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Polynomial Composition and Decomposition )

Functional Composition

Let g, h € F[z], for a field F.

Compose g, h as functions f(z) = g(h(z)) =goh

A (generally) non-distributive operation (but not always):

9(h1(z) + ha(z)) # g(ha(z)) + g(ha(z))
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Polynomial Composition and Decomposition ]

Functional Composition

Let g, h € F[z], for a field F.

Compose g, h as functions f(z) = g(h(z)) =goh

A (generally) non-distributive operation (but not always):

9(h1(z) + ha(z)) # g(ha(z)) + g(ha(z))

Decomposition

Given f € F[z], can it be decomposed?

Do there exist g, h € F[z] suchthat f = go h?
f=z*—2234+822—72+5

g=z?+3c—5 h=z?>—z—2 »f=goh
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Tame and Wild Decomposition J

Let F be a field of characteristic p and f € F[z] monic of degree n.
Normalize f, g, h to monic and original: h(0) =0

o fistameifptn
o fiswildifp|n

Traditionally this describes the ramification of F(z) over F(f(z)).
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Tame and Wild Decomposition ]

Let F be a field of characteristic p and f € F[z] monic of degree n.
Normalize f, g, h to monic and original: h(0) =0

o fistameifptn
o fiswildifp|n

Traditionally this describes the ramification of F(z) over F(f(z)).

Tame decomposition (mathematically)
@ Ritt (1922) describes all tame decompositions and
“ambiguities”.
@ For a fixed s, there are either 0 or 1 monic & € F[z] of degree
s with A(0) = 0 such that f(z) = g(h(z)).
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Tame and Wild Decomposition ]

Let F be a field of characteristic p and f € F[z] monic of degree n.
Normalize f, g, h to monic and original: h(0) =0

o fistameifptn
o fiswildifp|n

Traditionally this describes the ramification of F(z) over F(f(z)).

Wild decomposition (mathematically)
@ Life is much more difficult
@ (Giesbrecht, 1988) For a finite field F of characteristic p, there
are f € Flz] of degree n with > n*!°™ monic, original,
h € Flz] of degree s ~ /n such that f(z) = g(h(z)),

where A = (6logp) L.
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Tame and Wild Decomposition ]

Let F be a field of characteristic p and f € F[z] monic of degree n.
Normalize f, g, h to monic and original: h(0) =0

o fistameifptn
o fiswildifp|n

Traditionally this describes the ramification of F(z) over F(f(z)).

Wild decomposition (mathematically)
@ On the bright side, there are at most (n —1)/(s — 1)
indecomposable monic, orginal h € F[z] of degree s such that

f(z) = g(h(z)).
(Von zur Gathen, Giesbrecht, Ziegler, 2010)
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Algorithms for Polynomial Decomposition

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f=goh < h(z)—h(y)|f(z)—fly)

Works as long as you can factor. Potentially exponential time.
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Algorithms for Polynomial Decomposition ]

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f=goh < h(z)—h(y)|flz)—f(y)

Works as long as you can factor. Potentially exponential time.

Kozen & Landau (1987)
First polynomial-time algorithm for tame case. Noticed that the

high-order coefficients of f do not depend on (monic) g.
»p find h, then g.
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Algorithms for Polynomial Decomposition )

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f=goh < h(z)—h(y)|f(z)—fly)

Works as long as you can factor. Potentially exponential time.

Giesbrecht & May (2004)

Except for a very special case (Dickson polynomials), easily
handled, Barton & Zippel’s algorithm runs in polynomial time!
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Algorithms for Polynomial Decomposition ]

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f=goh < hiz)—h(y)|flz)—f(y)

Works as long as you can factor. Potentially exponential time.

Theorem: Fried (1970) — Schur’s Conjecture

Let f € Qlz] be indecomposable of degree n. > 1.
e If n is not an odd prime, then (f(z) — f(y))/(z —y) is
absolutely irreducible;

e [fn is an odd prime, and it is not the case that
flz) =aDy(a,z+b)+p foro, B,a,beQ, where a =0 if
n = 3, then (f(z) — f(y))/(z — y) is absolutely irreducible.

Indecomposability »p Dickson or Irreducible (G & May 2005)
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Algorithms for Polynomial Decomposition )

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f=goh < h(z)—h(y)|f(z)—fly)

Works as long as you can factor. Potentially exponential time.

Von zur Gathen (1988,1990)
Nearly linear time decomposition in tame case.
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Algorithms for Wild Decomposition )

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f=goh < h(z)—h(y)|f(z)—fly)

Works as long as you can factor. Really exponential time.
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Algorithms for Wild Decomposition ]

Barton & Zippel (1982)
Based on factorization of bivariate polynomials

f=goh < h(z)—h(y)|f(z)—f(y)

Works as long as you can factor. Really exponential time.

Zippel (1991): Polynomial decomposition via Galois theory
If f = g o h then there exists a field L such that

F(f(z)) ¢ L ¢ F(z),

and L = h(z) for some h € F[z].

Find subfields by adapting Landau & Miller’s (1985) algorithm to
find subfields between Q and Q(«) (for algebra algebraic o).
»p Polynomial time, at least in principle
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Additive Polynomials

Additive or linearized polynomials are those such that

flze+y)=F(z)+fly)
Non-linear additive polynomials only exist in F[z] if F has prime
characteristic p, and have the form

f = a0z + az? + az® + - + a,z?" € Flzl.
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Additive Polynomials ]

Additive or linearized polynomials are those such that

flze+y)=F(z)+fly)
Non-linear additive polynomials only exist in F[z] if F has prime
characteristic p, and have the form

f=aoz+ a1z” + apz? + - + anz?” € Flal.

Example
Let Fi95 = IF5[6]/(93 + 0+ 1)

f=x2°+(30%+40 +2)z5 + (302 + 40 + 2)z
is an additive polynomial, and
f=(z®+ (62 +0+4)z)o (z° + 30z)
= (254 (202 + 40 + 2)z) o (z° + (6% + 20)2)
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Ore’s Legacy )

In 1932-4, Oystein Ore wrote four seminal papers for finite fields,
differential algebra, and computer algebra

@ O. Ore, Formale Theorie der linearen Differentialgleichungen, J.
reine angew. Math., v. 168, pp. 233-252, 1932.

@ O. Ore, Theory of Non-Commutative Polynomials, "Annals of
Mathematics", v. 34, no. 22, pp. 480-508, 1933.

© O. Ore, On a Special Class of Polynomials, Trans. Amer. Math.
Soc., v. 35, pp. 559-584, 1933.

© O. Ore, Contributions to the Theory of Finite Fields, Trans. Amer.
Math. Soc., v. 36, pp. 243-274, 1934.

[1,2] form the basis for modern computational theory of LODEs
(Ore_algebra,OreTools)

[3,4] have had great influence on theory of finite fields
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Ore Polynomials in Computational Algebra

Additive polynomials are employed in
@ Error correcting codes
@ HFE and other cryptosystems
@ Mathematical constructions in algebraic function fields
@ General fun and parlour tricks.

Despite their large (exponential) degrees we will see that we
can compute very efficiently with them.
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The Geometry of Additive Polynomials )

Denote the set of all additive polynomials over I, as
Fqlz; p] = {aO:c +azP + ..+ apz? € Fq[:c]} J
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The Geometry of Additive Polynomials

Denote the set of all additive polynomials over I, as
Fqlz; p] = {aO:c +azP + ..+ apz? € Fq[:c]}

Assume f € F,lz; p] squarefree of degree p™
@ f squarefree <= f'=ag#0
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The Geometry of Additive Polynomials |

Denote the set of all additive polynomials over I, as
Fqlz; p] = {aosc +azP + ..+ apz? € Fq[:c]}

Assume f € F,lz; p] squarefree of degree p™
@ f squarefree <= f'=ag#0
@ Roots V; of f form an F,-vector space of F, of dimension n.
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The Geometry of Additive Polynomials ]

Denote the set of all additive polynomials over I, as
Fqlz; p] = {aosc + a1zP + ... + a,zP € Fq[:c]}

Assume f € F,lz; p] squarefree of degree p™
@ f squarefree <= f'=ag#0
@ Roots V; of f form an Fp-vector space of F, of dimension n.

e If W is any Fp-subspace of V;, and
h € Fqlz] has roots exactly W (i.e., h(W) = 0)
» h € Fylz;pl and 3g € Fylz; p] such that f = g o h.
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The Geometry of Additive Polynomials ]

Denote the set of all additive polynomials over I, as
Fqlz; p] = {aosc + a1zP + ... + a,zP € Fq[:c]}

Assume f € F,lz; p] squarefree of degree p™
@ f squarefree <= f'=ag#0
@ Roots V; of f form an Fp-vector space of F, of dimension n.

e If W is any Fp-subspace of V;, and

h € Fqlz] has roots exactly W (i.e., h(W) = 0)

» h € Fylz;pl and 3g € Fylz; p] such that f = g o h.
e If W is also og-invariant, then h € F,[z; p]

04 is known as the Frobenius automorphism
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The Geometry of Additive Polynomials (2)

Example
Again let Fy95 = F5[0]/(06% 4+ 0 + 1), and

f =z 4 (302440 +2)z° + (302 + 40 + 2)z
Then

i = RootOf (z* + (6% + 30 + 4)z* + (302 + 40)z + (46° + 0))
v = RootOf (z* + (402 + 20 + 1)z? + (402 + 20)z + (40 + 0))

Vi ={oap+pv:apP GFP}QF512

3 3 .
0g = <2 3> (after some ugly calculations)

Probably not the best way to work with additive polynomials...
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Right Composition Factors as EigenVectors of 0

Given f € Fylz; p] of degree n, let’s find
#{h =2zP + ax € Fylz;pl: g € Fylz;pl withf =go h}

The number of right composition factors of f degree p
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Right Composition Factors as EigenVectors of 0

Given f € Fylz; p] of degree n, let’s find
#{h =2zP + ax € Fylz;pl: g € Fylz;pl withf =go h}

The number of right composition factors of f degree p

= number of 1-dimensional o4-invariant subspaces of V;

= number of eigenvectors of o,

Remember, 0, : Vy — V;is a Fp-linear map
»p 0, acts like an n x n matrix over F,
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Right Composition Factors as EigenVectors of 0 J

Given f € Fylz; p] of degree n, let’s find
#{h =2zP + ax € Fylz;pl: g € Fylz;pl withf =go h}

The number of right composition factors of f degree p

= number of 1-dimensional o4-invariant subspaces of V;
= number of eigenvectors of o,

Remember, 0, : Vy — V;is a Fp-linear map

»p 0, acts like an n x n matrix over F,

New questions:
@ How many eigenvectors can an n x n matrix over F, have?

@ How can we compute this?
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Right Composition Factors as EigenVectors of o (2) J

How many eigenvectors can a matrix have?
Look at the (rational) Jordan form in Fp*"

Example: degree p? (n = 2): the number of ways of decomposing
f= P+ a1 z? + apz

= (2P + bgz) o (2P + coz)

Put o, in rational Jordan form; there are only four possibilities:
O~ 0 o Al A DO A0
q 1 B o A \o p/ \o A)’

Here A, i, o, B € F%, A # pand y? — By — o € Fyly] is irreducible.
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Right Composition Factors as EigenVectors of o (2) J

How many eigenvectors can a matrix have?
Look at the (rational) Jordan form in Fp*"

Example: degree p? (n = 2): the number of ways of decomposing
f= P+ a1 z? + apz

= (2P + bgz) o (2P + coz)
Put o, in rational Jordan form; there are only four possibilities:
O~ 0 o Al A0 A0
q 1 B o A \o p/ \o A)’
0

Here A, i, o, B € F%, A # pand y? — By — o € Fyly] is irreducible.
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Right Composition Factors as EigenVectors of o (2) J

How many eigenvectors can a matrix have?
Look at the (rational) Jordan form in Fp*"

Example: degree p? (n = 2): the number of ways of decomposing
f= P+ a1 z? + apz

= (2P + bgz) o (2P + coz)
Put o, in rational Jordan form; there are only four possibilities:
O~ 0 o Al A0 A0
q 1 B o A \o p/ \o A)’
0 1

Here A, i, o, B € F%, A # pand y? — By — o € Fyly] is irreducible.
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Right Composition Factors as EigenVectors of o (2) J

How many eigenvectors can a matrix have?
Look at the (rational) Jordan form in Fp*"

Example: degree p? (n = 2): the number of ways of decomposing
f= P+ a1 z? + apz

= (2P + bgz) o (2P + coz)
Put o, in rational Jordan form; there are only four possibilities:
O~ 0 o Al A0 A0
q 1 B o A \o p/ \o A)’
0 1 2

Here A, i, o, B € F%, A # pand y? — By — o € Fyly] is irreducible.
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Right Composition Factors as EigenVectors of o (2) J

How many eigenvectors can a matrix have?
Look at the (rational) Jordan form in Fp*"

Example: degree p? (n = 2): the number of ways of decomposing

f= P+ a1 z? + apz

= (2P + bgz) o (2P + coz)
Put o, in rational Jordan form; there are only four possibilities:
O~ 0 o Al A0 A0
q 1 B o A \o p/ \o A)’

0 1 2 p+1

Here A, u, o, B € F, A # pand y? — By — o € F,plyl is irreducible.

An f € F,[z; o] of degree p? can have only 0, 1,2, or p + 1 right
composition factors of degree p.
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Right Composition Factors as EigenVectors of o (3) ]

Example: degree p3 (n = 3): the number of ways of decomposing
f= 2P’ + a2$p2 + a1zP + auz

= (mp2 + biz? + boz) o (2P + cpz)

o () () () ()
() () Co)- (L)
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Right Composition Factors as EigenVectors of o (3) ]

Example: degree p3 (n = 3): the number of ways of decomposing
f= 2P’ + a2$p2 + a1zP + auz

= (mp2 + biz? + boz) o (2P + cpz)

o () () () ()
() (o) Cro)e (L)

p+2 3 1 0
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Right Composition Factors as EigenVectors of o (3) J

Example: degree p3 (n = 3): the number of ways of decomposing
f= 2P’ + a2$p2 + a1zP + auz

= (ar:p2 + biz? + boz) o (2P + cpz)

o~ () (8)- (h)- ()

() () 00 ()
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Right Composition Factors as EigenVectors of o (3) ]

Example: degree p3 (n = 3): the number of ways of decomposing
f=2z" + az? + a13” + aox

= (xp2 + b12P + boz) o (2P + coz)

o~ () (8)- (h)- ()

() () 00 ()

» An f € F,[z; o] of degree p® can have only
0,1,2,3,p+1,p+2,0r p>+p+1

right composition factors of degree p.

Mark Giesbrecht Algorithms for Additive and Projective Polynomials 13/24



General categorization of number of composition factors ]

How many composition factors of degree p can an additive
polynomial of degree p™ have? S, is the set of possible numbers:

So =1{0}

S ={0,1}

S, =1{0,1,2,p+ 1}
S3=1{0,1,2,3,p+1,p+2,p°+p+1}

S, =10,1,2,3,4,2p+2,p° +p+ 2,03 + P2 +p + 1}

In general #S,, = Zogkgn P(k), where P(k) is the number of
additive partitions of k.
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Efficient Counting of Composition Factors J

Roots of f € F,[z; p] of degree p™ may be in an extension field of
high degree (O(p°("*))).
»p Can't really compute directly with V.

Want algorithms which take time poly in n log p (not p™)
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Roots of f € F,[z; p] of degree p™ may be in an extension field of
high degree (O(p°("*))).
»p Can't really compute directly with V.

Want algorithms which take time poly in n log p (not p™)

Look at the ring structure of F,[z; p]
F,lz; p] is a (non-commutative) ring under the + and o
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Efficient Counting of Composition Factors ]

Roots of f € F,[z; p] of degree p™ may be in an extension field of
high degree (O(p°("*))).
»p Can't really compute directly with V.

Want algorithms which take time poly in n log p (not p™)

Look at the ring structure of F,[z; p]
F,lz; p] is a (non-commutative) ring under the + and o

@ Left (and right) Euclidean ring: LCLM and GCRD operations.

@ No unique factorization (but Jordan-Hélder and Krlll Schmidt
give a lot of structure to factorizations)

@ Fast algorithms for +, o, Iclm and gcrd (time O(n2log? q)).
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Efficient Counting of Composition Factors

Roots of f € F,[z; p] of degree p™ may be in an extension field of
high degree (O(p°("*))).
»p Can't really compute directly with V.

Want algorithms which take time poly in n log p (not p™)

Example: Fio5[z; 5] again — a left Euclidean ring

f =224 (302+40 +2)z° + (302 + 40 + 2)z
g =+ (302 +0+3)z®+ (402 +20 + 2)z
f+ g =22+ (302 +20+3)z° + (402 + 30 + 2)z
fog=15%4(4024+2)25 +... 4 (202 +30+ 1)z
Iclm(f, g) = 1% + (02430 + 1)22° + (202 + 3)z° + (202 + 20 +
gerd(f, g) = 2° + 30z

)
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The Centre of Things )

The centre of F,[z; p] is also very useful:

centre(Fyle; pl) = Fyloi gl = {3 aua?’ € Fylal}
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The Centre of Things J

The centre of F,[z; p] is also very useful:

{Z o;z? € Fpl ]}

IF
= Fply] the usual (commutative) polynomials!
Z ocixq'—> Z oy for ag, ..., an € Fp

0<i<n oi<n

centre(Fy(z; p]) =
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The Centre of Things ]

The centre of F,[z; p] is also very useful:

{Z o;z? € Fpl }

IF
= Fply] the usual (commutative) polynomials!
Z ocian—> Z oy for ag, ..., an € Fp

0<i<n oi<n

centre(Fy(z; p]) =

A cool trick
Given any f € Fglz; p] we can find a left multiple in the center.
Can do this with O(n3log? ) operations in F,.
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The Centre of Things J

The centre of F,[z; p] is also very useful:

{Z o;z? € Fpl }

IF
= Fply] the usual (commutative) polynomials!
Z ocixq'—> Z oy for ag, ..., an € Fp

0<i<n oi<n

centre(Fy(z; p]) =

A cool trick
Given any f € Fglz; p] we can find a left multiple in the center.
For example (again in Fio5):
f =224 (302 +40 +2)z° + (302 + 40 + 2)z € F,[z; 5]
F* =% +42'% 4 3z € Fylz;125)

f* is the minimal central left multiple (mclm) of f
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The Centre of Things ]

The centre of F,[z; p] is also very useful:

{Z o;z? € Fpl }

IF
= Fply] the usual (commutative) polynomials!
Z ocixq'—> Z oy for ag, ..., an € Fp

0<i<n oi<n

centre(Fy(z; p]) =

A cool trick
Given any f € Fglz; p] we can find a left multiple in the center.
For example (again in Fio5):
f =224 (302 +40 +2)z° + (302 + 40 + 2)z € F,[z; 5]
F* =% +42'% 4 3z € Fylz;125)

f* is the minimal central left multiple (mclm) of f
The mclm can be found with O(n2log? ¢) operations in F,
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The centre of things (2) ]

Basis of the factoring algorithm in Giesbrecht (1992, 1998):
Factor the minimal central left multiple and take GCRDs:

f =22+ (30% +40 +2)z° + (302 + 40 + 2)z € F,[z;5]
Fr =2 4 42'% 1 3z € Fylz;125]
=yt 4y +3=(y+1)(y+3)
f*= (2 +z)o (' +3z) = (2! +3z) o (' + )
fi f2
gerd(f, fi) = 2° + (62 +20)z
gerd(f, fo) = z° + 30z

} right composition factors of f
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Factorization in F,[z; p] )

Theorem: (Giesbrecht 1992, 1998)

Givenf =3} ocicn az? € Fqlz], we can find g, h € Fylz], if they
exist, such that f = g o h. Requires expected time O(n*log? q)
operations inF, (Las Vegas).
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Factorization in F,[z; p] ]

Theorem: (Giesbrecht 1992, 1998)

Given f = Y ocicn a:@P € Fylz], we can find g, h € Fylz], if they
exist, such that f = g o h. Requires expected time O(n*log? q)
operations inF, (Las Vegas).

Hardest when minimal central left multiple is irreducible in F, ly].

@ Construct a finite algebra A from f, called the eigenring; show
that zero-divisors in A yields composition factors of f.

@ Show how to find zero divisors in a finite algebra quickly.

@ Build very explicit Krull-Schmidt and Jordan-Hdélder like
decompositions, which show structure of all decompositions
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Central Multiples and Frobenius Automorphisms

J

Theorem: (von zur Gathen, Giesbrecht, and Ziegler 2010)

Let f € Fqlz; p] be squarefree of degree p™ with roots V¢, and let
04 : Vy — V; be the Frobenius automorphism.
Let f* € Fplz; q] be the minimal central left multiple of f.

= ocicm ®it® = fT =3 ocicm iy" is min poly of o,.

v
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Central Multiples and Frobenius Automorphisms ]

Theorem: (von zur Gathen, Giesbrecht, and Ziegler 2010)

Let f € Fqlz; p] be squarefree of degree p™ with roots V¢, and let
04 : Vy — V; be the Frobenius automorphism.
Let f* € Fplz; q] be the minimal central left multiple of f.

v

»» We can find the minimal polynomial of o4, quickly

»p With a little more work we can compute the complete rational
Jordan form of o,

»p We can count the number of eigenvectors/right factors of
degree p quickly:
»p Given f € F,lz; p] of degree p™, we can compute the number

of right composition factors of degree p with O(n3log? q)
operations in F,.
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Central Multiples and Frobenius Automorphisms

Theorem: (von zur Gathen, Giesbrecht, and Ziegler 2010)

Let f € Fylz; p] be squarefree of degree p™ with roots V¢, and let
04 : Vy — V; be the Frobenius automorphism.
Let f* € Fylz; q] be the minimal central left multiple of f.

=Y ocicm iz = fT =3 ocicm iy" is min poly of oy.

v

Back to our example in Fig5(z; 5]

f =z + (302 +40 + 2)z° + (3062 + 40 + 2)z € F,[z; 5]
7 =22 1 42'% 1 3z € Fylz; 125)

1% —4z) o (212 — 2z)

40 o4 has two eigenvectors
So o4 ~ <O 2) and { f has two right factors of degree 5
hy = z5+4+0%2+20z, hy = z5+30z

J
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Projective Polynomials ]

Projective polynomials were defined by Abhyankar (1997) as a way
of constructing polynomials with specific Galois groups.

‘P%a’b) =g/ gz 4 b e Fylz] for b # 0

They have recently been shown to have numerous applications:
strong Davenport pairs, difference sets, cryptographically secure
sequences, construction of error-correcting codes...
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Projective Polynomials ]

Projective polynomials were defined by Abhyankar (1997) as a way
of constructing polynomials with specific Galois groups.

‘P%a’b) =g/ gz 4 b e Fylz] for b # 0

They have recently been shown to have numerous applications:
strong Davenport pairs, difference sets, cryptographically secure
sequences, construction of error-correcting codes...

Bluher (2004) showed that for n = 2, \yg“’b) have either 0, 1, 2, or
p + 1 roots in F,. This looks familiar!
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Projective Polynomials ]

Projective polynomials were defined by Abhyankar (1997) as a way
of constructing polynomials with specific Galois groups.

‘P%a’b) =g/ gz 4 b e Fylz] for b # 0

They have recently been shown to have numerous applications:
strong Davenport pairs, difference sets, cryptographically secure
sequences, construction of error-correcting codes...

Bluher (2004) showed that for n = 2, \yg“’b) have either 0, 1, 2, or
p + 1 roots in F,. This looks familiar!

Lemma

W has arootc € Fy <= zP" + azP + bz = g o (zP — cz).
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Projective Polynomials ]

Projective polynomials were defined by Abhyankar (1997) as a way
of constructing polynomials with specific Galois groups.

W) — g0/ (0= gz 4 b e Fylz] for b # 0

They have recently been shown to have numerous applications:
strong Davenport pairs, difference sets, cryptographically secure
sequences, construction of error-correcting codes...

Theorem

We can compute the number of roots in F, of ‘1’ ) e Fgqlz] with
O(n®log? q) operations in F, (even though it has degree ~p"t).
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Inverse Problems )

How many additive polynomials of degree n have each possible
number of right factors?

Equivalently: how many projective polynomials have each possible
number of roots?
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Inverse Problems

How many additive polynomials of degree n have each possible
number of right factors?

Equivalently: how many projective polynomials have each possible

number of roots?

Bluher (2004):

For f = P + a,2P + aoz € Fqlz; p]

Right factors
of degree p

# additive polynomials of degree p?
with that many right factors

0
1
2
p+1

p(g*—1)

2(p+1)
7°—q

P jl
(g—1)%-(p—2)

sy T4 1

(g—1)(g—p)

p(p?—1)

v
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Inverse Problems

How many additive polynomials of degree n have each possible
number of right factors?

Equivalently: how many projective polynomials have each possible

number of roots?

Bluher (2004):

For f = P + a,2P + aoz € Fqlz; p]

Right factors
of degree p

# additive polynomials of degree p?
with that many right factors

0
1
2
p+1

v

p(g®—1)
;2(521 1 We give an elementary
P proof and a way to
% +qg-—1 efficiently enumerate all
(¢—1)(g—p) classes
p(p*—1)
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Inverse Problems (2) J

We now have a general method to give formulas for the number of
additive polynomials with a prescribed number of right factors of
degree p.
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Inverse Problems (2)

We now have a general method to give formulas for the number of
additive polynomials with a prescribed number of right factors of

degree p.

Von zur Gathen & Giesbrecht (2011): for
f =12z + qz?” + a1z + apz € F,lz; p]

Right factors | # additive polynomials of degree p3
of degree p | with that many right factors
0 1(p°—p)(¢°—1)
1 ; T
2 ?
3 (p—2)(p—3)(g—1)3

L , (p—1)2
D [

—1)2(g— _

D42 (g (;2)7(;1](;2)9 2)

2 (¢—1)(g—p)(g—p*) (p—1)
p‘+p+1 (

3—1)(p3—p)(p3—p?)
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Conjecture |

Consider any polynomial f € Fy[z] of degree p?.
Conjecture: f can have either 0, 1,2, p + 1 decompositions.
Verified in Sage for p < 11.

In fact, we think they all fall into very specific families.
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Open Questions J

Inverse theory for number of right factors of degree p of any
polynomial in Fy[z; p]

Automatically generate inverse formulas

Compute number of right factors of any given degree of a
polynomial in Fy[z; o]

@ Resolve conjecture: how many decompositions possible for a
general polynomial?
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