
Algorithms for Polynomial GCD Computation over
Algebraic Function Fields

Mark van Hoeij
∗

Department of Mathematics
Florida State University

Tallahassee, FL 32306-4510, USA.

Michael Monagan
†

Department of Mathematics
Simon Fraser University

Burnaby, B.C. Canada. V5A 1S6.

ABSTRACT
Let L be an algebraic function field in k ≥ 0 parameters
t1, . . . , tk. Let f1, f2 be non-zero polynomials in L[x]. We
give two algorithms for computing their gcd. The first, a
modular GCD algorithm, is an extension of the modular
GCD algorithm of Brown for Z[x1, . . . , xn] and Encarnacion
for Q(α)[x] to function fields. The second, a fraction-free
algorithm, is a modification of the Moreno Maza and Rio-
boo algorithm for computing gcds over triangular sets. The
modification reduces coefficient growth in L to be linear.
We give an empirical comparison of the two algorithms us-
ing implementations in Maple.

1. INTRODUCTION
Let D = Z[t1, . . . , tk] and F = Q(t1, . . . , tk). Let m(z) ∈

F [z] be monic and irreducible of degree d and let L =
F [z]/〈m(z)〉. L is an algebraic function field of degree d in
k parameters t1, . . . , tk. In our examples, if k = 1 we use t
without subscript to denote the parameter. Our problem is
to compute the gcd of two non-zero polynomials in L[x]. We
denote the input polynomials by f1 and f2 and their monic
gcd by g.

Our first algorithm, presented in section 2, is a modular
GCD algorithm. It uses rational number and rational func-
tion reconstruction to recover the coefficients of the gcd and
trial division to prove the correctness of the result. Like En-
carnacion’s algorithm [3], our algorithm is output sensitive,
that is, the number of primes and evaluation points it uses
depends on the size of the gcd and not on bounds based on
the size of the inputs. As in [5], our algorithm does not com-
pute discriminants. We show also how to use our algorithm
to compute gcd’s in L[x1, . . . , xn] by moving the variables
x2, . . . , xn into F .

∗Supported by NSF grant 0098034.
†Supported by NSERC of Canada and the MITACS NCE
of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’04,July 4–7, 2004, Santander, Spain.
Copyright 2004 ACM 1-58113-827-X/04/0007 ...$5.00.

We may also compute g using the Euclidean algorithm.
But, there is a linear growth in the degrees and heights of
the coefficients in F in the Euclidean algorithm which causes
it to bog down doing arithmetic in F. Arithmetic with frac-
tions in F and hence gcd computation in D can be elimi-
nated using a fraction-free approach. In [6] Moreno Maza
and Rioboo show how to do this for univariate gcd compu-
tation modulo a triangular set for which our setting, L[x], is
a special case. In section 3 we demonstrate that their algo-
rithm has a serious coefficient swell in D. We modify their
algorithm to have linear growth by doing O(δ) gcd compu-
tations in D where δ = max(degx f1, degx f2) − degx g + 1.
In section 4 we compare Maple implementations for the two
algorithms to demonstrate their effectiveness.

Both of our algorithms work with associates (scalar multi-
ples) of f1, f2 and g. We make some definitions. A non-zero
polynomial in D[z, x] is said to be primitive wrt (z, x) if the
gcd of its coefficients in D is 1. Let f be nonzero in L[x]. The
denominator of f is the polynomial den(f) ∈ D of least (to-
tal) degree in (t1, . . . , tk) and with smallest integer content
such that den(f)f is in D[z, x]. The primitive associate f̌ of
f is the associate of den(f)f which is primitive in D[z, x].
These definitions for den(f) and f̌ are unique up to sign; we
impose uniqueness by requiring them to have positive lead-
ing coefficient in a term ordering. The monic associate f̃ of
f is defined as f̃ = ȟ where h = monic(f). Here monic(f)
is defined as lcx(f)−1f where lcx(f) ∈ L is the leading coef-

ficient of f wrt x. Notice that degz(lcx f̃) = 0.

Examples: Let f = 2tx − t/(1 − t) ∈ Q(t)[x]. Then

den(f) = t − 1, monic(f) = x − 1/(2 − 2t) and f̌ = f̃ =
(2t − 2)x + 1. Let f = 6zx − 3t ∈ Q(t)[z][x] where z =

√
t.

Then f̌ = 2zx− t, monic(f) = x− z/2 and f̃ = 2x− z.

To provide the reader with an overview of the two algo-
rithms, we first work through an example. Let z =

√
t.

Consider the input polynomials

f1 = x2 +
−2 t + 3

3
zx +

5

t
x +

5

t
z +

−2t2

3
,

f2 = zx2 +
5

t
zx +

−3 + 2t2

3
x +

−2t

3
z +

5

t
.

Since f1 = (x + z)(x − 2tz/3 + 5/t) and f2 = (zx + 1)(x −
2tz/3 + 5/t) the monic gcd g of f1 and f2 is the polynomial
x−2tz/3+5/t. Both algorithms output ǧ = 3tx−2t2z+15.

On input of f1 and f2 they first compute

f̌1 = 3tx2 + (−2t2 + 3t)zx + 15x + 15z − 2t3,

f̌2 = 3tzx2 + 15zx + (−2t3 + 3t)x− 2t2z + 15.

The Fraction-Free Algorithm
Let r1, r2, r3, . . . , rn, rn+1 = 0 be the remainder sequence for
the Euclidean algorithm with input r1 := f̌1, r2 := f̌2. Our
fraction-free algorithm computes the remainder sequence ř1,
r̃2, r̃3, . . . , r̃n = ǧ, r̃n+1 = 0 without introducing fractions
in Q(t). We multiply f̌2 by z, a quasi-inverse (see section 3)
of lcxf̌2, to eliminate z from the leading coefficient of f̌2.

p2 := zf̌2 = 3t2x2 + (−2t3 + 3t)zx + 15tx + 15z − 2t3.

Since p2 is primitive, p2 = f̃2 = r̃2. Using pseudo-division
to avoid fractions in Q(t), we compute the remainder of µf̌1

divided by p2 in x where µ = lcxp2 = 3t2 is an element of
D, all working modulo m(z) = z2 − t. We obtain

p3 = 3t(t− 1)zx + 15(t− 1)z − 2t3(t− 1).

To minimize coefficient growth in Z[t] we make p3 primitive
wrt (z, x); we compute and divide out by gcd(3t(t−1), 15(t−
1),−2t3(t− 1)) = t− 1. We obtain

p3 := p3/(t− 1) = 3tzx + 15z − 2t3.

Now we compute p3 := r̃3 by first multiplying p3 by z and
then making the result primitive. We obtain

p3 := zp3/t = 3tx− 2t2z + 15.

Now we divide p2 by p3 using pseudo-division modulo m(z).
The pseudo-remainder is 0, thus, ǧ = p3 and we are done.

The Modular GCD Algorithm
We compute the gcd of f̌1 and f̌2 modulo a sequence of
primes. Unlike the fraction-free algorithm, we do not com-
pute f̃2, because inverting lcx(f2) may lead to a blowup.
Suppose we start with the prime p = 11. We will obtain

gp = tx + 3t2z + 5 mod 11.

We apply Wang’s rational reconstruction (see [7, 3]) to the
coefficients of gp modulo p. It fails so we compute the gcd
modulo a second prime, q = 13. We will obtain

gq = tx− 5t2z + 5 mod 13.

Note that we normalized the leading coefficient (of tx) to be
1 for both images. We apply the Chinese remainder theorem
to obtain gm mod m = pq such that gm ≡ gp mod p and
gm ≡ gq mod q.

gm = tx + 47t2z + 5 mod 143.

We apply rational reconstruction to the coefficients of gm

modulo m = 143. This time we succeed. We obtain

h = tx− 2

3
t2z + 5.

Now we clear denominators; we set

h := 3h = 3tx− 2t2z + 15

and test if h|f̌1 and h|f̌2. It does, therefore h = ǧ and we
are done. It remains to describe how we compute gp and
gq. We do so by computing the gcd of f̌1(t, x) and f̌2(t, x)
modulo p at a sequence of values for t in Zp. The evaluation

point t = 0 causes lcx(f̌2) to vanish, so it is lc-bad (defined
in section 2.1). Our algorithm avoids such t. Now consider
t = 1 (our algorithm chooses evaluation points at random,
but for this example we will use t = 1, 2, . . .). We run the
Euclidean algorithm modulo p = 11 on

f1(1, x) = 3x2 + zx + 4x + 4z − 2, and

f2(1, x) = 3zx2 + 4zx + x− 2z + 4.

modulo m(1, z) = z2 − 1. This is a univariate computation
over Zp[z]/〈m(1, z)〉, a finite ring, so no coefficient growth
can occur. It succeeds because it did not try to divide by
zero divisor in Zp[z]/〈z2 − 1〉. The output is

g1 = gcd(f1(1, x), f2(1, x)) = x2 + 4zx + 5x + 5z + 3

Now we apply rational function reconstruction to the coeffi-
cients w.r.t. (z, x). It succeeds with output h = g1, i.e., with
constant rational functions in t. We test if h|f1(t, x) mod 11
and h|f2(t, x) mod 11. It doesn’t so we take a new evalu-
ation point t = 2 and run the Euclidean algorithm over
Zp[z]/〈m(2, z)〉. We obtain

g2 = gcd(f1(2, x), f2(2, x)) mod 11 = x− 5z − 3

which has lower degree than g1. This tells us (see section 2.1)
that t = 1 is unlucky and thus g1 cannot be an associate of
g(1, x) mod 11. We discard g1. Continuing, we apply ratio-
nal function reconstruction to g2 and obtain h = g2. We
test if h|f1(t, x) mod 11 and h|f2(t, x) mod 11. It doesn’t so
we take a new evaluation point t = 3 and compute

g3 = gcd(f1(3, x), f2(3, x)) = x− 2z − 2.

We apply the Chinese remainder theorem to obtain the gcd
modulo (t− 2)(t− 3). We obtain

c = x + (3t)z + (t− 5).

We apply rational function reconstruction to the coefficients
of c to reconstruct numerators of degree 1 in t and denom-
inators of degree 0 in t. This succeeds with h = c. We test
if h|f1(t, x) mod 11 and h|f2(t, x) mod 11. It doesn’t so we
take a new evaluation point t = 4 and compute

g4 = gcd(f1(4, x), f2(4, x)) = x + z + 4.

Apply the Chinese remainder theorem to c and g4 to obtain

c = x + 3tz − 3t2 + 5t− 1

the gcd modulo (t−2)(t−3)(t−4). We apply rational func-
tion reconstruction to the coefficients of c to reconstruct
numerators of degree 1 and denominators of degree 1 in t.
It succeeds with output

h = x +
3t

1
z +

5

t
.

Now we clear the denominators in t. We obtain

h := th = tx + 3t2z + 5

Since h|f1(t, x) mod 11 and h|f2(t, x) mod 11 we are done
with p = 11. In this example all prime numbers used were
good. However, we did encounter an lc-bad evaluation t = 0
and an unlucky evaluation t = 1. It is also possible to hit
a zero divisor in the middle of the Euclidean algorithm but
such a fail prime/evaluation did not occur in the example.
In section 2.1 we study the different problem cases that can
occur before describing the algorithm in section 2.2 which
we can prove (using Theorem 1 and 2) is correct.

2. THE MODULAR GCD ALGORITHM

2.1 lc-bad, fail, unlucky, and good primes
Let f1, f2 ∈ L[x] where m ∈ F [z], L = F [z]/〈m〉 and

F = Q(t1, . . . , tk). Let g ∈ L[x] be their monic gcd. Our
algorithm in section 2.2 replaces f1, f2, m by their primitive
associates, so we can assume that m = m̌ ∈ D[z] and fi =
f̌i ∈ D[z, x] (mod m) where D = Z[t1, . . . , tk]. Let lm =
lcz(m) ∈ D, and li = lcx(fi) ∈ D[z]. If I is a prime ideal in
D, and if lm ∈ I or l1 ∈ 〈I, m〉 or l2 ∈ 〈I, m〉 then I is called
an lc-bad prime. Such I will be avoided.

Let I be a maximal ideal in D. Denote D = D/I and
R = D[z]/〈I, m〉. For s ∈ D[z, x] define s := s mod 〈I, m〉.
Thus s ∈ R[x]. Note that lm, l1 and l2 are not zero because
we avoid lc-bad I. The maximal ideals I used in our algo-
rithm are of the form I = 〈p, t1 − α1, . . . , tk − αk〉, with p
a prime number and αi ∈ Z. For such I we can identify D
resp. R with Zp resp. Zp[z]/〈m(α1, . . . , αk, z)〉.

Definition: A monic gcd of f1, f2 is a monic polynomial
gI ∈ R[x] for which 〈f1, f2〉 = 〈gI〉 as R[x]-ideals.

In general, a monic gcd need not exist, but if it does then it
is unique. The Euclidean algorithm applied to f1, f2 ∈ R[x]
fails if it tries to invert a leading coefficient in the polynomial
remainder sequence that happens to be a zero-divisor (for
more details see section 2 in [5]). In this case I is called a
fail prime. This can happen even if the monic gcd of f1, f2

exists. As an example, take f1 = f2 + 1, f2 = (z + 1)x + t,
m = z2 + 7tz − 1. Then 〈7, t − α〉 resp. 〈p, t − 0〉 is a fail
prime for any integer α resp. prime number p.

We may assume (if not, interchange f1, f2) that the Eu-
clidean algorithm applied to f1, f2 first inverts the leading
coefficient of f2 in order to divide f1 by f2. So if I is not
lc-bad nor fail then l2 is a unit in R, which is important in
the proof of the theorem below. Note that if the implemen-
tation (without first interchanging) always inverts l2 like in
[5] then we may use the asymmetric definition of lc-bad: I
is lc-bad when lm = 0 or l2 = 0.

Assume now that the Euclidean algorithm applied to f1, f2

does not fail. Then the monic gcd gI ∈ R[x] exists and will
be the output. Let dI := degxgI and dg := degxg.
If dI > dg then I is called an unlucky prime.

If den(g) 6∈ I then g ∈ R[x] is defined, g := den(g)g/den(g).
If this g equals gI then I is called a good prime.

Theorem 1. With the above notations, if I is not lc-bad
nor fail, then it is either unlucky or good.

We will prove a more general statement:

Theorem 2. Let D be an integral domain, F its field of
fractions, let m ∈ D[z] (not necessarily irreducible in F [z]).
Let L = F [z]/〈m〉. Let f1, f2 ∈ D[z, x] represent two non-
zero polynomials f1, f2 ∈ L[x], and let g ∈ L[x] be any monic
common divisor of f1, f2 in L[x]. Let I be a maximal ideal in
D that is not lc-bad, let D = D/I and R = D[z]/〈I, m〉, and
assume that the result gI of the Euclidean algorithm applied
to f1, f2 ∈ R[x] is not “failed”. Then dI ≥ dg.
Furthermore, if dI = dg then g is defined and g = gI , and
the monic gcd of f1, f2 exists and equals g.

Proof: If the Euclidean algorithm does not fail then the
extended Euclidean algorithm will not fail either, and will

produce polynomials sI , tI ∈ R[x] such that sIf1+tIf2 = gI

and

degxsI < d2 − dI , degxtI < d1 − dI .

Here d1 = degxf1, d2 = degxf2, dI = degxgI , and dg =
degxg. Note that the degree-bound given for tI is not opti-
mal because degxf1 could be smaller than d1 if we use the
asymmetric definition of lc-bad.

Let DI = {c ∈ F | den(c) 6∈ I} = {a/b | a, b ∈ D, b 6∈ I}.
Then we can identify DI/〈I〉 with D. An element c ∈ DI is a
unit in DI if and only if its image c in D is not zero. Denote
RI = {a/b ∈ L | a ∈ D[z] mod m, b ∈ D, b 6∈ I} which we
can identify with DI [z]/〈m〉 (note that lm is a unit in DI

because I is not lc-bad, hence division with remainder by m
works as usual in DI [z]). Then we can identify RI/〈I〉 =
DI [z]/〈I, m〉 = R.

Consider the free RI -modules: H = {h ∈ RI [x] | degxh <
d1 + d2 − dI}, H0 = {h ∈ RI [x] | degxh < dI}, G = H/H0

and S = {(s, t) | s, t ∈ RI [x], degxs < d2 − dI , degxt <
d1 − dI}. Now define a map φ : S → G given by φ(s, t) =
sf1 + tf2 + H0. Likewise (just replace RI by R) define free
R-modules H, H0, S and G, as well as the map φ : S → G
given by φ(s, t) = sf1 + tf2 + H0. A basis for G resp. S
as RI -modules is BG := {xi | dI ≤ i < d1 + d2 − dI} resp.
BS := {(xi, 0), (0, xj) | i < d2 − dI , j < d1 − dI}. The same
BG resp. BS is also a basis for G resp. S.

Counting BS and BG one sees that S and G are free
RI -modules of rank n0 := d1 + d2 − 2dI . Viewed as free
DI -modules, their ranks are n := degz(m)n0, so φ can be
represented by an n by n matrix M with entries in DI . In
the same way, we can view S and G as D-vector spaces of
dimension n, and φ is given by an n by n matrix M which
equals M mod 〈I〉.

We will show that φ is one to one. The extended Euclidean
algorithm produces (sI , tI) ∈ S with sIf1 + tIf2 = gI . Now
suppose that φ(s, t) = 0, i.e. sf1 + tf2 ∈ H0. Now f1, f2,
and hence sf1 + tf2 are divisible by gI (divisions by gI work
because gI is monic). But gI has higher degree than any
element of H0. Hence sf1 + tf2 = 0. Then sf1 and thus
also ssIf1 are divisible by f2 (divisions by f2 work because
l2 is a unit). Then 0 ≡ ssIf1 ≡ s(sIf1 + tIf2) ≡ sgI mod
f2. So sgI vanishes mod f2, yet it has lower degree than f2,
so sgI must be 0, which implies s = 0 because gI is monic.
Now tf2 = sf1 + tf2 = 0, which implies t = 0 because l2
is a unit. This proves that φ is one to one, so det(M) ∈ D
is not zero. So the image of det(M) in D is not zero. Then
det(M) is a unit in DI . This implies that φ is invertible.

Now take w = xdI + H0 ∈ G and w = xdI + H0 ∈ G.

Note that w = gI + H0 and hence φ
−1

(w) = (sI , tI). Now
consider φ−1(w), which is in S, and hence can be written
as (s, t) where s, t ∈ RI [x]. By definition of φ, we see that
sf1 + tf2 + H0 = xdI + H0 so h := sf1 + tf2 ∈ RI [x] is a
monic polynomial of degree dI .

Since M is M mod 〈I〉 we see that sI = s, tI = t and
gI = h. Here s, t, h are the images of s, t, h in R[x]. Now
g ∈ L[x] was assumed to be a monic common factor of f1, f2,
so it must be a monic factor in L[x] of h as well. This shows
dg ≤ degxh = dI . If dg = dI then the monic polynomial h
is divisible by the monic polynomial g of the same degree,
and hence g = h. Then g ∈ RI [x] so g is defined and equals
h = gI . Since g is assumed to be a monic common factor of
f1, f2, and g = sf1 + tf2 we see that g is the monic gcd of
f1, f2. This completes the proof.

2.2 Algorithm MODGCD
Recall that D = Z[t1, . . . , tk], F = Q(t1, . . . , tk), and

L = F [z]/〈m(z)〉. Our modular GCD algorithm calls sub-
routine M which calls recursive subroutine P which in turn
calls the Euclidean algorithm over a finite ring.

Algorithm MODGCD
Input: Non-zero polynomials f1, f2 ∈ L[x] and m(z).
Output: ǧ, where g is the monic gcd of f1 and f2 in L[x].

Call subroutine M with input f̌1, f̌2 and m̌(z).

Subroutine M.
Input: f1, f2 ∈ D[z]/〈m(z)〉[x] and m(z) ∈ D[z].
Output: ǧ, where g is the monic gcd of f1 and f2.

1. Set n = 1.

2. Main Loop: Take a new prime pn that is not lc-bad.

3. Let gn ∈ Zpn [t1, . . . , tk][z, x] be the output of subrou-
tine P applied to f1, f2, m(z) mod pn.

4. If gn =“failed” then go back to step 2.

5. If gn = 1 then return 1.

6. Select from {g1, . . . gn} those with the same leading
term (in pure lexicographic order with x > t1 > · · · >
tk) as gn. Combine those using Chinese remaindering
to obtain c mod mc. Set n = n + 1.

7. Apply integer rational reconstruction to obtain h from
c mod mc. If this fails, go back to step 2.

8. Clear fractions in Q : Set h = ȟ.

9. Trial division: If h|f1 and h|f2 then return h,
otherwise, go back to step 2.

Subroutine P.
Input: f1, f2 ∈ Dp[z]/〈m(z)〉[x] and m(z) ∈ Dp[z] where
Dp = Zp[t1, . . . , tk].
Output: Either ǧ, the primitive associate of the monic gcd
of f1 and f2, or “failed.”

0. If k = 0 then output the result of the Euclidean al-
gorithm applied to f1, f2 (which returns “failed” if it
tries to divide by a zero-divisor).

1. Set n = 1 and d = 1.

2. Main Loop: Take a random new evaluation point αn

in Zp that is not lc-bad.

3. Let gn ∈ Zp[t1, . . . , tk−1][z, x] be the output of subrou-
tine P applied to f1, f2, m(z) at tk = αn.

4. If gn =“failed” then
Set d = d + 1.
If d > n output “failed”, else go back to step 2.

5. If gn = 1 then return 1.

6. Select from {g1, . . . gn} those with the same leading
term in x, t1, . . . , tk−1 as gn. Chinese remainder those
to obtain c mod mc(tk). Set n = n + 1.

7. Apply rational function reconstruction to the coeffi-
cients of c to obtain h ∈ Zp(tk)[t1, . . . , tk−1][z, x] s.t.
h ≡ c mod mc(tk). If this fails, go back to step 2.

8. Clear fractions in Zp(tk): Set h = ȟ.

9. Trial division: If h|f1 and h|f2 then return h,
otherwise, go back to step 2.

If we often encounter “failed”, or if we run out of evalu-
ation points in step 2 in subroutine P, then we should in-
crease the size of the primes used (this will not be necessary
in practice if one uses 30 bit primes). Since lc-bad and fail
prime/evaluations are discarded in steps 2 and 4, of subrou-
tines M and P, the prime/evaluations remaining are either
unlucky or good by Theorem 2. The gi combined in step 6
have the same leading term, thus the same degree in x, and
hence they are either all unlucky or all good.

The images gi in step 6 must be scaled in a consistent way
before applying Chinese remaindering, see also Remark 2
below. The rational reconstruction in step 7 in subroutine
M is accomplished with Wang’s algorithm [7, 2, 4]. Suppose
this succeeds and step 7 finds h. If h|f1 and h|f2 then ȟ = ǧ
and M terminates. If either trial division fails then Theorem
1 implies either mc is not yet large enough to recover the
coefficients in Q or all primes dividing mc were unlucky.

Zero divisors in subroutine P
Subroutine P attempts to compute (if it exists) the gcd of
f1, f2 in characteristic p by choosing points α = (α1, . . . , αk)
in Zk

p and computing gcd(f1(α), f2(α)) with the Euclidean
algorithm (in step 0). This is a gcd computation over a finite
ring which may fail if a zero divisor is encountered. If we
use sufficiently large prime numbers and random evaluation
points then the probability of such failure is small, so our
modular GCD algorithm will terminate.

We explain the role of the variable d in subroutine P.
Suppose m(z) = z2 + 7t − 1 and f1 = x2 + t and f2 =
(z + 1)x + t. If subroutine M chose the prime p = 7 then
when the Euclidean algorithm is called by algorithm P (in
step 0) with inputs f1(α) and f2(α), the first division would
fail when it attempts to invert lcx(f2) = z + 1 which is a
zero-divisor for any choice of α ∈ Z7. So when p = 7 then
step 0 fails with probability 1. Suppose subroutine M chose
a prime p 6= 7. This time only one evaluation point (α = 0
for t) results in a zero divisor being encountered, so step 0
fails with probability 1/p. When most evaluations fail (in
the example when p = 7) then d > n will soon hold in
step 4, so subroutine P wastes little time on p and gives up
quickly. If most evaluations are good, and if subroutine P
has already computed many good gn, then the test d > n
prevents, with high probability, that a few unlucky choices
in step 2 could cause a lot of useful work to be lost.

Remark 1: It is essential that the evaluation point αn ∈ Zp

be chosen at random in step 2. Consider m(z) = z2 + (t −
1)z−1 and f2 = (z +1)x+ t. If subroutine P were to always
start with α1 = 1, then on this example, for any p it would
always start with hitting a zero divisor and then give up in
step 4. This would cause subroutine M to loop.

Reconstruction of the parameters in subroutine P
We explain the choice of representation used by subroutine
P for the coefficients of g and how they are reconstructed.
Suppose g = x +

√
s/(s − t2) − t/(s − t2) is the gcd of the

inputs of subroutine P. Three possible choices for canonical
representations are:

(1) x +
√

s/(s− t2)− t/(s− t2),
(2) (s− t2)x +

√
s− t, and

(3) (
√

s + t)x + 1.

Number (1) is the monic gcd g ∈ Zp(s, t)[
√

s, x]. (2) is ǧ ∈

Zp[s, t][
√

s][x]. It is obtained from (1) by clearing fractions.
If there remains a variable that does not appear in m(z)
then (3) is obtained from (2) by dividing (2) by the gcd of
the coefficients in x, i.e., by gcd(s− t2,

√
s− t) =

√
s− t.

We prefer (2) to (1) because we avoid arithmetic with frac-
tions in s, t and can compute it using only univariate ratio-
nal function reconstruction and univariate gcd computation.
Although form (3) may be smaller than (2), computing it
requires recursive gcd computations with one less variable
which could be expensive. A precise definition of form (2)
is now given. We require that

(i) g is a gcd of f1, f2 (in characteristic p).

(ii) g is in Dp[z, x] where Dp = Zp[t1, . . . , tk].

(iii) g is primitive in Dp[z, x].

(iv) lcx(g) is in Dp, i.e., degz(lcx g) = 0, and

(v) (for uniqueness) lct1,...,tk (lcx g) = 1 under a term or-
dering.

We show how subroutine P outputs form (2) using univari-
ate rational function reconstruction. For p = 11, t = 1,
suppose we computed the gcd at s = 2, 3, 4 with the Eu-
clidean algorithm and have

g(2, 1) mod 11 = x + 1z − 1,
g(3, 1) mod 11 = x− 5z + 5,
g(4, 1) mod 11 = x + 4z − 4.

In step 7 subroutine P applies rational function recon-
struction to the coefficients of zixj to find rational functions
in Zp(s) of the form (as + b)/(cs + d). We obtain

h(s, 1) mod 11 =
1

1
x +

1

s− 1
z +

−1

s− 1
.

Now clear denominators to obtain form (2) at t = 1.

g(s, 1) mod 11 := (s− 1)h(s, 1) = (s− 1)x + z − 1.

We repeat this for t = 2, 3, 4 so that we can reconstruct
rational functions in t of the form (at2 + bt + c)/(dt + e) for
the coefficients of sizjxk. We obtain

h(s, t) mod 11 = (
1

1
s +

−t2

1
)x +

1

1
zs +

−t

1
.

There are no denominators in t to clear in our example.
Thus we obtain (s− t2)x + z − t. Since the leading term, in
lexicographical order with x > s > t, is 1sx, condition (v)
already holds so no rescaling needs to be done.

Remark 2: In step 6 in subroutines M and P, there are
two reasons we only combine images with the same lead-
ing term. First, this way we Chinese remainder only images
that are scaled by condition (v) in a consistent way. Second,
it prevents reconstruction problems arising from an unlucky
content. Suppose that p1 is a good prime, ǧ = tx + t + p1z
and that subroutine M chooses prime p1. Then ǧ mod p1 =
tx + t has an unlucky content t, and g1 will be the monic
associate of tx+ t which is g1 = x+1. Hence g1 is not equal
to ǧ mod p1. Therefore, we must not Chinese remainder
it with images gi that are equal to ǧ mod pi. The easi-
est way to prevent this is to Chinese remainder only those
gi together that have the same leading term. This way g1

will not contribute to the reconstruction of ǧ. Note that
if lct1,...,tk (lcx(ǧ)) vanishes mod a good prime p2, then the
image mod p2 will end up not being used even if there is

no unlucky content. So our algorithm may compute im-
ages like these g1 or g2 that end up not being used. The
reason we make no effort to avoid (as in Brown’s algorithm)
such images before they have been computed is because that
would require additional computations and slow down our
algorithm (a simple check on lct(lcx(fi)) without computing
some resultant (mod p) is not sufficient, take for example

f1 = f2 = (t2 + p2 z)x + 1 where z =
√

t7).

Remark 3: The algorithm as stated assumes m(z) is irre-
ducible so L is a field. Our implementation does not check
this assumption because that would be expensive, and in
many applications where L is known to be a field, unnec-
essary. There are applications for gcds in L[x] when L is
not a field. In this case it is possible that our algorithm
as stated will loop. Take for example m(z) = z2 − t2 and
f1 = f2 = (z − t)x + 1. The algorithm can be modified
to handle this case. The basic idea is to reconstruct the
zero divisor from some of its images while we reconstruct
the gcd, and terminate when trial division confirms either a
zero divisor or a gcd.

The Trial Divisions
In step 9 in subroutine P the trial divisions g|f1 and g|f2

take place in characteristic p. Since g, f1 and f2 are in
Dp[z]/〈m(z)〉[x] where Dp = Zp[t1, . . . , tk] and m(z) ∈ Dp[z]
we can use pseudo-division in Dp[z][x] modulo m(z) where
we divide by m(z) also using pseudo-division. Thus we can
do the trial divisions without any gcd computation in Dp.
However, this results in a linear growth in size of the coef-
ficients in Dp. In [5] we presented an algorithm for doing
trial divisions of polynomials in Z[z][x] modulo m(z) ∈ Z[z]
which uses pseudo-division and some gcds in Z to minimize
growth of the integer coefficients. The same algorithm can
be applied here; the only difference is the coefficient ring,
Dp instead of Z. Our algorithm in [5] can also be used
for the trial divisions in subroutine M. There f1, f2 and h
are in D[z]/〈m(z)〉[x] where D = Z[t1, . . . , tk]. Again, we
do pseudo-division in D[z][x] modulo m(z) using gcds in D.
Because we have effective algorithms for gcd computation
in D and Dp, this approach is effective in practice. To pre-
vent the algorithm from doing many trial divisions, we build
into the rational reconstruction algorithm some redundancy
so that if it succeeds with output h then ȟ = ǧ with high
probability.

Rational Function Reconstruction
Let n, d ∈ Zp[t] with d 6= 0, lct(d) = 1, and gcd(n, d) = 1.
Let m = mc(t) be the modulus in subroutine P and (as-
suming gcd(d, m) = 1) let u = n/d mod m. The rational
reconstruction problem is: given u and m find n and d. The
problem is solved by the Euclidean algorithm as follows (this
is Wang’s algorithm for Q (see [7]) modified for Zp(t)).

Algorithm Rational Reconstruction (RR)
Input: Polynomials m, u ∈ Zp[t] with degt m > 0.
Output: Either polynomials a, b ∈ Zp[t] with degt a +
degt b < degt m, lct(b) = 1, gcd(a, b) = 1, gcd(b, m) = 1
and a/b ≡ u mod m, or FAIL if no such a/b exists.

Set M = degt m, N = bM/2c, D = M −N − 1.
Set (r0, s0) = (m, 0).
Set (r1, s1) = (u, 1).

While degt r1 > N do
Set q to be the quotient of r0 divided r1.
Set (r0, r1) = (r1, r0 − q r1).
Set (s0, s1) = (s1, s0 − q s1).

Set (a, b) = (r1, s1).
If degt b > D or gcd(b, m) 6= 1 then output FAIL.
Make b monic: Set u = lct b and (a, b) = (a/u, b/u).
Output (a, b).

If N ≥ degt(n) and D ≥ degt(d) then algorithm RR outputs
(n, d), otherwise, it outputs FAIL or some (a, b) 6= (n, d).

In each loop of subroutine P, the degree of mc(tk) increases
by 1. In step 7 in P, algorithm RR is applied to each coef-
ficient of c until it fails. Thus algorithm RR will be applied
many times to many coefficients before it succeeds. Suppose
c has T terms in t1, . . . , tk−1, z, x and suppose subroutine P
requires S points to succeed. Then the expected number of
calls to algorithm RR is ST. Moreover, the trial divisions in
subroutine P will be attempted many times with h 6= ǧ.

We force algorithm RR to output FAIL with high prob-
ability when M = degt(m) is not large enough for RR
to reconstruct a coefficient of h by setting N = b(M −
1)/2c and D = M − N − 2 so that N + D = M − 2, i.e.,
degt(m) = N + D + 2. In the Euclidean algorithm, since
degt(q) + degt(r1) + degt(s1) = degt(m) the new settings of
N and D mean we are forcing the q in algorithm RR that
corresponds to the output to be of degree 2 or more. For u
chosen at random in Zp[t] of degree less than M , the proba-
bility of getting any q of degree 2 or more is O(M/p). Thus,
by requiring one evaluation point more than the minimum
needed, with high probability, we attempt the trial divisions
once, and secondly, we reduce the expected number of calls
to algorithm RR from O(ST) to O(S + T).

2.3 Multivariate Inputs
Let f1, f2 ∈ L[x1, ..., xn] with n > 1. To compute the

gcd g of f1 and f2 using our modular GCD algorithm do the
following: write f1 =

∑
aix

i
1 and f2 =

∑
bjx

j
1 where ai, bj ∈

L[x2, . . . , xn]. Now recall that gcd(f1, f2) = cb where c is the
gcd of the contents in x1 of f1 and f2, i.e., c = gcd(ai, bj),
and b is the gcd of h1 = f1/c and h2 = f2/c. Computing
c requires gcd computations in L[x2, . . . , xn], that is, in one
less variable. To compute gcd(h1, h2) we view x2, . . . , xn as
parameters, that is, we write h1, h2 as polynomials in K[x1]
where K = G[z]/〈m(z)〉 and G = Q(t1, . . . , tk, x2, . . . , xn).
Now we compute ǧ, the monic associate of their gcd, using
our modular GCD algorithm. When x2, . . . , xn are regarded
as polynomial variables, ǧ may have a non-trivial content in
x1 which needs to be computed and divided out to obtain
b. That ǧ could have a non-trivial content is illustrated by
the example (s− t2)x +

√
s− t given in section 2.2.

3. FRACTION-FREE ALGORITHMS
In this section we develop a fraction-free GCD algorithm

for L[x] based on the ideas of Moreno Maza and Rioboo
in [6]. Their algorithm, a modification of the subresultant
GCD algorithm, computes an associate of the gcd of two uni-
variate polynomials modulo a triangular set of polynomials
over an integral domain D. Our problem setting is a special
case of theirs where we have a triangular set of one polyno-
mial, m(z) = m̌(z), which is irreducible over Z[t1, . . . , tk].
We recall the idea of pseudo-division in D[x].

Definition: Let a(x), b(x) be non-zero polynomials in D[x]
with deg a ≥ deg b. Let δ = deg a − deg b + 1. The pseudo
remainder r̄ and pseudo quotient q̄ are the remainder and
quotient, respectively, of µa divided by b where µ = lcx bδ.
Thus µa = bq̄ + r̄ where r̄ = 0 or deg r̄ < deg b.

The point of pseudo-division is that r̄ and q̄ are in D[x]
and no fractions appear in the division algorithm when di-
viding µa by b. The subresultant GCD algorithm on input
of non-zero f1 and f2 in D[x], uses pseudo-division to com-
pute an associate of the gcd of f1 and f2 in D[x]. It does this
without introducing fractions and without gcd computation
in D. Moreover, one can show that if D = Z[t1, . . . , tk] the
size of the integer coefficients and degree in each parameter
of the coefficients of the pseudo-remainder sequence (PRS)
grows linearly which is is optimal to within a constant factor.
This is achieved by dividing pseudo-remainders by known
exact divisors in D.

In [6], Moreno Maza and Rioboo modify the subresultant
PRS to work for R[x] where R = D[z]/〈m(z)〉. The main
idea is to multiply a pseudo-remainder p(x) ∈ R[x] by a
scalar i ∈ R, a quasi-inverse of lcx(p), so that after multi-
plication, lcx(ip) ∈ D and not D[z]. Now pseudo-division
does not introduce fractions and the exact divisions (Moreno
Maza and Rioboo prove that they remain exact) in the sub-
resultant PRS are by elements of D not R. We recall the
definition for quasi-inverse for our commutative ring R.

Definition: Let u ∈ R. Then v ∈ R is a quasi-inverse of u
if uv = r for some r ∈ D.

Remark 4: The definition is unique up to multiplication
by a non-zero element of D. To reduce coefficient growth we
will want to use a quasi-inverse which is smallest.

Example: Let u ∈ R = Z[z]/〈m〉 where m ∈ Z[z] is
monic. Then there exist polynomials s, t ∈ Z[z] such that
sm + tu = r where r ∈ Z is the resultant of m and u. Thus
v = t is a quasi-inverse of u in R. Let g = gcd(r, t). Now
t ∈ Z[z] and so g is the gcd of r and the coefficients of t.
Then t/g is also a quasi-inverse of u; it is a minimal quasi-
inverse.

To compute a quasi-inverse of u ∈ R = D[z]/〈m(z)〉 we
can use either Collin’s reduced PRS, or the subresultant
PRS, or the primitive PRS to compute elements s, t ∈ D[z]
such that sm+ tu = r for some r ∈ D and output t/g where
g = gcd(r, t). Here is Maple code to accomplish this using
the reduced PRS for D = Z[t1, . . . , tk].

QuasiInv := proc(x,m,z)

local u,r0,r1,t0,t1,pr,pq,mu,beta;

u := primpart(x,z);

r0,r1,t0,t1 := m,u,0,1;

beta := 1;

while degree(r1,z)>0 do

r0,r1 := r1,prem(r0,r1,z,’mu’,’pq’);

t0,t1 := t1,expand(mu*t0-pq*t1);

if r1=0 then ERROR("hit zero divisor",r0) fi;

divide(r1,beta,’r1’);

divide(t1,beta,’t1’);

beta := mu;

od;

divide(t1,gcd(r1,t1),’t1’);

return t1;

end;

Below is Maple code for the modified subresultant PRS for
computing an associate of the gcd of f1, f2 in D[z]/〈m(z)〉.
Moreno Maza and Rioboo prove that the divisions by ele-
ments of D remain exact. Note, if m(z) is not monic in D[z]
the divisions by m(z) (the Maple command rem(...,m,z);)
may be replaced by pseudo-division by m(z) without break-
ing the exact division properties of the subresultant PRS.

MMRPRS := proc(f1,f2,x,m,z)

local p1,p2,p3,del,alp,psi,bet,i;

p1,p2 := f1,f2;

del := degree(p1,x)-degree(f2,x);

if del<0 then return MMRPRS(f2,f1,x,m,z) fi;

i := QuasiInv(lcoeff(p2,x),m,z);

p2 := rem(i*p2,m,z);

psi,bet,alp := -1,(-1)^(del+1),lcoeff(p2,x);

while degree(p2,x)>0 do

p3 := rem(prem(p1,p2,x),m,z);

if p3=0 then return p2 fi;

divide(p3,bet,’p3’);

i := QuasiInv(lcoeff(p3,x),m,z);

p3 := rem(i*p3,m,z);

if del>0 then

divide((-alp)^del,psi^(del-1),’psi’)

fi;

p1,p2 := p2,p3;

if degree(p2,x)>0 then

del := degree(p1,x)-degree(p2,x);

bet := -alp*psi^del;

alp := lcoeff(p2,x);

fi;

od;

p2;

end:

However, multiplication of p3 by a quasi-inverse i ∈ D[z]
introduces a new coefficient growth in D into the subre-
sultant PRS. We observe that the growth is approximately
cubic instead of linear. We illustrate this. For D = Z,
m = z3 + 80z2 + 23z − 20, we created two polynomials f1

and f2 of degree 21 and 20 in x respectively, with coefficients
polynomials of degree 2 in z with integer coefficients chosen
at random from (-100,100) in Maple as follows.

> c := () -> randpoly(z,degree=2,dense):

> f1 := randpoly(x,coeffs=c,degree=21,dense):

> f2 := randpoly(x,coeffs=c,degree=20,dense):

The data below shows the degree (column 1) and length in
decimal digits of the largest integer coefficient of the poly-
nomials p3 appearing in the Moreno Maza and Rioboo PRS
(columns 2 and 3) and the primitive PRS (columns 4 and
5). Columns 2 and 3 show, respectively, the length of the
largest integer coefficient of p3 before and after the quantity
bet is divided out. Let r3 denote the pseudo remainder of
the primitive parts of p1 and p2. Columns 4 and 5 show,
respectively, the length of the largest integer coefficient of
r3 and the primitive part of r3.

The data shows that after 20 steps the length of the inte-
gers in the Moreno Maza and Rioboo algorithm is over 100
times longer than those in the primitive PRS. We see also
that after an initial step, the size of the integers in column 5

2 3 4 5
19 21 21 21 20
18 96 79 62 53
17 308 221 121 95
16 760 497 182 135
15 1572 945 241 174
14 2867 1609 303 216
13 4763 2527 365 257
12 7386 3742 428 299
11 10854 5293 490 342
10 15302 7229 554 384
9 20757 9592 619 427
8 27638 12417 678 465
7 35777 15750 743 509
6 45390 19630 807 553
5 56614 24105 872 596
4 69576 29218 936 639
3 84409 35014 1003 684
2 101248 41538 1072 729
1 120220 48826 1132 766
0 141447 56925 1193 810

Table 1: Integer Coefficient Growth

grows each step by approximately 42 digits and the size of
those in column 4 by approximately 62 digits. This is a lin-
ear growth. In columns 2 and 3 the growth is approximately
cubic. There are no parameters present in our example. If
there were a parameter t present in m and f1 and f2, what
we would see is a similar growth in the degree in t, i.e., there
would be a two dimensional growth.

If instead of modifying the subresultant PRS we modify
the primitive PRS to compute a gcd in R[x] by making the
pseudo remainders primitive in D[x, z] then we get minimal
(linear) coefficient growth. To do this we assume we can
compute gcds in D effectively. The same idea can be applied
to the general setting of the algorithm of Moreno Maza and
Rioboo in [6] for gcd computation modulo a triangular set;
instead of using the (extended) subresultant PRS use the
(extended) primitive PRS throughout. Here is a Maple code
to do this for D = Z[t1, . . . , tk].

PrimitivePRS := proc(f1,f2,x,m,z)

local i,r1,r2,r3;

r1 := primpart(f1,[x,z]);

r2 := primpart(f2,[x,z]);

while r2 <> 0 do

i := QuasiInv(lcoeff(r2,x),m,z);

r2 := primpart(prem(i*r2,m,z), [x,z]);

r3 := prem(prem(r1,r2,x),m,z);

r3 := primpart(r3,[x,z]);

r1,r2 := r2,r3;

od;

r1;

end;

The number of gcds in D = Z[t1, . . . , tk] that are computed
when taking the primitive part of a polynomial in D[x, z]
of degree n in x and d in z can be effectively reduced from
O(nd) to 1 by computing the gcd of the smallest coefficient
with a random linear combination of the others. Thus the
expected total number of gcds in D that the primitive PRS
does is O(δ) where δ = max(degx f1, degx f2)− degx g + 1.

4. IMPLEMENTATION
We compare a Maple implementation of our algorithms

on the following problem set. Let

m(z) = z3 − (5− t)z2 + (7− t2)z − (9− t3),

g = (10− 4 t)x2 − 5 xz2 + (4 t + 1)xz + (11− 17 t2 + 9 t)x
−19 z2 + (−7 t + 6)z + (−11 t2 + 15 t + 3),

a = (18+10 t)x2 +10 xz2 +(17 t+2)xz+(2+17 t2 +8 t)x
+6 z2 + (17 t + 6)z + (4 t2 − 4 t + 2),

b = (−8−11 t)x2−14 xz2+(8 t−4)xz+(−17−5 t2+19 t)x
−11 z2 + (17 t− 4)z + (−14 t2 − 19 t− 2).

For n = 10, k = 0, 1, . . . , n let f1 = gkan−k and f2 =
gkbn−k. Thus there are 11 gcd problems, each of degree 20
in x and 20 in t where the gcd gk has degree 2k in x and
degree 2k in t with leading coefficient degree k in t. The
reason for this choice of inputs is to compare the algorithms
as the size of the gcd increases relative to the size of the
cofactors. The modular GCD algorithm will do best for
small k and the PRS algorithms will do best for large k.

The timings below (in CPU seconds) were obtained using
Maple 9 on a Itanium PC running Linux. Column 1 is the
time for the Moreno Maza Rioboo algorithm. Column 2 is
the time for our primitive PRS algorithm. Column 3 is the
time for our modular GCD algorithm (shown in parentheses
is the number of primes used). Column 4 is the time for an
improved version of the modular GCD algorithm.

k 1 2 3 4
0 NA NA 0.07 (1) 0.06
1 NA NA 0.77 (2) 0.22
2 NA NA 1.56 (3) 0.54
3 NA NA 2.86 (3) 0.84
4 NA NA 4.39 (5) 1.24
5 NA 7459.7 5.43 (6) 1.99
6 NA 1488.7 7.70 (8) 2.61
7 NA 259.6 8.01 (9) 3.34
8 4473.1 42.8 7.70 (10) 4.18
9 31.1 1.2 7.22 (11) 5.07

10 0.0 0.0 6.29 (12) 5.72

Table 2: NA means not attempted

The data demonstrates clearly the superiority of our mod-
ular GCD algorithm. Much of the time in our implementa-
tion is spent doing trial divisions in subroutine P, that is, in
the ring Zp(t)[z]/〈m(z)〉[x]. Column 4 shows the improve-
ment we obtained by making the following change to our
modular GCD algorithm. We modify subroutine P so that
if rational function reconstruction succeeds we assume the
result is correct and simply return h without trial division.
Thus when subroutine P calls itself recursively on input
Ai = f1(tk = αi), Bi = f2(tk = αi), and mi = mc(tk = αi),
it is now possible that an output gi from subroutine P is
wrong, i.e., gi does not divide Ai or gi does not divide Bi

modulo mi(z). We apply the following strategy to detect
an incorrect gi so that subroutine P will eventually termi-
nate. In subroutine P, if k > 1, periodically, we choose
β = (β1, . . . , βk−1) ∈ Zk−1

p at random s.t. lcx(gi)(β) 6=
0 and lcz(mi)(β) 6= 0. We test whether gi(β)|Ai(β) and
gi(β)|Bi(β) modulo mi(β, z). Thus we replace division over

a function field in k − 1 parameters with division over a fi-
nite ring. With high probability this check will identify an
incorrect gi. Once identified, we discard gi in subroutine P
and adjust the c and mc accordingly. We modify subroutine
M similarly to detect incorrect output from subroutine P.

It remains to say how often we make these checks. At
step n, after computing gn, if 2j |n − 1 for some j > 2
we check gn−2j , gn−2j+1, . . . , gn−1 for correctness. Thus the
first time we make any checks is at step n = 9 where we
check g1, g2, . . . , g8. The next time is at step 17 when we
check g1, g2, . . . , g16. The next is at step 24 when we check
g17, . . . , g24. Thus we check each gi within 8 steps of being
computed and then with decreasing frequency. In practice,
because of the way we have designed the rational function
reconstruction, the output from subroutine P is hardly ever
wrong, hence, the infrequent checks are justified.

5. REFERENCES
[1] W. S. Brown (1971). On Euclid’s Algorithm and the

Computation of Polynomial Greatest Common Divisors,
J. ACM 18, pp. 476–504.

[2] G. E. Collins and M. J. Encarnacion (1995). Efficient
Rational Number Reconstruction. J. Symbolic
Computation 20, pp. 287–297.

[3] M. J. Encarnacion (1995). Computing GCDs of
Polynomials over Algebraic Number Fields, J. Symbolic
Computation 20, pp. 299–313.

[4] J. von zur Gathen and J. Gerhard (1999). Modern
Computer Algebra. University of Cambridge Press.

[5] M. van Hoeij, M. B. Monagan, A Modular GCD
Algorithm over Number Fields Presented with Multiple
Field Extensions. Proceedings of ISSAC ’2002, ACM
Press, pp. 109–116, 2002.

[6] M. Moreno Maza, R. Rioboo (1995). Polynomial Gcd
Computations over Towers of Algebraic Extensions,
Proc. of AAECC-11 Springer-Verlag LNCS 948 (1995),
pp. 365–382.

[7] P. Wang (1981). A p-adic Algorithm for Univariate
Partial Fractions. Proceedings of SYMSAC ’81, ACM
Press, pp 212-217.

