5]

f ∗ = x 1252
+ 4x 125 + 3x ∈ Fp [x ; 125]

f ∗ is the minimal central left multiple (mclm) of f
The mclm can be found with O(n3 log2 q) operations in Fq
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The centre of things (2)

Basis of the factoring algorithm in Giesbrecht (1992, 1998):
Factor the minimal central left multiple and take GCRDs:

f = x 25 + (3θ2 + 4θ+ 2)x 5 + (3θ2 + 4θ+ 2)x ∈ Fq [x ; 5]

f ∗ = x 1252
+ 4x 125 + 3x ∈ Fp [x ; 125]

7→ y2 + 4y + 3 = (y + 1)(y + 3)

f ∗ = (x 125 + x )︸         ︷︷         ︸
f1

◦ (x 125 + 3x )︸           ︷︷           ︸
f2

= (x 125 + 3x ) ◦ (x 125 + x )

gcrd(f , f1) = x 5 + (θ2 + 2θ)x

gcrd(f , f2) = x 5 + 3θx

}
right composition factors of f
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Factorization in Fq [x ; p]

Theorem: (Giesbrecht 1992, 1998)

Given f =
∑

06i6n aix pi ∈ Fq [x ], we can find g , h ∈ Fq [x ], if they
exist, such that f = g ◦ h . Requires expected time O(n4 log2 q)
operations in Fq (Las Vegas).
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Factorization in Fq [x ; p]

Theorem: (Giesbrecht 1992, 1998)

Given f =
∑

06i6n aix pi ∈ Fq [x ], we can find g , h ∈ Fq [x ], if they
exist, such that f = g ◦ h . Requires expected time O(n4 log2 q)
operations in Fq (Las Vegas).

Hardest when minimal central left multiple is irreducible in Fp [y ].

Construct a finite algebra A from f , called the eigenring; show
that zero-divisors in A yields composition factors of f .

Show how to find zero divisors in a finite algebra quickly.

Build very explicit Krüll-Schmidt and Jordan-Hölder like
decompositions, which show structure of all decompositions
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Central Multiples and Frobenius Automorphisms

Theorem: (von zur Gathen, Giesbrecht, and Ziegler 2010)
Let f ∈ Fq [x ; p] be squarefree of degree pn with roots Vf , and let
σq : Vf → Vf be the Frobenius automorphism.
Let f ∗ ∈ Fp [x ; q ] be the minimal central left multiple of f .

f ∗ =
∑

06i6m αix qi =⇒ f + =
∑

06i6m αiy i is min poly of σq .
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Central Multiples and Frobenius Automorphisms

Theorem: (von zur Gathen, Giesbrecht, and Ziegler 2010)
Let f ∈ Fq [x ; p] be squarefree of degree pn with roots Vf , and let
σq : Vf → Vf be the Frobenius automorphism.
Let f ∗ ∈ Fp [x ; q ] be the minimal central left multiple of f .

f ∗ =
∑

06i6m αix qi =⇒ f + =
∑

06i6m αiy i is min poly of σq .

We can find the minimal polynomial of σq quickly
With a little more work we can compute the complete rational
Jordan form of σq

We can count the number of eigenvectors/right factors of
degree p quickly:
Given f ∈ Fq [x ; p] of degree pn , we can compute the number
of right composition factors of degree p with O(n3 log2 q)
operations in Fq .
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Central Multiples and Frobenius Automorphisms

Theorem: (von zur Gathen, Giesbrecht, and Ziegler 2010)
Let f ∈ Fq [x ; p] be squarefree of degree pn with roots Vf , and let
σq : Vf → Vf be the Frobenius automorphism.
Let f ∗ ∈ Fp [x ; q ] be the minimal central left multiple of f .

f ∗ =
∑

06i6m αix qi =⇒ f + =
∑

06i6m αiy i is min poly of σq .

Back to our example in F125[x ; 5]

f = x 25 + (3θ2 + 4θ+ 2)x 5 + (3θ2 + 4θ+ 2)x ∈ Fq [x ; 5]

f ∗ = x 1252
+ 4x 125 + 3x ∈ Fp [x ; 125]

= (x 125 − 4x ) ◦ (x 125 − 2x )

So σq ∼

(
4 0
0 2

)
and

{ σq has two eigenvectors
f has two right factors of degree 5
h1 = x 5+θ2x+2θx , h2 = x 5+3θx
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Projective Polynomials

Projective polynomials were defined by Abhyankar (1997) as a way
of constructing polynomials with specific Galois groups.

Ψ
(a ,b)
n = x (pn−1)/(p−1) + ax + b ∈ Fq [x ] for b , 0

They have recently been shown to have numerous applications:
strong Davenport pairs, difference sets, cryptographically secure
sequences, construction of error-correcting codes...
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Projective Polynomials
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Ψ
(a ,b)
n = x (pn−1)/(p−1) + ax + b ∈ Fq [x ] for b , 0

They have recently been shown to have numerous applications:
strong Davenport pairs, difference sets, cryptographically secure
sequences, construction of error-correcting codes...

Bluher (2004) showed that for n = 2, Ψ(a ,b)
2 have either 0, 1, 2, or

p + 1 roots in Fq . This looks familiar!

Lemma

Ψ
(a ,b)
n has a root c ∈ Fq ⇐⇒ x pn

+ ax p + bx = g ◦ (x p − cx ).
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Projective Polynomials

Projective polynomials were defined by Abhyankar (1997) as a way
of constructing polynomials with specific Galois groups.

Ψ
(a ,b)
n = x (pn−1)/(p−1) + ax + b ∈ Fq [x ] for b , 0

They have recently been shown to have numerous applications:
strong Davenport pairs, difference sets, cryptographically secure
sequences, construction of error-correcting codes...

Theorem

We can compute the number of roots in Fq of Ψ(a ,b)
n ∈ Fq [x ] with

O(n3 log2 q) operations in Fq (even though it has degree ≈ pn−1).
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Inverse Problems

How many additive polynomials of degree n have each possible
number of right factors?

Equivalently: how many projective polynomials have each possible
number of roots?
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Inverse Problems

How many additive polynomials of degree n have each possible
number of right factors?

Equivalently: how many projective polynomials have each possible
number of roots?

Bluher (2004): For f = x p2
+ a1x p + a0x ∈ Fq [x ; p]

Right factors # additive polynomials of degree p2

of degree p with that many right factors

0 p(q2−1)
2(p+1)

1 q2−q
p + 1

2 (q−1)2·(p−2)
2(p−1) + q − 1

p + 1 (q−1)(q−p)
p(p2−1)
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Inverse Problems

How many additive polynomials of degree n have each possible
number of right factors?

Equivalently: how many projective polynomials have each possible
number of roots?

Bluher (2004): For f = x p2
+ a1x p + a0x ∈ Fq [x ; p]

Right factors # additive polynomials of degree p2

of degree p with that many right factors

0 p(q2−1)
2(p+1)

We give an elementary
proof and a way to
efficiently enumerate all
classes

1 q2−q
p + 1

2 (q−1)2·(p−2)
2(p−1) + q − 1

p + 1 (q−1)(q−p)
p(p2−1)

Mark Giesbrecht Algorithms for Additive and Projective Polynomials 21/24



Inverse Problems (2)

We now have a general method to give formulas for the number of
additive polynomials with a prescribed number of right factors of
degree p.
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Inverse Problems (2)

We now have a general method to give formulas for the number of
additive polynomials with a prescribed number of right factors of
degree p.

Von zur Gathen & Giesbrecht (2011): for
f = x p3

+ a2x p2
+ a1x p + a0x ∈ Fq [x ; p]

Right factors # additive polynomials of degree p3

of degree p with that many right factors

0 1
3
(p3−p)(q3−1)

p3−1
1 ?
2 ?
3 (p−2)(p−3)(q−1)3

(p−1)2

p + 1 ?
p + 2 (q−1)2(q−p)(p−2)

(p2−1)(p2−p)
p2 + p + 1 (q−1)(q−p)(q−p2)(p−1)

(p3−1)(p3−p)(p3−p2)
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Conjecture

Consider any polynomial f ∈ Fq [x ] of degree p2.

Conjecture: f can have either 0, 1, 2, p + 1 decompositions.

Verified in Sage for p 6 11.

In fact, we think they all fall into very specific families.
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Open Questions

Inverse theory for number of right factors of degree p of any
polynomial in Fq [x ; p]

Automatically generate inverse formulas

Compute number of right factors of any given degree of a
polynomial in Fq [x ;σ]

Resolve conjecture: how many decompositions possible for a
general polynomial?

Mark Giesbrecht Algorithms for Additive and Projective Polynomials 24/24


