
From Multicore to Manycore Architectures: The Reduction of Parallelization Over-

heads and its Impact on Implementing Polynomial Arithmetic

Several classical software packages (NTL, FFTW, Spiral) implement serial algorithms fast Fourier
transforms (FFT) which reaches peak performance even for input vectors of relatively small sizes,
say 210. However, parallel counterparts of those algorithms require much larger sizes (say 220)
in order to reach linear speedup on multicore architectures. As a consequence, some higher-level
algorithms (such as those based on subproduct trees for fast polynomial arithmetic) that require
parallel FFTs in order to expose parallelism, are only implemented serially on today’s multicores.

In this work, we demonstrate that this dramatic observation is no longer true on graphics process-
ing unit (GPUs). On these latter architectures parallelization overheads are much less significant
since the hardware schedules threads at essentially no cost. Thanks to this feature, we have ob-
tained attractive performances for parallel FFT-based polynomial arithmetic on GPUs.

As for serial code on CPUs, our parallel code for FFT-based polynomial arithmetic relies on
base cases where plain, i.e non-fast, algorithms are employed. Parallelizing those plain algorithms
is also required. We show that the long multiplication can be efficiently parallelized on GPUs. Re-
markably, this latter code outperforms (highly optimized) FFT-based multiplication up to degree
212 while on CPU the same threshold is only at 26.

In a third part of this work, we turn our attention to one of the most challenging paralleliza-
tion problem in polynomial arithmetic: the Euclidean Algorithm. Indeed, there is no parallel
version of this algorithm which would be both sublinear and work-efficient. The best parallel
version of the Euclidean Algorithm which is work-efficient, is that for systolic arrays, (a model of
computation formalized by H. T. Kung and Charles E. Leiserson in 1974) for which the span is
linear. However, multiprocessors based on systolic arrays are not so common.

We report on a GPU implementation of the Euclidean Algorithm which is both work-efficient
and runs in linear time for input polynomials up to degree 218. Such sizes are sufficient for many
applications. Moreover, this GPU code outperforms algorithms for polynomial GCD computations
that are asymptotically faster, but available only as serial CPU code, due to the same paralleliza-
tion challenges as the Euclidean Algorithm.

Marc Moreno Maza
University of Western Ontario
moreno@csd.uwo.ca

.


