
Strongly Connected Graph Components and Computing
Characteristic Polynomials of Integer Matrices

Simon Lo ∗, Michael Monagan ∗, Allan Wittkopf ∗

{sclo,mmonagan,wittkopf}@cecm.sfu.ca
Centre for Experimental and Constructive Mathematics,
Department of Mathematics, Simon Fraser University,

Burnaby, B.C., V5A 1S6, Canada.

Abstract

Let A be an n× n matrix of integers. We present details of our Maple implemen-
tation of a modular method for computing the characteristic polynomial of A. Our
implementation considers several different representations for the computation modulo
primes, including the use of double precision floats.

The algorithm presently implemented in Maple releases 7–10 is the Berkowitz al-
gorithm. We present some timings comparing the two algorithms on large matrices
arising from an application in combinatorics of Jocelyn Quaintance.

The matrices are sparse and have a non-obvious block structure which can be ex-
ploited to reduce the computing time dramatically. To this end we have also imple-
mented the linear time algorithm of Robert Tarjan for computing the strongly con-
nected components of the directed graph corresponding to the matrix. This work is
being incorporated into Maple’s LinearAlgebra package.

1 Introduction

Let A be an n × n matrix of integers. One way to compute the characteristic polynomial
c(x) = det(xI −A) ∈ Z[x] is to evaluate the characteristic matrix at n points, compute n
determinants of integer matrices, then interpolate to obtain the characteristic polynomial.
The determinants of integer matrices can be computed using a fraction-free Gaussian elim-
ination algorithm (see Chapter 9 of Geddes et. al [5]) in O(n3) integer multiplications and
divisions. This approach will lead to an algorithm that requires O(n4) integer operations.

The algorithm presently implemented in Maple releases 7–10 is the Berkowitz algorithm
[2]. It is a division free algorithm and thus can be used to compute the characteristic
polynomial of a matrix over any commutative ring R. It does O(n4) multiplications in R. In
[1], Abdeljaoued described a Maple implementation of a sequential version of the Berkowitz
algorithm and compared it with the interpolation method and other methods.

∗Supported by NSERC of Canada and the MITACS NCE of Canada.

1

In section 2 we present details of our Maple implementation of a modular method for
computing c(x), the characteristic polynomial of A. The algorithm computes the character-
istic polynomial modulo a sequence of primes and applies the Chinese remainder theorem.
Our implementation considers several different representations for the computation modulo
primes, including the use of double precision floats. In section 3 we present some timings com-
paring our modular algorithm implementations and the Berkowitz algorithm on a 364× 364
sparse matrix given to us by Jocelyn Quaintance [8]. It is this matrix that motivated our
work on computing characteristic polynomials of integer matrices. The matrix arises from a
problem in combinatorics involving 3-dimensional lego blocks. It is one of sequence of sparse
matrices of dimension 72× 72, 364× 364 and 1916× 1916. The matrices are available from
our website at http://www.cecm.sfu.ca/CAG/products2005.shtml. We also present some
timings for large randomly generated dense matrices.

The matrices from Quaintance have a block structure, that when identified, can be ex-
ploited to reduce the time further. In section 4 we describe the command
StronglyConnectedBlocks, a new command in Maple’s LinearAlgebra package, which iden-
tifies the block structure. We present some timings for this command applied to the matrices
from Quaintance. and provide additional timings for computing the characteristic polyno-
mial of the matrices in [8]. Using both the modular algorithm and the block decomposition,
we are now able to compute the characteristic polynomial of the 1916×1916 matrix in under
one minute on an AMD Athlon processor.

2 A Dense Deterministic Modular Algorithm

Let A ∈ Zn×n be the input matrix. We want to compute the characteristic polynomial c(x) =
det(xI−A) ∈ Z[x]. We will utilize a modular algorithm to compute c(x) by computing the
characteristic polynomial of A modulo a sequence of primes p1, p2, p3, ... using the Hessenberg
matrix algorithm, then use the Chinese remaindering algorithm to reconstruct c(x). The cost
of the Hessenberg approach is O(n3) arithmetic operations in Zp for each prime p. Here is
our modular algorithm.

Input: Matrix A ∈ Zn×n

Output: Characteristic polynomial c(x) = det(xI−A) ∈ Z[x]

1. Compute a bound S (see below) larger than the largest coefficient of c(x).

2. Choose t machine primes p1, p2, . . . , pt such that m =
∏t

i=1 pi > 2S.

3. for i = 1 to t do

(a) Ai ← A mod pi.

(b) Compute ci(x) — the characteristic polynomial of Ai over Zpi
via the Hessenberg

algorithm.

4. Apply the Chinese remainder theorem:
Solve c(x) ≡ ci(x) (mod pi) for c(x) ∈ Zm[x].

2

5. Output c(x) in the symmetric range for Zm.

We can compute a bound S for the largest coefficient of c(x) by modifying a bound for the
determinant of A. We have

det(A) ≤ n!
n∏

i=1

n
max
j=1
|ai,j|

so a bound for S is

S ≤ det(A′) where a′i,j =

{
1 + |ai,i| i = j
ai,j otherwise.

2.1 Hessenberg Algorithm

Recall that a square matrix M = (mi,j) is in upper Hessenberg form if mi,j = 0 for all
i ≥ j + 2, in other words, the entries below the first subdiagonal are zero.

m1,1 m1,2 m1,3 · · · m1,n−2 m1,n−1 m1,n

m2,1 m2,2 m2,3 · · · m2,n−2 m2,n−1 m2,n

0 m3,2 m3,3 · · · m3,n−2 m3,n−1 m3,n

0 0 m4,3 · · · m4,n−2 m4,n−1 m4,n
...

...
.

...
...

...

0 0 0
. . . mn−1,n−2 mn−1,n−1 mn−1,n

0 0 0 · · · 0 mn,n−1 mn,n

The Hessenberg algorithm (see [3]) consists of the following two main steps:

Step 1: Reduce the matrix M ∈ Zn×n
p into the upper Hessenberg form using a series of

elementary row and column operations while preserving the characteristic polynomial.
In the algorithm below, Ri denotes the i’th row of M and Cj the j’th column of M.
In total, O(n3) operations in Zp are performed.

Input: Matrix M ∈ Zn×n
p

Output: Matrix M in upper Hessenberg form with the same eigenvalues

for j = 1 to n− 2 do
search for a nonzero entry mi,j where j + 2 ≤ i ≤ n
if found such entry then

do Ri ↔ Rj+1 and Ci ↔ Cj+1 if mj+1,j = 0
for k = j + 2 to n do

comment reduce using mj+1,j as pivot
u← mk,j mj+1,j

−1

Rk ← Rk − uRj+1

Cj+1 ← Cj+1 + uCk

end for
end if

3

comment now the first j columns of M is in upper Hessenberg form
end for

It is clear from the algorithm that at each step of the outer for loop, we are performing
elementary row and column operations, and that at the termination of the outer for
loop, the entire matrix is reduced into upper Hessenberg form. Let H be the matrix
M reduced into upper Hessenberg form, let the elementary matrix Ej represent the
j’th elementary row operation and let E = E1E2 · · ·En−2. We can write H = EME−1

since the elementary column operations that we perform in the algorithm are inverses
of elementary row operations. Thus, this is a similarity transformation.

To see that H has the same characteristic polynomial as the matrix M, note that
H = EME−1 implies

det(xI−H) = det(xI− EME−1)
= det(E(xI)E−1 − EME−1)
= det(E(xI−M)E−1)
= det(E) det(xI−M) det(E−1)
= det(E) det(xI−M) det(E)−1

= det(xI−M).

Step 2: The characteristic polynomial c(x) = pn+1(x) ∈ Zp[x] of the upper Hessenberg
form can be efficiently computed bottom up using O(n2) operations in Zp[x] (O(n3)
operations in Zp) from the following recurrence for pk(x).

pk+1(x) =

1 k = 0

(x−mk,k) pk(x)−
k−1∑
i=1

(
k−1∏
j=i

mj+1,j) mi,k pi(x) 1 ≤ k ≤ n + 1

The algorithm below computes the above recurrence bottom up, and clearly shows that
O(n2) operations in Zp[x] are required.

Input: Matrix M ∈ Zn×n
p in upper Hessenberg form

Output: Characteristic polynomial c(x) ∈ Zp[x] of M

p1(x)← 1
for k = 1 to n do

pk+1(x)← (x−mk,k) pk(x)
t← 1
for i = 1 to k − 1 do

t← tmk−i+1,k−i

pk+1(x)← pk+1 − tmk−i,k pk−i(x)
end for

end for
output pn+1(x)

4

2.2 Asymptotic Comparison of the Methods

Let A be an n × n matrix of integers. To compare the running times of the Berkowitz
algorithm and the modular algorithm, we suppose that the entries of A are bounded by Bm

in magnitude, that is, they are m base B digits in length. For both algorithms, we need a
bound S on the size of the coefficients of the characteristic polynomial c(x). A generic bound
on the size of the determinant of A is sufficient since this is the largest coefficient of c(x).
The magnitude of the determinant of A is bounded by S = n!Bmn and its length is bounded
by n logB n + mn base B digits. If B > 215 then we may assume logB n < 2 in practice and
hence the length of the determinant is O(mn) base B digits.

In Berkowitz’s algorithm, the O(n4) integer multiplications are on integers of average
size O(mn) digits in length, hence the complexity (assuming classical integer arithmetic is
used) is O(n4(mn)2). Since Maple 9 uses the FFT for integer multiplication and division,
the complexity is reduced to Õ(n5m).

In the modular algorithm, we will need O(mn) machine primes. The cost of reducing
the n2 integers in A modulo one prime is O(mn2). The cost of computing the characteristic
polynomial modulo each prime p is O(n3). The cost of the Chinese remaindering assum-
ing a classical method for the Chinese remainder algorithm (which is what Maple uses) is
O(n(mn)2). Thus the total complexity is O(mnmn2 + mnn3 + n(mn)2) = O(m2n3 + mn4).

If we assume m = O(n), that is, the size of the integer grows proportionally with the
size of the matrix, the complexity of the Berkowitz algorithm and the modular algorithm is
Õ(n6) and O(n5) respectively.

If we have |Ai,j| < B for all n (in the second set of timings |Ai,j| < 103), the complexity
of the Berkowitz algorithm and the modular algorithm is Õ(n5) and O(n4) respectively. We
mention here that algorithms which are asymptotically faster than O(n4) are known. Two
recent reference are Kaltofen and Villard in [6] and Dumas, Pernet and Wan in [4]. We have
not implemented any of these algorithms.

3 Timings and Implementations

For a machine prime p, in order to improve the running time of our algorithm, we’ve imple-
mented the Hessenberg algorithm over Zp in the C programming language and the rest of
the algorithm in Maple. We used the Maple external function interface to call the C code
(see [7]). We’ve implemented both the 32-bit integer version and 64-bit integer versions, and
also several versions using 64-bit double precision floating point values for comparison.

The following table consists of some timings (in seconds) of our modular Hessenberg
algorithm for a sparse 364 × 364 input matrix arising from an application in combinatorics
(see [8]). Rows 1-9 below are for the modular algorithm using different implementations of
arithmetic for Zp. The accelerated floating point version fprem using 25-bit primes generally
give the best times.

5

Versions Xeon Opteron AXP2800 Pentium M Pentium 4
2.8 GHz 2.0 GHz 2.08 GHz 2.00 GHz 2.80 GHz

64int 100.7 107.4
32int 66.3 73.0 76.8 35.6 57.4
new 32int 49.7 54.7 56.3 25.5 39.6
fmod 29.5 32.1 33.0 35.8 81.1
trunc 67.8 73.7 69.6 88.5 110.6
modtr 56.3 62.5 59.5 81.0 82.6
new fmod 11.0 11.6 14.5 15.2 28.8
fprem 10.4 10.9 13.7 13.9 26.8
fLA 17.6 19.9 21.9 26.2 27.3
Berkowitz 2053.6 2262.6

Implementations

64int The 64-bit integer version is implemented using the long long int datatype in C, or
equivalently the integer[8] datatype in Maple. We can use 32-bit primes. All modular
arithmetic first executes the corresponding 64-bit integer machine instruction, then
reduces the result mod p because we work in Zp. We allow both positive and negative
integers of magnitude less than p.

32int The 32-bit integer version is similar, but implemented using the long int datatype in
C, or equivalently the integer[4] datatype in Maple. 16-bit primes are used here.

new 32int This is an improved 32int, with various hand/compiler optimizations.

fmod This 64-bit float version is implemented using the double datatype in C, or equivalently
the float[8] datatype in Maple. 64-bit float operations are used to simulate integer
operations. Operations such as additions, subtractions, multiplications are followed
by a call to the C library function fmod() to reduce the results mod p, since we are
working in Zp. We allow both positive and negative floating point representations of
integers with magnitude less than p.

trunc This 64-bit float version is similar to above, but uses the C library function trunc()
instead of fmod(). To compute b← a mod p, we first compute c← a− p× trunc(a/p),
then b ← c if c 6= ±p, b ← 0 otherwise. The trunc() function rounds towards zero to
the nearest integer.

modtr A modified trunc version, where we do not do the extra check for equality to ±p
at the end. So to compute b← a mod p, we actually compute b← a− p× trunc(a/p),
which results in −p ≤ b ≤ p.

new fmod An improved fmod version, where we have reduced the number of times fmod()
is called. In other words, we reduce the results mod p only when the number of
accumulated arithmetic operations on an entry exceeds a certain threshold. In order to
allow this, we are restricted to use 25-bit primes. We call this delayed mod acceleration.
See the next subsection.

6

fprem Equivalent to new fmod version, but via direct assembly programming using fprem
instruction, removing the function call overhead and making some efficiency improve-
ments.

fLA An improved trunc version using delayed mod acceleration. It is the default used in
Maple’s LA:-Modular routines.

3.1 Efficiency Considerations

There are a few considerations for use of floating point for mod p computations. Keeping
these in mind, one can implement faster external code for the algorithms than is possible
with the integer codes, and still have the advantage of using larger primes on 32-bit machines.

1. Although floating point integer computations can represent 53-bit numbers accurately,
we restrict the modulus to p < 225, which allows for more efficient mod operations, and
multiple mod operations (up to 8) to occur before having to reduce modulo p. We call
this the delayed mod acceleration.

2. Leveraging the smaller primes allows up to 8 computations (using a maximal size prime)
to occur before we must perform a mod. This can be efficiently utilized in row-based
algorithms, as a counter associated with each row can count the number of operations
performed, and the algorithms can be made to only perform the mod once the maximal
number of computations is reached.

3. Floating point computations have a number of ways in which a mod can be performed,
including but not limited to subtracting the floor of the inverse of the modulus times
the number from the number, the floating point mod operation fmod or fprem, using
trunc, etc.

In our experiments we found the following: Use of the smaller primes, and delayed mod,
mentioned in items 1 and 2 above increased performance by a factor of 2-3.

With these modifications, use of floating point modular arithmetic generally demon-
strated better performance than integer modular arithmetic.

The use of the C-library fmod function or direct assembly programming using the fprem
instruction (essentially equivalent modulo function call overhead and some efficiency im-
provements made available for our specific use of fmod) showed better performance than the
other floating point schemes, except on the Pentium 4, on which it was approximately equal.
Note also that on Pentium M the fprem performance was nearly a factor of 2 times better.

3.2 Timings for Dense Matrices

The following table consists of some timings (in seconds) of our modular Hessenberg algo-
rithm using float (fprem) and integer (new 32int) implementations on dense n×n matrices,
with uniformly random integer entries between −999 and 999. We also compare with Maple’s
Berkowitz algorithm. The timings were done on a dual Opteron 2.2 GHz processor running
Unix.

7

n float integer Berkowitz

50 <0.1 0.13 7.85
100 0.61 1.85 128.6
200 8.82 30.8 2248.1
300 45.4 153.2
400 173.5 493.4
600 1195.2 2973.1
800 4968.8

Note that the time for Berkowitz algorithm on a dense 200×200 integer matrix is even slower
than a sparse 364 × 364 integer matrix, resulting from the cost of large integer arithmetic.
Maple’s Berkowitz algorithm is much much slower than the others, as the timings suggest.

From the above data, we can see that the float version is always faster than the integer
version (about 3 times faster). Therefore in practice, we would always use the float version.

3.3 Making the algorithm output sensitive

One way to improve the running time further would be to use the early termination technique
described below. Consider the following matrix

A =

1 u v w
0 2 x y
0 0 3 z
0 0 0 4

 .

The characteristic polynomial of A is c(x) = (x−1)(x−2)(x−3)(x−4) = x4−10x3 +35x2−
50x + 24. Notice that the largest coefficient of c(x) does not depend on any of the entries
u, v, w, x, y, z. So if u, v, w, x, y, z are large, then the bound S for the largest coefficient of c(x)
would be arbitrarily far off.1 Our modular algorithm would use too many primes and would
do too many unnecessary modular computations. This observation suggests that we use a
output sensitive version of the algorithm and not use a bound at all. We will incrementally
apply the Chinese remainder theorem to reconstruct c(x) and stop the Chinese remaindering
once ζ consecutive modular images “remain the same”.

Let p1, p2, . . . , ps, ps+1, . . . , ps+ζ be machine primes, ci(x) ≡ c(x) (mod pi), Ci(x) ≡ c(x)
(mod p1 · · · pi). Application of the Chinese remainder theorem allows us to construct Ci(x)
from ci(x) and Ci−1(x). This is an incremental version of Garner’s algorithm. Now suppose
that Cs(x) = Cs+1(x) = · · · = Cs+ζ , then there is a high probability that c(x) = Cs(x).
Choosing ζ carefully will ensure that the probability of premature termination of the Chinese
remaindering is low.

This output sensitive probabilistic version of the modular algorithm is much faster than
the deterministic version when the largest coefficient of the characteristic polynomial is much
smaller than the bound. On the sparse 364×364 example in the previous section, the timing
improves by about 30%.

1Yes, it is true, we could improve the algorithm for computing the bound to “notice” that this matrix is
diagonal. But we can always fool the bound code by, for example, permuting the rows and columns of A

8

4 Strongly Connected Components

Consider again the matrix

A =

1 u v w
0 2 x y
0 0 3 z
0 0 0 4

 .

The Hessenberg algorithm does not need to do any work since A is already in upper Hes-
senberg form. Now consider the matrix AT , i.e.,

AT =

1 0 0 0
u 2 0 0
v x 3 0
w y z 4

which has the same characteristic polynomial. The algorithm would be required to do some
actual reductions. This observation lead us to ask the following question: For what matrix
structures can we compute the characteristic polynomial quickly? Consider a matrix of the
form

B =

a b w x
c d y z
0 0 e f
0 0 g h

 .

Let cB(x) be the characteristic polynomial of B. Then cB(x) = cB1(x)cB2(x) where

B1 =

(
a b
c d

)
and B2 =

(
e f
g h

)
.

If the input matrix is block upper (lower) triangular, then the computation of the charac-
teristic polynomial reduces to the product of the characteristic polynomials of the diagonal
blocks which are easier to compute. But often matrices are not block upper (lower) triangu-
lar, but are row and column permutations of block upper (lower) triangular matrices. For
example,

P =

h 0 g 0
z d y c
f 0 e 0
x b w a

is the matrix B with rows 1,4 and columns 1,4 interchanged, and is no longer block upper
triangular. The main observation here is that simultaneous row and column interchanges do
not modify the characteristic polynomial (the arguments of section 2.1 also work here), so
that if the rows and columns of a matrix are permuted by the same permutation, then the
characteristic polynomial remains unchanged.

In order to apply the above observation, we need to efficiently compute the permutation
that would make the matrix block upper triangular. It turns out that we can compute this
permutation in linear time by finding the strongly connected components of a directed graph.

9

Let A be a n × n matrix. We denote by Graph(A) the weighted directed graph with n
vertices such that A is the adjacency matrix of Graph(A). Recall that a directed graph G
is strongly connected if for each pair of vertices u, v ∈ G, u 6= v, there exists a path u v.
Also, every directed graph can be partitioned into maximal strongly connected components.
Note that permuting the vertices corresponds to permuting the rows and columns of A.

Denote by A(u1,u2,...,ur),(v1,v2,...,vs) the r × s submatrix of A such that

(A(u1,u2,...,ur),(v1,v2,...,vs))i,j = Aui,vj
.

The method works as follows:

1. Compute (see below) the k strongly connected components of Graph(A) : V1, V2, ..., Vk

where Vi = {vi1, vi2, ..., vini
}.

2. For 1 ≤ i ≤ k, compute the characteristic polynomial of the submatrix A(vi1,vi2,...,vini
),(vi1,vi2,...,vini

).
We denote these submatrices as AVi,Vi

.

3. Output (the characteristic polynomial c(x) of A) the product of the characteristic
polynomials computed in step 2.

To see why the above method works let the k strongly connected components of G =
Graph(A) be V1, ..., Vk. We can topologically sort the k strongly connected components
such that Vi ≺ Vj implies there does not exist u ∈ Vi, v ∈ Vj such that (v, u) ∈ G. Without
loss of generality assume V1 ≺ V2 ≺ ... ≺ Vk. Consider relabeling the vertices in increasing
topological order (which is not unique) and consider the adjacency matrix A′ that represents
the relabeled graph. First, it is clear that A′ has the same characteristic polynomial as A
since A′ is obtained by permuting rows and columns of A. Note that the (i, j)’th blocks of
A′, denoted by A′

i,j are precisely the submatrices AVi,Vj
. Therefore, the diagonal A′

i,i’s are
precisely the AVi,Vi

’s. Furthermore, the relabeling guarantees i < j if and only if Vi ≺ Vj

so if i < j, then we have A′
j,i = 0. Thus, A′ is block upper triangular, so the characteristic

polynomial is just the product of the characteristic polynomials of the diagonal blocks, the
AVi,Vi

’s. In practice, it is not necessary to topologically sort the Vi’s because in order to
compute c(x), we do not need to know explicitly any of the entries in A′

i,j, where i < j. Also,
the ordering of the vertices in each Vi does not matter.

Now consider the example matrix P above

P =

h 0 g 0
z d y c
f 0 e 0
x b w a

 .

Here, the strongly connected components of Graph(P) are V1 = {1, 3} and V2 = {2, 4}. To
see this, it might help the reader to draw Graph(P). Next we compute the product of the
characteristic polynomials of (

h g
f e

)
and

(
d c
b a

)
.

10

Clearly we would get the characteristic polynomial of P, which is also the characteristic
polynomial of B. Observe that V2 ≺ V1. Suppose we choose the ordering 2,4,1,3, then we
obtain the matrix

P′ =

d c z y
b a x w
0 0 h g
0 0 f e

 .

It doesn’t quite look like B, but the characteristic polynomial of P′ is the same as B above.
The difference is that the vertices in Vi’s are permuted. If we choose the ordering 4,2,3,1,
then we obtain B.

Maple code for the computation of the strongly connected component blocks of a Matrix
is available at http://www.cecm.sfu.ca/CAG/papers/SCC.txt. It computes the strongly
connected components in linear time and outputs the submatrices in a list (see [9] for a
description and proof of the algorithm).

The output is a list of non-zero square matrices A1,A2, ...,Ar. Let m =
∑r

i=1 dim(Ai).
If the input M is an n× n matrix, the output satisfies

cM(x) = xn−m

r∏
i=1

cAi
(x)

where cA(x) is the characteristic polynomial of A.
Note that one bottleneck in the implementation of the algorithm is the extraction of the

nonzero entries in the input matrix. In the code available on the web, there is a line

A:=[seq([seq(‘if‘(M[i,j]=0,NULL,j),j=1..n)],i=1..n)]

to extract these entries. For the sparse 364 × 364 matrix, the code runs in a total of 0.25
seconds, 0.20 of which is the extraction process.

In the research version of Maple, this algorithm has been implemented as part of the
LinearAlgebra package as the StronglyConnectedBlocks function. This implementa-
tion uses external (i.e. C) code both to extract the nonzero entries, and to perform the
computation of the strongly connected components. The syntax is:

LinearAlgebra[StronglyConnectedBlocks](M, [returnsingular=truefalse])

where M is the input matrix, and the option returnsingular is provided to allow one
to avoid reconstruction of the block matrices if the input matrix can be determined to be
singular.

We now provide data comparing the run-time and memory usage for the computa-
tion of the strongly connected blocks for the sparse 364 × 364 matrix, as well as sparse
72 × 72 and 1916 × 1916 matrices which also result from the combinatorics application
from Quaintance [8]. Note that the 364 × 364 matrix decomposed into 12 blocks of sizes
5, 5, 9, 10, 10, 10, , 22, 22, 48, 54, 76, 93 while the 72 × 72 matrix decomposed into 6 blocks
of sizes 4, 4, 8, 13, 20, 23, and the 1916 × 1916 matrix decomposed into 31 blocks of sizes
6$6, 11$2, 12$9, 13$2, 32$2, 59, 70$3, 103$2, 241, 260, 306, 378. The timings below are for an
AMD Athlon(tm) 64 X2 Dual Core 4400+ (2.2GHz) with 2GB memory under 64-bit Linux.

11

Matrix Maple SCC Maple SCC C SCC C SCC
Maple Extract C Extract Maple Extract C Extract

72× 72 0.01s 0.52M 0.02s 0.13M 0.01s 0.39M .004s <.001M
364× 364 0.20s 5.24M 0.06s 2.75M 0.09s 5.11M .004s 0.26M
1916× 1916 5.20s 51.1M 1.06s 12.8M 3.57s 46.4M 0.11s 5.11M

From this we can see that the externally coded extraction process provides a significant
reduction in the run time and memory usage of the implementation, and the combination of
the two reduces the time and memory usage for the difficult example by factors of ≈ 50, 10
respectively.

4.1 Final Timings

To complete the section on improvements we provide a timing comparison for computation
of the characteristic polynomial of the three matrices of the prior section (72×72, 364×364,
and 1916× 1916). Maple’s Berkowitz implementation is compared with the new Hessenberg
implementation, computing both with and without block decomposition, but the new Hes-
senberg implementation always uses early termination. Timings are for an AMD Athlon(tm)
64 X2 Dual Core 4400+ (2.2GHz) with 2GB memory under 64-bit Linux.

Matrix Berkowitz Berkowitz Hessenberg Hessenberg
No blocks With blocks No blocks With blocks

72× 72 2.36 0.04 0.16 0.01
364× 364 1086.50 9.59 28.45 0.18
1916× 1916 N/A* 16594.79 28468.55 46.89

* the timing for the 1916× 1916 matrix using Berkowitz and no blocks was not attempted.

It is clear from the timings that block decomposition is most relevant to the efficient
computation of the characteristic polynomials for this class of problems.

For the 364× 364 matrix, the factor of improvement from Maple’s prior algorithm to the
new algorithm using block decomposition is ≈ 6000. The computation of the characteris-
tic polynomial of the 1916 × 1916 might as well be considered impossible for the unaided
Berkowitz algorithm (an extremely rough estimate based on the performance of the imple-
mentation for the other cases puts this at ≈ 5.8e5 cpu seconds, or 6.7 cpu days), while it
completes in under a minute for the new algorithm.

We are currently in the process of integrating these codes into the main Maple code base
to aid in more efficient computation of characteristic polynomials and determinants.

References

[1] J. Abdeljaoued. The Berkowitz Algorithm, Maple and Computing the Characteristic
Polynomial in an Arbitrary Commutative Ring. MapleTech 5(1), pp. 21–32, Birkhauser,
1997.

12

[2] S. J. Berkowitz. On Computing the Determinant in Small Parallel time using a Small
Number of Processors. Inf. Processing Letters 18(3) pp. 147–150, 1984.

[3] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate texts in
mathematics, 138, Springer-Verlag, 1995.

[4] J.-G. Dumas, C. Pernet, Z. Wan. Efficient Computation of the Characteristic Polynomial.
To appear in The proceedings of ISSAC 2005, ACM Press, 2005

[5] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer
Academic Publ., Boston, Massachusetts, USA, 1992.

[6] E. Kaltofen, G. Villard. On the Complexity of Computing Determinants. Journal of
Computational Complexity 13 pp. 91–130, 2004.

[7] M. Monagan, K. Geddes, K. Heal, G. Labahn, S. Vorkoetter, J. McCarron, P. deMarco.
Maple 9 Advanced Programming Guide, Ch. 6, Maplesoft, 2003.

[8] J. Quaintance. m×n Proper Arrays: Geometric Construction and the Associated Linear
Cellular Automata. Proceedings of the 2004 Maple Summer Workshop, 2004.

[9] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Comput-
ing 1(2) pp. 146–160, 1972.

13

