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Outline

I Polynomial factorization over various fields,

I solving polynomial systems of equations,

I computing anti-derivatives and solutions of ODE and PDE ×

and

I rational number reconstruction, and

I computing heights of cyclotomic polynomials.



Polynomial factorization over finite fields.

Let f (x) be a polynomial of degree n over GF(q) with k factors.

1967 E. Berlekamp. Factoring polynomials over finite fields.

[ Bell System Technical Journal 46, 1967. ]

Does O(n3 + kqn2) arithmetic operations in GF (q).

1981 D.G. Cantor and Hans Zassenhaus.
A Las Vegas algorithm: the expected number of arithmetic
operations in GF(q) is O(n3log q).

1989 MBM implemented the C-Z algorithm in Maple.

1998 E. Kaltofen and V. Shoup. Sub-quadratic time factoring of

polynomials over finite field. Õ(n(ω+1)/2 + n log q) ops in GF(q)
where nω is the cost of matrix-matrix multiplication.
Classical matrix-matrix multipliction: ω = 3.
Best known ω = 2.376 [D. Coppersmith and S. Winograd 1990.]
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The Cantor-Zassenhaus algorithm.
Fermat’s little theorem: if a ∈ GF (q), a 6= 0 then aq−1 = 1.

⇒ aq = a⇒ xq − x =
∏

a∈GF (q)

(x − a).

⇒ gcd(xq − x , f (x)) = h(x)??

⇒ gcd(xq2 − x , f (x)) =??

Now if q is odd then

xq − x = x (x (q−1)/2 − 1)(x (q−1)/2 + 1)︸ ︷︷ ︸
??

thus Pick a ∈ GF (q) at random and compute

g = gcd((x + a)(q−1)/2 + 1, h(x))

until g 6= 1 and g 6= h.

I Known to Gauss (for linear factors).
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Polynomial factorization over the rationals.

1969 Hans Zassenhaus. On Hensel Factorization I.

Hensel’s Lemma: Suppose

f (x) ≡
∏k

i=1 gi (x) (mod p).

If there are no repeated factors then for all L ∈ N there exist
hi ∈ Z[x ] s.t. hi (x) ≡ gi (x) (mod p) and

f (x) ≡
∏k

i=1 hi (x) (mod pL) .

The Berlekamp-Hensel procedure (used by all CAS).
Step 1: Factor f (x) over Zp.
Step 2: Hensel lift: compute the hi (x) mod p2, p3, ...
Step 3: Obtain factors of f (x) from combinations of the hi (x).
Stop when pL exceeds a coefficient bound on the factors of
f (x).

2002 Mark van Hoeij Factoring Polynomials and the Knapsack Problem.

Uses LLL to solve the combinatorial search in polynomial time.
Implemented by Mark in Maple in 2002.
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Polynomial factorization over number fields.

1976 Barry Trager. Algebraic factoring and rational function integration.

To factor f ∈ Q(α)[x ] first factor ||f || ∈ Q[x ].
Lemma: f =

∏
fi ⇐⇒ ||f || =

∏
||fi ||.

Then gcd(f , ||fi ||) is a factor of f .

2008 Ilias Kotsireas. Please factor

p = 19/2 c4
2−
√

11
√

5
√

2c5c4−2
√

5c1c2−6
√

2c3c4+7/2 c1
2−
√

7
√

3
√

2c3c2

+11/2 c2
2 −
√

3
√

2c0c1 + 3/2 c0
2 + 23/2 c5

2 + 15/2 c3
2 − 10681741

1985

I ||p|| ∈ Q[c0, c1, ..., c5] has over 3 million terms. DEMO
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Rational Number Reconstruction

Let a = n/d where gcd(n, d) = 1 and d > 0.
Let u = a mod m where gcd(m, d) = 1.
Given u and m find n/d .

The EEA(m,u) computes a sequence si , ti , ri satisfying

sim + tiu = ri for i = 0, 1, ..., k + 1.

Thus
ri/ti ≡ u (mod m) if gcd(ti ,m) = 1.

Lemma (Wang 1981): if m > 2|nd | then n/d = rj/tj for some j .
Which rational ri/ti do we select?
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Rational Number Reconstruction
n/d = 72/109, m = 999987, u = 137613, m/|2nd | = 63.7

i ri ti qi+1 ri/ti

1 137613 1 7 137613
1

2 36692 -7 3 −36692
7

3 27537 22 1 27537
22

4 9155 -29 3 −9155
29

5 72 109 127 72
109

6 11 -13872 6 −11
13872

7 6 83341 1 6
83341

8 5 -97213 1 −5
97213

9 1 180554 5 1
180554

Table: Output from EEA( m = 106 − 17, u = 137613 ).

Lemma (i) m/3 ≤ qi+1|ri ti | ≤ m, (ii) 1 ≤
∏

qi ≤ m and

(iii) Over all inputs 0 ≤ u < m, E[qi ] ∈ O(log m).
=⇒ accept ri/ti if qi+1 > 2k(log m).
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Gröbner Bases

1965 Bruno Buchberger. An Algorithm for Finding the Basis Elements in

the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal,

Ph.D. thesis, University of Innsbruck.

Definition: Let f1, f2, ..., fs be polynomials in k[x1, x2, ..., xn]
and > be a monomial ordering. G = {g1, g2, ..., gt} is a
Gröbner basis for the ideal I = 〈f1, f2, ..., fs〉 wrt > if

f ∈ I iff the remainder of f ÷ G is 0.

I The solutions of {f1 = 0, ...fs = 0} equal those of
{g1 = 0, ..., gt = 0}.

I Buchberger gave an algorithm for computing a Gröbner basis.

1999 Jean-Charles Faugere.
A new efficient algorithm for computing Gröbner bases (F4).

Roman Pearce incorporated his GB package into Maple 11.
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Triangular Sets

1950 J. Ritt. Ritt-Wu Characteristic Sets.

1978 rediscovered by W. Wu.

1991 Michael Kalkbrenner. Regular Chains
A generalized Euclidean algorithm for computing triangular

representations of algebraic varieties.

2005 Implemented in Maple 11 by Marc Moreno Maza. DEMO

2004 Dahan and Schost. Sharp estimates for triangular sets.

Let F = {f1, ..., fn} ⊂ Z[x1, ..., xn] have degree ≤ d .
Suppose {f1 = 0, ..., fn = 0} has at most dn solutions over C.
Let h bound the size of the largest integer in F .
Then the length of the integers in G is bounded by
(essentially) nh(dn)2.
Moreover the length of the integers in T is bounded by nhdn.
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Cyclotomic Polynomials

The n′th cyclotomic polynomial Φn(x) is the irreducible factor of
xn − 1 whose roots are the primitive n’th roots of unity.

n Φn(x)
3 x2 + x + 1
4 x2 + 1
5 x4 + x3 + x2 + x + 1
6 x2 − x + 1
7 x6 + x5 + x4 + x3 + x2 + x + 1
8 x4 + 1
9 x6 + x3 + 1

10 x4 − x3 + x2 − x + 1

cyclotomic polynomials of order 3–10



Cyclotomic Polynomials

Φ105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + x36

+ ... + x14 + x13 + x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x + 1.

Φ385(x) = x240 + x239 + x238 + x237 + x236 − x233 − x232 − x231 − x230 − 2 x229

− ... − 2 x122 − 3 x121 − 3 x120 − 3 x119 − 2 x118 − 2 x117 − x116 + ... + x + 1



Cyclotomic Polynomials

n Hn n Hn

105 2 26565 59
385 3 40755 359

1365 4 106743 397
1785 5 171717 434
2805 6 255255 532
3135 7 279565 585
6545 9 285285 1182

10465 14 327845 31010
11305 23 707455 35111
17255 25 886445 44125
20615 27 983535 59518

Hn is the biggest coefficient in Φn(x).



Very Large Heights

1998 Koshiba Yoichi H4849845 = 669606 where
n = 4849845 = (3)(5)(7)(11)(13)(17)(19)

1974 Paul Erdos
For any c > 0 there exists n such that Hn > nc .

n Hn

1181895 = (3)(5)(11)(13)(19)(29) 14102773 > n1 (MBM)
43730115 = (3)(5)(11)(13)(19)(29)(37) 862550638890874931 > n2 (MBM)

416690995 = (5)(7)(17)(19)(29)(31)(41) 80103182105128365570406901971 > n3 (AA)
1880394945 = (3)(5)(11)(13)(19)(29)(37)(43) 64540997036010911566826446181523888971563 > n4 (AA).
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Computing Φn(x) via sparse power series.

Φ15(x) =
(1− x15)(1− x)

(1− x3)(1− x5)
= 1− x + x3 − x4 + x5 − x7 + x8.

Let n be a product of k distinct primes. The general formula has
2k multiplications and 2k divisions each of which can computed in
O(n) integer additions.



Thank you.


