
A Modular Algorithm for Computing the Characteristic Polynomial

of an Integer Matrix in Maple

Simon Lo ∗, Michael Monagan ∗, Allan Wittkopf ∗

{sclo,mmonagan,wittkopf}@cecm.sfu.ca
Centre for Experimental and Constructive Mathematics,
Department of Mathematics, Simon Fraser University,

Burnaby, B.C., V5A 1S6, Canada.

Abstract

Let A be an n × n matrix of integers. In this paper we present details of our Maple im-
plementation of a modular method for computing the characteristic polynomial of A. Our
implementation considers several different representations for the computation modulo primes,
including the use of double precision floats. The algorithm presently implemented in Maple
releases 7–9 is the Berkowitz algorithm. We present some timings comparing the two methods
on a large sparse matrix arising from an application in combinatorics, and also some randomly
generated dense matrices.

1 Introduction

Let A be an n × n matrix of integers. One way to compute the characteristic polynomial c(x) =
det(xI −A) ∈ Z[x] is to evaluate the characteristic matrix at n points, compute n determinants
of integer matrices, then interpolate to obtain the characteristic polynomial. The determinants of
integer matrices can be computed using a fraction-free Gaussian elimination algorithm (see Chapter
9 of Geddes et. al [5]) in O(n3) integer multiplications and divisions. This approach will lead to an
algorithm that requires O(n4) integer operations.

The algorithm presently implemented in Maple releases 7–9 is the Berkowitz algorithm [2]. It is
a division free algorithm and thus can be used to compute the characteristic polynomial of a matrix
over any commutative ring R. It does O(n4) multiplications in R. In [1], Abdeljaoued described
a Maple implementation of a sequential version of the Berkowitz algorithm and compared it with
the interpolation method and other methods. His implementation improves with sparsity to O(n3)
multiplications when the matrix has O(n) non-zero entries.

In section 2 we present details of our Maple implementation of a modular method for computing
c(x), the characteristic polynomial of A. The algorithm computes the characteristic polynomial
modulo a sequence of primes and applies the Chinese remainder theorem. Our implementation
considers several different representations for the computation modulo primes, including the use
of double precision floats. In section 3 we present some timings comparing our modular algorithm
implementations and the Berkowitz algorithm on a 364× 364 sparse matrix arising from an appli-
cation in combinatorics from Quaintance [8], and also some timings comparing randomly generated
large dense matrices. In section 4 we give a short asymptotic comparison of the algorithms.

∗Supported by NSERC of Canada and the MITACS NCE of Canada.

1

2 A Dense Deterministic Modular Algorithm

Let A ∈ Zn×n be the input matrix, we want to compute the characteristic polynomial c(x) =
det(xI − A) ∈ Z[x]. We will utilize a modular algorithm to compute c(x) by computing the
characteristic polynomial of A modulo a sequence of primes p1, p2, p3, ... using the Hessenberg
matrix algorithm, then use the Chinese remaindering algorithm to reconstruct c(x). The cost of
the Hessenberg approach is O(n3) arithmetic operations in Zp for each prime p. An alternative
to the Hessenberg matrix approach would be a Krylov approach which has the same asymptotic
complexity. In the Krylov approach one starts with a random vector v ∈ Zn

p and computes the
Krylov sequence of vectors

v,Av,A2v,A3v, ...,Anv

stopping when a linear dependence between them is found. This linear dependence provides a factor
of the minimal polynomial of A. Here is our modular algorithm.

Input: Matrix A ∈ Zn×n

Output: Characteristic polynomial c(x) = det(xI−A) ∈ Z[x]

1. Compute a bound S (see below) larger than the largest coefficient of c(x).

2. Choose t machine primes p1, p2, . . . , pt such that m =
∏t

i=1 pi > 2S.

3. for i = 1 to t do

(a) Ai ← A mod pi.

(b) Compute ci(x) — the characteristic polynomial of Ai over Zpi via the Hessenberg algo-
rithm.

4. Apply the Chinese remainder theorem:
Solve c(x) ≡ ci(x) (mod pi) for c(x) ∈ Zm[x].

5. Output c(x) in the symmetric range for Zm.

We can compute a bound S for the largest coefficient of c(x) by modifying a bound for the deter-
minant of A. We have

det(A) ≤ n!
n∏

i=1

n
max
j=1
|ai,j |

so a bound for S is

S ≤ det(A′) where a′i,j =
{

1 + |ai,i| i = j
ai,j otherwise.

2.1 Hessenberg Algorithm

Recall that a square matrix M = (mi,j) is in upper Hessenberg form if mi,j = 0 for all i ≥ j + 2,
in other words, the entries below the first subdiagonal are zero.

m1,1 m1,2 m1,3 · · · m1,n−2 m1,n−1 m1,n

m2,1 m2,2 m2,3 · · · m2,n−2 m2,n−1 m2,n

0 m3,2 m3,3 · · · m3,n−2 m3,n−1 m3,n

0 0 m4,3 · · · m4,n−2 m4,n−1 m4,n
...

...
.

...
...

...

0 0 0
. . . mn−1,n−2 mn−1,n−1 mn−1,n

0 0 0 · · · 0 mn,n−1 mn,n


2

The Hessenberg algorithm (see [3]) consists of the following two main steps:

Step 1: Reduce the matrix M ∈ Zn×n
p into the upper Hessenberg form using a series of row and

column operations in Zp, while preserving the characteristic polynomial. This is a similarity
transformation. O(n3) operations in Zp are performed. To see that the upper Hessenberg
form H has the same characteristic polynomial as M, note that M = EHE−1 where E−1 = Et

and det(E) = ±1. Here E corresponds to the row operations, Et corresponds to the column
operations. We have

det(xI−M) = det(xI−EHE−1)
= det(E(xI)E−1 −EHE−1)
= det(E(xI−H)E−1)
= det(E) det(xI−H) det(E−1)
= det(xI−H).

The algorithm below reduces a matrix M into upper Hessenberg form. In the algorithm, Ri

denotes the i’th row of M and Cj the j’th column of M.

Input: Matrix M ∈ Zn×n
p

Output: Matrix M in upper Hessenberg form with the same eigenvalues

for j = 1 to n− 2 do
search for a nonzero entry mi,j where j + 2 ≤ i ≤ n
if found such entry then

do Ri ↔ Rj+1 and Ci ↔ Cj+1 if mj+1,j = 0
for k = j + 2 to n do

(reduce using mj+1,j as pivot)
u← mk,j mj+1,j

−1

Rk ← Rk − uRj+1

Cj+1 ← Cj+1 + uCk

end for
else

first j columns of M is already in upper Hessenberg form
end if

end for

Step 2: The characteristic polynomial c(x) = pn+1(x) ∈ Zp[x] of the upper Hessenberg form can
be efficiently computed bottom up using O(n2) operations in Zp[x] (O(n3) operations in Zp)
from the following recurrence for pk(x).

pk+1(x) =


1 k = 0

(x−mk,k) pk(x)−
k−1∑
i=1

(
k−1∏
j=i

mj+1,j) mi,k pi(x) 1 ≤ k ≤ n + 1

The algorithm below computes the above recurrence bottom up, and clearly shows that O(n2)
operations in Zp[x] are required.

3

Input: Matrix M ∈ Zn×n
p in upper Hessenberg form

Output: Characteristic polynomial c(x) ∈ Zp[x] of M

p1(x)← 1
for k = 1 to n do

pk+1(x)← (x−mk,k) pk(x)
t← 1
for i = 1 to k − 1 do

t← t mk−i+1,k−i

pk+1(x)← pk+1 − t mk−i,k pk−i(x)
end for

end for
output pn+1(x)

3 Timings and Implementations

For a machine prime p, in order to improve the running time of our algorithm, we’ve implemented
the Hessenberg algorithm over Zp in the C programming language and the rest of the algorithm
in Maple. We used the Maple external function interface to call the C code (see [7]). We’ve
implemented both the 32-bit integer version and 64-bit integer versions, and also several versions
using 64-bit double precision floating point values for comparison.

The following table consists of some timings (in seconds) of our modular Hessenberg algorithm
for a sparse 364 × 364 input matrix arising from an application in combinatorics (see [8]). Rows
1-9 below are for the modular algorithm using different implementations of arithmetic for Zp. The
accelerated floating point version fprem using 25-bit primes generally give the best times.

Versions Xeon Opteron AXP2800 Pentium M Pentium 4
2.8 GHz 2.0 GHz 2.08 GHz 2.00 GHz 2.80 GHz

64int 100.7 107.4
32int 66.3 73.0 76.8 35.6 57.4
new 32int 49.7 54.7 56.3 25.5 39.6
fmod 29.5 32.1 33.0 35.8 81.1
trunc 67.8 73.7 69.6 88.5 110.6
modtr 56.3 62.5 59.5 81.0 82.6
new fmod 11.0 11.6 14.5 15.2 28.8
fprem 10.4 10.9 13.7 13.9 26.8
fLA 17.6 19.9 21.9 26.2 27.3
Berkowitz 2053.6 2262.6

Implementations

64int The 64-bit integer version is implemented using the long long int datatype in C, or equiv-
alently the integer[8] datatype in Maple. We can use 32-bit primes. All modular arithmetic
first executes the corresponding 64-bit integer machine instruction, then reduces the result
mod p because we work in Zp. We allow both positive and negative integers of magnitude
less than p.

4

32int The 32-bit integer version is similar, but implemented using the long int datatype in C, or
equivalently the integer[4] datatype in Maple. 16-bit primes are used here.

new 32int This is an improved 32int, with various hand/compiler optimizations.

fmod This 64-bit float version is implemented using the double datatype in C, or equivalently the
float[8] datatype in Maple. 64-bit float operations are used to simulate integer operations.
Operations such as additions, subtractions, multiplications are followed by a call to the C
library function fmod() to reduce the results mod p, since we are working in Zp. We allow
both positive and negative floating point representations of integers with magnitude less than
p.

trunc This 64-bit float version is similar to above, but uses the C library function trunc() instead
of fmod(). To compute b← a mod p, we first compute c← a− p× trunc(a/p), then b← c if
c 6= ±p, b← 0 otherwise. The trunc() function rounds towards zero to the nearest integer.

modtr A modified trunc version, where we do not do the extra check for equality to ±p at the
end. So to compute b← a mod p, we actually compute b← a− p× trunc(a/p), which results
in −p ≤ b ≤ p.

new fmod An improved fmod version, where we have reduced the number of times fmod() is
called. In other words, we reduce the results mod p only when the number of accumulated
arithmetic operations on an entry exceeds a certain threshold. In order to allow this, we
are restricted to use 25-bit primes. We call this delayed mod acceleration. See the next
subsection.

fprem Equivalent to new fmod version, but via direct assembly programming using fprem in-
struction, removing the function call overhead and making some efficiency improvements.

fLA An improved trunc version using delayed mod acceleration. It is the default used in Maple’s
LA:-Modular routines.

3.1 Efficiency Considerations

There are a few considerations for use of floating point for mod p computations. Keeping these in
mind, one can implement faster external code for the algorithms than is possible with the integer
codes, and still have the advantage of using larger primes on 32-bit machines.

1. Although floating point integer computations can represent 53-bit numbers accurately, we
restrict the modulus to p < 225, which allows for more efficient mod operations, and multiple
mod operations (up to 8) to occur before having to reduce modulo p. We call this the delayed
mod acceleration.

2. Leveraging the smaller primes allows up to 8 computations (using a maximal size prime) to
occur before we must perform a mod . This can be efficiently utilized in row-based algorithms,
as a counter associated with each row can count the number of operations performed, and the
algorithms can be made to only perform the mod once the maximal number of computations
is reached.

3. Floating point computations have a number of ways in which a mod can be performed,
including but not limited to subtracting the floor of the inverse of the modulus times the
number from the number, the floating point mod operation fmod or fprem, using trunc, etc.

5

In our experiments we found the following: Use of the smaller primes, and delayed mod, mentioned
in items 1 and 2 above increased performance by a factor of 2-3.

With these modifications, use of floating point modular arithmetic generally demonstrated bet-
ter performance than integer modular arithmetic.

The use of the C-library fmod function or direct assembly programming using the fprem in-
struction (essentially equivalent modulo function call overhead and some efficiency improvements
made available for our specific use of fmod) showed better performance than the other floating point
schemes, except on the Pentium 4, on which it was approximately equal. Note also that on Pentium
M the fprem performance was nearly a factor of 2 times better.

3.2 Timings for Dense Matrices

The following table consists of some timings (in seconds) of our modular Hessenberg algorithm using
float (fprem) and integer (new 32int) implementations on dense n× n matrices, with uniformly
random integer entries between −999 and 999. We also compare with Maple’s Berkowitz algorithm.
The timings were done on a dual Opteron 2.2Ghz processor running Unix.

n float integer Berkowitz
50 <0.1 0.13 7.85
100 0.61 1.85 128.6
200 8.82 30.8 2248.1
300 45.4 153.2
400 173.5 493.4
600 1195.2 2973.1
800 4968.8

Note that the time for Berkowitz algorithm on a dense 200 × 200 integer matrix is even slower
than a sparse 364× 364 integer matrix, resulting from the cost of large integer arithmetic. Maple’s
Berkowitz algorithm is much much slower than the others, as the timings suggest.

From the above data, we can see that the float version is always faster than the integer version
(about 3 times faster). A method to improve the running time still further would be to use
the early termination technique (see [4]) to stop the Chinese remaindering. It would convert the
deterministic algorithm into a Monte-Carlo type probabilistic algorithm, with a bounded probability
of error. A good bound for the probability of error, such as 10−50 would be sufficient for all practical
applications.

4 Asymptotic Comparison of the Methods

Let A be an n×n matrix of integers. To compare the running times of the Berkowitz algorithm and
the modular algorithm, we suppose that the entries of A are bounded by Bm in magnitude, that
is, they are m base B digits in length. For both algorithms, we need a bound S on the size of the
coefficients of the characteristic polynomial c(x). A generic bound on the size of the determinant
of A is sufficient since this is the largest coefficient of c(x). The magnitude of the determinant of
A is bounded by S = n!Bmn and its length is bounded by n logB n + mn base B digits. If B > 215

then we may assume logB n < 2 in practice and hence the length of the determinant is O(mn) base
B digits.

In Berkowitz’s algorithm, the O(n4) integer multiplications are on integers of average size O(mn)
digits in length, hence the complexity (assuming classical integer arithmetic is used) is O(n4(mn)2).

6

Since Maple 9 uses the FFT for integer multiplication and division, the complexity is reduced to
Õ(n5m).

In the modular algorithm, we will need O(mn) machine primes. The cost of reducing the n2

integers in A modulo one prime is O(mn2). The cost of computing the characteristic polynomial
modulo each prime p is O(n3). The cost of the Chinese remaindering assuming a classical method
for the Chinese remainder algorithm (which is what Maple uses) is O(n(mn)2). Thus the total
complexity is O(mnmn2 + mnn3 + n(mn)2) = O(m2n3 + mn4).

If we assume m = O(n), that is, the size of the integer grows proportionally with the size of the
matrix, the complexity of the Berkowitz algorithm and the modular algorithm is Õ(n6) and O(n5)
respectively.

If we have |Ai,j | < B for all n (in the second set of timings |Ai,j | < 103), the complexity of the
Berkowitz algorithm and the modular algorithm is Õ(n5) and O(n4) respectively. In concluding, we
mention that algorithms which are asymptotically faster than O(n4) are known. Two recent refer-
ence are Kaltofen and Villard in [6] and Dumas, Pernet and Wan in [4]. We have not implemented
any of these algorithms.

References

[1] J. Abdeljaoued. The Berkowitz Algorithm, Maple and Computing the Characteristic Polynomial
in an Arbitrary Commutative Ring. MapleTech 5(1), pp. 21–32, Birkhauser, 1997.

[2] S. J. Berkowitz, On computing the determinant in small parallel time using a small number of
processors. Inf. Porcessing Letters 18(3) pp. 147–150, 1984.

[3] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate texts in mathemat-
ics, 138, Springer-Verlag, 1995.

[4] J.-G. Dumas, C. Pernet, Z. Wan. Efficient Computation of the Characteristic Polynomial. To
appear in The proceedings of ISSAC 2005, ACM Press, 2005

[5] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer Acad-
emic Publ., Boston, Massachusetts, USA, 1992.

[6] E. Kaltofen, G. Villard. On the Complexity of Computing Determinants. Journal of Computa-
tional Complexity 13 pp. 91–130, 2004.

[7] M. Monagan, K. Geddes, K. Heal, G. Labahn, S. Vorkoetter, J. McCarron, P. deMarco. Maple
9 Advanced Programming Guide, Ch. 6, Maplesoft, 2003.

[8] J. Quaintance, m×n Proper Arrays: Geometric Construction and the Associated Linear Cellular
Automata. Proceedings of the 2004 Maple Summer Workshop, 2004.

7

