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abstract 
 
 We explain how the use of mathematical software improves the teaching of mathematics 
to, and its understanding by, students of chemistry, while greatly expanding their capabilities to 
solve realistic chemical problems.  After an explanation of the need to improve this teaching and 
the opportunity with symbolic computation for this purpose, we outline the content of curriculum 
and its implementation, and provide examples of pertinent applications from thermodynamics 
and chemical kinetics.   
 
Why should we teach mathematics with computers?  
 
 Students of chemistry find mathematics difficult: some students entering a post-
secondary institution even select chemistry rather than physics because they think that they 
might thereby avoid much mathematics.  Even while chemistry has become more mathematical 
during the past half century, largely because of an increasing prominence of statistics in 
analytical chemistry and chemometrics and of quantum mechanics in physical chemistry that 
diffuses into inorganic and organic chemistry, there has been a tendency for the number of 
courses in mathematics required of a student with chemistry as major subject to decrease 
significantly.  For instance, at Simon Fraser University, in 1997 the requirements for chemistry 
as a major subject included five courses in mathematics – two first-year courses in differential 
and integral calculus, two second-year courses in multivariate calculus and linear algebra and a 
third-year course in differential equations; in 1998 the course on differential equations became 
no longer required. 
 
 During the same period, the methods of undertaking calculations have likewise altered, in 
a progression from use of tables of logarithms and of slide rules, through pocket calculators with 
basic arithmetical operations, to powerful and large digital computers with software possessing 
ever increasing capabilities, eventually to ubiquitous graphic calculators for the pocket and 
computers on most desks and on many shoulders.  Whereas before 1970 children in primary 
school learned how to extract square roots manually, since that era the topic has practically 
vanished from curricula:  the standard method to calculate a square root now involves depressing 
an appropriate button on a calculator.  Likewise, during the latter decades computers have 
evolved from being rare, huge and expensive machines devoted to mainly scientific and 
technological applications to become compact and inexpensive devices for which, at least in a 
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common domestic or commercial environment, technical applications are typically peripheral, 
even while their computational power and other properties have enormously increased.   
 
 Within the same past half century there has been some evolution in the teaching of 
mathematics, from a formal and abstract approach based largely on theorems to a more 
pragmatic and less systematic development, and to service courses, with decreased numbers of 
courses or hours of classes notwithstanding their intent to cover material over an increased range.  
The use of computers in the present conditions is non-uniform:  in some institutions courses are 
taught with greater or lesser invocation of computer algebra; in North America, the programs 
Maple (1) and Mathematica (2) predominate.  Even within a particular university this practice 
might vary from one instructor to another; the result is that students progressing from one course 
to the next are subject to conflicting philosophies of pedagogy and disparate expected standards 
of competence related to manual or machine execution.  In many cases, when computers have 
become involved, the content and delivery of standard courses have simply been developed in an 
isolated context, retaining a traditional sequence and scope of topics.   
 
 Taking into account both the learning capabilities of students of chemistry and the 
heuristic applicability of computer software, we contend that a radical reorganization of the 
teaching of mathematics to these students is both timely and feasible (3). Our concern here is 
with the mathematical material typically taught by mathematicians, rather than the mathematics 
of chemistry, such as solutions of Schrodinger's equation for prototypical systems and ‘group 
theory’ or symmetry that are generally taught within particular chemistry courses.  Programs for 
computer algebra or symbolic computation that operate readily on all current computers, even 
some devices small enough to fit in a pocket, not only possess embedded mathematical 
knowledge accumulated over thousands of years during the development of civilization but also 
might include material primarily directed toward the teaching of that knowledge.  Moreover, new 
features are being continually added to some products specifically for instruction; instructors 
who were disappointed with software available for teaching purposes a decade or more ago 
should reexamine the current programs. 
 
 We assert also that an holistic approach to the teaching of these mathematics at a post-
secondary level is obligatory, so as to optimize the progress of a student through not only the 
newly encountered mathematical topics but also their implementation with the selected software: 
instead of merely trying to convert existing courses within a traditional pattern, we must consider 
the total extent of mathematical knowledge and capability reasonably expected to be acquired by 
chemistry students, and chart a course through that material in association with chosen software. 
The scope of applications is not only their immediate chemical courses but even their entire 
technical career to follow, for which undergraduate studies are a direct or indirect preparation; 
we must organize the content of mathematical courses accordingly. 
 
 The teaching of mathematics that is strongly based on symbolic computation allows an 
instructor to explore a topic or principle according to four points of view:   
$ a formal statement is devised in words, just as according to tradition, but with increased 

emphasis on explanations of both pertinent terms and their inter-relations according to an 
accessible dictionary or encyclopaedia of mathematics;   
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$ an algebraic or symbolic treatment can expand to take advantage of the speed and scope 
of software for algebraic operations, instead of leaving a student bemused with “it can be 
shown that ...”;   

$ numerical illustrations, with test cases over a large range, are readily generated through 
simple repetition constructs, and numerical techniques, such as construction of splines 
and their applications, are effortlessly applied to complement the algebraic aspects;  

$ not only striking graphics are readily produced, in two and three dimensions, taking full 
advantage of colouring and contouring, but also dynamic animations of mathematical 
processes to portray geometrical interpretations; such a capability is consistent with a 
pertinent adage “a picture is worth a thousand words”, and that picture can remain 
branded into the memory of a student long after algebraic details are abjectly forgotten. 

The capacity of contemporary software for symbolic computation to produce outstanding plots is 
astonishing; teaching mathematics without use of such displays is incontestably inferior.  Rather 
than being distracted from the significance of a particular topic by tedious details of 
mathematical operations, teaching mathematics directly with computer algebra enables an 
instructor to convey, and his or her students to acquire, profound mathematical insight and 
understanding of the concepts and principles through the above four approaches in combination.  
In a course in mathematics, emphasis on concepts and reasoning can hence replace drill on 
technical details of manipulation required to solve routine exercises, and plots of geometric 
constructions can underpin those concepts to enliven the reasoning.   
 
 We illustrate with an example that had a profound impact on us personally, increasing 
our own understanding of eigenvectors.  Suppose that we seek to introduce the concept of the 
eigenvectors of a matrix.  In a typical textbook on linear algebra one would begin with a 
definition. 
 
         Let A be a n×n matrix over the set of real numbers.  A non-zero vector  v  is called an 
         eigenvector of A if there exist a scalar λ called an eigenvalue of A, such that A v  = λ v . 
 
From this point, how do we proceed?  A typical instructor might show an example and proceed 
to develop the method of calculating the eigenvalues and eigenvectors of A via the characteristic 
polynomial of the matrix λ I − A. Some properties of eigenvectors are presented, some 
applications are presented.  Three years later, what will the student remember about eigenvalues 
and eigenvectors?  Will the student know what an eigenvector is?  Will he or she remember even 
the definition? 
 
 We contend that the following plot provides a much deeper understanding of what the 
eigenvectors are, and it fixes the definition in the mind of the student for years to come.  This 
particular 2×2 matrix is called Fibonacci’s matrix.  In what follows, Maple input lines begin with 
the character > ; these are Maple commands that we have typed.   If required, the output from 
Maple appears after such input. 
 
 > with(Student:-LinearAlgebra): 

> A := Matrix([[1,1],[1,0]]); 
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 := A ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 1
1 0

 

    

 > EigenPlot(A,numvectors=25,showeigenvectors=false, 
       showunitvectors=true); 
 

 
Shown in the plot are 25 unit vectors.  For each unit vector u, we have computed v = A u and 
displayed the vector v with its tail placed at the head of u.  Thus the graphic provides an 
enlightening picture of what happens on multiplication by A.  We have deliberately suppressed 
the display of the eigenvectors.  Can you estimate what the eigenvectors and the eigenvalues are?  
From the definition, it follows that, if v were an eigenvector of A, it should lie in the same 
direction as, or opposite direction to, the corresponding u.  We can see one such vector that 
almost points in the direction approximately [3, 2]; this vector v is about 1.5 times as long as the 
corresponding vector u.  Thus we have one eigenvector v1 ≈ [3, 2] with eigenvalue λ1 ≈ 1.5.  We 
see another eigenvector v2  in the opposite direction of a unit vector u2 in the direction [−2, 3]; the 
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length of v2 is just under half the length of u2.  Hence we have a second eigenvector v2 ≈ [−2, 3] 
with eigenvalue λ2 ≈ −0.5.  We can see much more from this plot:  for instance, repeated 
multiplication of the vector w = [1, 1] by the matrix A causes the magnitude of w to increase and 
its direction to approach the first eigenvector.  This plot offers us a first understanding of what a 
stable eigenvector is, and, indeed, a method to compute it.  For further visual examples, 
including examples of 3×3 matrices visualized in three dimensions, we refer the reader to (4). 
 
 Students of chemistry traditionally receive instruction in mathematics either through 
service courses offered in departments of mathematics for other than their own major students, 
or, less commonly, directly by instructors in chemistry.  In agreement with Simons (5), symbolic 
computation can serve to make trivial the traditional service courses in mathematics; although 
Simons wrote in a context of teaching mathematics to students of engineering, exactly the same 
logic and argument are applicable to a chemical context.  The content of these traditional service 
courses in mathematics has been developed in the light of needs of users of mathematics before 
the era of accessible computers; a revised course must emphasize concepts and their 
implementation with software, rather than manual techniques.  For that reason a service course in 
mathematics in which the calculations are performed with appropriate software must have a 
different content, and emphasis on different skills, from those of a traditional course.  Likewise, 
the use of computer algebra increases the level of what a student can achieve without much 
understanding of technical details; for instance, a few general commands in relation to exact or 
numerical solution of differential equations can replace instruction in a long sequence of 
particular methods applicable to individual cases.  Service courses in mathematics that 
concentrate on solution of exercises, in linear algebra or differential equations for instance, can 
be transformed into courses on use of software for computer algebra.  Although understanding 
essentially all major concepts of mathematics traditionally taught in service courses for 
undergraduates is not difficult for most students of chemistry, applicable manual techniques to 
implement those mathematical principles might be tedious; in that sense many students of 
chemistry find mathematics difficult and repulsive, because not everybody has the capacity to be 
successful in such techniques.  When the tedious details are executed with a computer, the 
material becomes tractable and attractive.  In contrast, superior students who find such manual 
techniques boring can benefit from learning mathematics at a higher level of concepts and 
applications; software for computer algebra is again a valuable tool for enriching the curriculum. 
 
What should courses of mathematics taught with symbolic computation contain? 
 
 First, we must appreciate and accept that teaching with, or use of, computers for 
mathematical operations incurs an overhead in the form of learning to use the particular 
software.  Although some programs have a steeper learning curve than others, any software 
imposes on a user the constraint that he or she must comply with conventions of that particular 
software.  The design of curriculum must hence include an explicit initial component of instilling 
acquaintance with common commands and conventions of chosen software.  After a student 
gains familiarity with one program, switching to another program is not particularly challenging, 
because almost all programs for computer algebra operate in similar manners.  It is important for 
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a prospective instructor to recognize that, if a student learns and practises mathematics with 
computer software, that student must be expected to use and to apply that software generally; for 
instance, an examination written without access to a computer is counter-productive: a student 
will question why he or she should bother to learn to use the software if that skill is irrelevant for 
the eventual assessment in the course. 
 
 The plan of curriculum that we proffer begins at an almost zero formal level of 
mathematical knowledge:  arithmetic with integers, rational fractions, real numbers, random 
numbers and complex numbers, including relevant aspects of the International System of Units, 
Symbols and Notation, is followed by simple algebraic operations and solution of equations of 
various types.  This beginning permits a student to become acquainted with the language of a 
symbolic processor whilst making no significant demands on the assimilation of difficult 
mathematical concepts; an instructor need not, however, hesitate to include aspects of number 
theory, for instance, and of sets and other formal mathematical structures that were likely absent 
from courses in preceding school years.  The next large component of the total program of 
mathematical study begins with elementary functions – exponential and logarithmic, and forming 
and working with plots of various kinds; structures of simple molecules and unit cells of 
prototypical inorganic compounds are an immediate application of plotting in three dimensions. 
This basis provides an excellent platform for a review of descriptive geometry:  triangles in some 
detail, quadrangles and other polygons, but also polyhedra from a tetrahedron that might 
represent the structure of P4, to a truncated icosahedron to model the shape of C60, each with its 
geometric properties. Trigonometry follows, including circular and hyperbolic functions, and 
their inverses, that are readily inter-related in a way that is never envisaged within a school 
environment.  Although complex numbers in cartesian form were previously introduced as 
numbers of a particular kind, with trigonometry and plots other properties can be explored 
through their polar forms; conformal plots provide enlightenment about significant aspects of 
complex analysis.  Properties of series, polynomials and rational functions, and their applications 
in exact fits of data through polynomials and splines of varied degree, are standard.  Hence, 
although much of this material might be considered to be a precursor to study of mathematics at 
university level, one can avail of the opportunity to include, without undue strain on students, 
additional related topics still at a rather simple level; with astounding graphics to aid assimilation 
of concepts, such new topics actually serve to stimulate the interest of students at the same time 
that much emphasis is placed on learning the commands of the symbolic processor, with 
chemical illustrations and applications where appropriate, rather than to present fresh material in 
a concerted manner. 
 
 Even though some introduction to calculus might have been attempted in schools, the 
study of mathematics in traditional courses at tertiary educational level by students of chemistry 
begins typically with calculus, first differentiation then integration, progressing to multivariate 
calculus.  When comparable topics are taught with a symbolic processor, a student might be 
amazed to discover the power of a few commands or operators to implement all calculus, relative 
to the many commands and operators associated with the preceding topics.  Traditional textbooks 
on calculus typically omit or neglect numerical differentiation and integration, but such topics 
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are strongly relevant to the processing of numerical data collected in a chemical laboratory; their 
inclusion within a course taught with computer algebra poses no difficulties in either 
comprehension or implementation: the computer does the tedious calculations.  Fourier series 
constitute a topic readily explored as an application of integration.  Plots of rotatable surfaces in 
three dimensions are readily generated with computer graphics to illuminate aspects of 
directional or partial derivatives, whereas comparable renderings made free-hand by an instructor 
on a blackboard must be much less inspiring.  Operations with thermodynamic state functions 
and use of Lagrange multipliers in constrained optimization illustrate important applications of 
derivatives of functions of multiple variables.  When a student has grasped the significance of a 
derivative through geometric constructs in first two and then three dimensions through 
appropriate plots, including animations, extension to variables of increased number typical of a 
chemical problem, which are handled with the software just as readily as for a single independent 
variable, is straightforward. 
 
 The power of a symbolic processor is most prominent in application to linear algebra, 
differential equations and statistics.  No longer must an instructor restrict examples of matrices to 
those of second or third order, but he or she can work effortlessly with matrices of, for instance, 
sixth order that might be applicable to an important chemical system such as benzene.  
Operations with vectors, arrays, eigenvalues and eigenvectors, vector calculus and even tensors 
of second order, amply illuminated with striking plots, are simple to understand and readily 
executed with symbolic software.  Plots of a slope, or direction, field impress upon a student the 
meaning of a differential equation of first order in a manner that is impracticable without such a 
plot, and again laborious efforts by an instructor on a blackboard are largely ineffectual 
compared with the impact of a plot generated instantly with a symbolic processor. Solution of 
differential equations, single or within sets, pertaining to prototypical cases in chemical kinetics 
poses no problem for a symbolic processor, but has immediate relevance to obvious chemical 
applications.  Numerical solution of ordinary or partial differential equations is extremely tedious 
by hand, but just a few commands to contemporary symbolic processors readily yield accurate 
results.  Statistics, ranging from probability through distributions, linear and nonlinear regression 
to optimization, provide another instance of tedious human manipulation because of the extent of 
the data that must be treated in a realistic case.  Although some calculators provide multiple 
statistical functions, the additional and profound capability of advanced software on a standard 
computer is a valuable asset in teaching statistics and its embodiment in chemometrics. 
 
Implementation of courses and examples of applications of symbolic software    
 
 Will any professor of chemistry be unhappy if his or her undergraduate students both 
understood the concepts of all topics mentioned above and are able to execute the corresponding 
mathematical operations to solve chemical problems?  What is even more enticing about this 
approach is that the total duration of formal courses, comprising lecture demonstrations and 
supervised practice sessions at a weekly rate of two or three hours each for lectures and practice, 
might require as little as one year (or equivalent), although courses through three semesters 
would likely place an optimal pressure on students to meet applicable standards of proficiency.  
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The most obvious characteristic of a textbook to support such courses would be that it should 
have an electronic nature, operating on a computer with particular software in a truly interactive 
manner; it should provide both explanatory text, including mathematical definitions and 
explaining concepts and principles, and description of commands and elucidation of their results.  
A reader interactively executes commands that readily lend themselves to experimenting with 
values of parameters; sequences of commands illustrate the concepts and implement pertinent 
operations in a concerted sequence through the entire progression of topics. Although traditional 
contemporary textbooks of mathematics typically contain dozens or hundreds of problems per 
chapter, few purely mathematical exercises suffice in a context of computer algebra because 
generally the same command can effect operations on diverse functions that might be explored 
manually; instead, problems involving truly chemical applications can be assigned.  Such a 
textbook is eminently suitable even for self study, but students likely expect, and can in most 
cases profit from, lecture classes in almost a traditional format, in which an instructor relies 
mostly on a computer display to accompany explanation, rather than presenting all traditional 
material with the aid of a blackboard.  
 
 Despite the availability of software for pedagogical purposes to operate in association 
with some symbolic processors, one factor that has hampered the widespread application of 
symbolic computation for the teaching of mathematics has been the lack of a specially designed 
textbook for this purpose.  Even though software for symbolic computation has become 
remarkably enhanced and extended since 1997 when Simons wrote his provocative essay (5), 
great emphasis in the development of software has been placed, in some notable cases, on 
packages designed specifically for pedagogical purposes.  Such a lack of an appropriate textbook 
has been remedied with the preparation of at least one interactive electronic textbook of 
mathematics for chemistry (6) of a type and content described above.  For use in composite 
classes of students from multiple science departments, it would be highly desirable for each 
student to have a textbook with examples and exercises designed for each particular subject; a 
mathematician as instructor could then concentrate on mathematical concepts and their 
implementation in purely mathematical contexts with which he or she might feel most 
comfortable, but a student could apply the particular examples and exercises pertaining to his 
subject to gain an improved knowledge of his or her field.  At this time of writing, no 
comparable textbook is, however, available for biology, geology or physics for instance, 
although there are generally several worthy printed books that might supplement conventional 
textbooks by supporting the use of a symbolic processor for applications of mathematics to each 
other subject.  Experience has shown, however, that an interested professor of chemistry without 
an exceptionally profound knowledge of mathematics can employ that textbook (6) to teach 
mathematics to chemistry students. 
 
 At this point, a reader might be curious – or even expect – to see displayed here some 
examples of advantageous application of symbolic computation to teach mathematics to 
chemistry students.  Although one can readily invoke many such examples, naturally their 
presentation on a printed page falls far short of their impact on a live computer screen; such 
examples include animation of a plot of a Riemann sum approaching a limit of a definite 
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integral, illustration of a distinction between image vectors and eigenvectors when a matrix of 
third order acts on vectors on a unit sphere, visual illustrations of partial derivatives in three 
dimensions and so forth.   
 
 As three explicit illustrative examples, we present one from linear algebra and two from 
differential equations, for which we have employed commands in Maple (1).  In our first 
example, not particularly chemical, we form a 3×3 matrix A with numeric elements, 
 
 > with(Student:-LinearAlgebra): 

> A := Matrix([[1,1,1],[2,-1,0],[1,-2,-1]]); 
 

 := A
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

1 1 1
2 -1 0
1 -2 -1

 

and a column vector b with these numeric components, 
 
 > b := Vector([2,3,1]); 

 := b
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

2
3
1  

With this intuitively obvious command we construct the augmented matrix, 
 
 > Ab := <A|b>; 

 := Ab
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

1 1 1 2
2 -1 0 3
1 -2 -1 1  

and convert it to reduced row-echelon form, which yields this result: 
 
 > ReducedRowEchelonForm(Ab); 
 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

1 0
1
3

5
3

0 1
2
3

1
3

0 0 0 0

 

For this purpose, Maple has evidently applied exact arithmetic, not decimal numbers, just as an 
instructor would use: the closer that the output from the software is to what one would do in 
class, the more confident the student becomes in proceeding to the next step.  With a Maple 
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command, 
 
 > LinearSolve(A, b, free=t); 
 

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

t1

 − 2 t1 3

−  + 3 t1 5
 

we solve this linear system.  Instead of an error message being presented because the system of 
linear equations exhibits a linear dependence, the solution is presented in terms of a parameter t 
in the same way that we would present the solution set by hand on the blackboard.  A command 
to form a plot for which one specifies the matrix A and the vector b yields a three-dimensional 
plot containing three solid circles, coloured red, blue and green, that all intersect along a line, 
consistent with the solution above.  This graphic facility can not be underestimated: an instructor 
might easily sketch points, lines and vectors in a plane, but on a blackboard the latter diagram in 
three dimensions is difficult to draw quickly, and is not rotatable, unlike the computer display.  
For the same reason, to show this diagram on a printed page is difficult; if Maple be available to 
the reader, this Maple command generates the plot.   
  
 > LinearSystemPlot(A,b); 
 
 A typical traditional course on differential equations comprises a sequence of recipes for 
solving differential equations of several selected types; although it is valuable and necessary for 
a student to be able to solve some equations by hand, it is poor use of a student’s time to devote 
an entire course to this activity.  For students of chemistry the course should emphasize modeling 
and applications, teaching students how to construct differential equations, or systems thereof, 
from a chemical or physical model.  For instance, as a problem in thermodynamics, consider two 
bodies, A and B, at different temperatures, that are placed in contact.  Heat can then flow from 
one body to another as well as from each body to the surroundings; the temperatures of the 
bodies vary with time, as A(t) and B(t). We can then write these two coupled differential 
equations. 
 

              > des := diff(A(t), t) = -k[1]*(A(t)-T[m]) + k[2]*(B(t)-A(t)), 
         diff(B(t), t) = -k[1]*(B(t)-T[m]) - k[2]*(B(t)-A(t)) + F; 
 

                               

des  = 
d
d
t

( )A t −  + k1 ( ) − ( )A t Tm k2 ( ) − ( )B t ( )A t , := 

 = 
d
d
t

( )B t −  −  + k1 ( ) − ( )B t Tm k2 ( ) − ( )B t ( )A t F

 

Here Tm is the temperature of the surroundings that can accept all heat isothermally, and F 
denotes a constant positive flux of heat being supplied directly to object B; positive coefficients 
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k1 and k2 pertain to the rates of transfer of heat from either body to the surroundings and from 
one body to the other, respectively.  Perhaps the most important feature of a processor for 
symbolic computation such as Maple is that the display of a mathematical formula is typeset, and 
resembles closely the way that it would appear on the blackboard or in a textbook. 
 
 We seek to compute the temperatures of the two bodies in a steady state in terms of 
parameters k1, k2 and F.  Invoking a command to solve two linear simultaneous equations in this 
set for the temperatures of A and B in a steady state, i. e. when both derivatives in the left sides 
are equal to zero, and simplifying the resulting expressions yields the following results.  
 
 > sys := {0 = -k[1]*(A - T[m]) + k[2]*(B - A), 
              0 = -k[1]*(B - T[m]) - k[2]*(B - A) + F}; 
 

                 
 := sys { }, = 0 −  + k1 ( ) − A Tm k2 ( ) − B A  = 0 −  −  + k1 ( ) − B Tm k2 ( ) − B A F

 

Solving the system, we write the solutions as polynomials in F, and simplify their coefficients. 

           > TempSteadyState := collect(solve(sys, {A,B}), T[m], simplify); 
 

                
 := TempSteadyState { }, = A  + Tm

k2 F
k1 ( ) + k1 2 k2

 = B  + Tm

F ( ) + k1 k2

k1 ( ) + k1 2 k2

 

Expressing the solutions in this way using symbolic computation provides physical insight; 
according to these results one can directly understand that the temperature in the steady state is 
directly proportional to F, that, if F = 0, the temperature in the steady state is that Tm of the 
surroundings, and that otherwise object B is hotter than A – this is a proof!  With the available 
graphical capability and inserting appropriate values of the parameters, we can show a phase-
portrait plot with an initial-value solution, and make an animation as a function of the ratio of k1 
and k2. Such plots exhibit the physical or chemical principles and activities, and confirm the 
algebraic results. We can show no animation here on the printed page, but, for F = 5, k1 = 0.1, k2 
= 0.3 and Tm = 0 in appropriate units, we show one frame, with four solution curves; these curves 
show the extent, at time t = 10, of the approach of the temperatures of both bodies A and B to the 
steady state from four initial conditions, in which one or other, or both, bodies begin at 0 or 35 
degrees.   
 

> (k[1], k[2], F, T[m]) := (0.1, 0.3, 5, 0); 
 

:= , , ,k1 k2 F Tm , , ,0.1 0.3 5 0  

> ivs := {[A(0)=0, B(0)=0], [A(0)=0, B(0)=35], [A(0)=35,  
                B(0)=0], [A(0)=35, B(0)=35]}; 
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ivs [ ], = ( )A 0 0  = ( )B 0 0 [ ], = ( )A 0 0  = ( )B 0 35 [ ], = ( )A 0 35  = ( )B 0 0, , ,{ := 
[ ], = ( )A 0 35  = ( )B 0 35 }

 

> DEtools[DEplot]( [des], [A(t),B(t)], t=0..10, 
        A=0..40, B=0..40, ivs, linecolour=black, arrows=medium); 

 
 
 
We compute to three digits the temperature at the steady state. 
 

> evalf[3](TempSteadyState); 
 

                                                  { }, = B 28.6  = A 21.4  
 
As a final example genuinely appropriate to chemical kinetics, we consider a chemical 

system of two reactants, A and B, that combine to form product C, 
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    kf  
 A  +  B  –>  C  
 
but C also dissociates to reform A and B;  
  
      kr 
 C  –>  A +  B 
 
the coefficients of rates of forward, kf, and reverse, kr, reactions have similar magnitudes. We use 
here A, B and C as both the names of reactants and their respective concentrations.  With initial 
concentrations a, b and c, the differential equation for the loss of reactant A in this kinetic 
system,  
 
 − dA(t)/dt  =  kf A(t) B(t)  − kr C(t) 
 
is expressed in this Maple statement with x(t) as the extent of depletion of A at duration t after 
the onset of reaction. 
 
 > eqA := - Diff((a - x(t)),t) = k[f]*(a - x(t))*(b - x(t))  

- k[r]*(c + x(t)); 
 

 := eqA  = −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∂

∂
t

( ) − a ( )x t  − kf ( ) − a ( )x t ( ) − b ( )x t kr ( ) + c ( )x t
 

Although Maple can produce an algebraic expression as the solution to this equation with a, b, c, 
kf and kr in symbolic form, to avoid complicated formulae it is preferable here to apply numerical 
values for these parameters, as follows. 
 
 > a := 1:  b := 2:  c := 0:  k[f] := 1:  k[r] := 1/5: 
 
With the initial condition x(t) = 0 at t = 0, the differential equation is then readily solved with 
this command. 
  
 > sol := dsolve( {eqA, x(0)=0}, x(t) ); 
 

 := sol  = ( )x t −
1
35

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−  + 4 14 7 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟tanh

1
70

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + 14 t 5 14 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟arctanh

4 14
7

14 14  

We plot the results, which show how the concentrations of reactants A and B decrease from their 
initial values, eventually becoming constant but neither zero for A nor unit concentration for B, 
whereas the concentration of C increases from its initially assigned zero value to a constant 
value.  
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     > plot( [a-rhs(sol), b-rhs(sol), c+rhs(sol)], t=0..5, 0..2, 
   colour=[red,blue,green], titlefont=[TIMES,BOLD,12], title= 
   "concentrations of A,B,C versus time\n for a reversible                 
reaction"); 

 

We calculate the concentration of A when, at infinite duration, the system attains equilibrium. 
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 > Aequil := limit( a-rhs(sol), t=infinity );   
 

 := Aequil −  + 
3
5

14
5  

> evalf(Aequil); 
0.1484  

According to analogous statements, the corresponding concentration of B is 1.148 and of C is 
0.852, in the same units implied in the initial conditions.  The rate of a chemical reaction is 
proportional to concentrations of pertinent species whereas equilibrium properties depend on 
their activities; neglecting a distinction between concentrations and activities, we find that the 
equilibrium quotient, Keq = Ceq / (Aeq Beq), for this system in this approximation is simply the 
ratio, kf /kr, of the coefficients of rates of forward and reverse reactions.  By altering the 
numerical values of the five parameters we can discern how the final concentrations of the three 
compounds A, B and C and the equilibrium quotient depend on the rate coefficients. 
 
 For innumerable additional examples, we respectfully suggest that an interested reader 
sample a particular comprehensive interactive electronic textbook (6 ) that has been designed, 
and tested in practice, for the teaching of mathematics to students of chemistry.  Computer files 
that constitute this electronic textbook require operation with specific software for computer 
algebra, but the cost to a student of both the book and that software that operates on all common 
operating systems is comparable with the cost of a traditional printed textbook; that printed book 
might be prescribed for a particular course during only one semester, whereas the software, with 
or without the electronic book, is useful for general mathematical applications until the user 
hungers for a newer version!  Of course software other than Maple is available, in some cases 
even free, on the basis of which one might compose an alternative electronic textbook, but so far 
such a realization is lacking.  Another factor hampering the widespread application of software 
for symbolic computation has been the price of the software, but the price of software is in some 
cases decreasing; for example, versions of Maple are being bundled with textbooks for a modest 
cost. 
 
 We add a cautionary note about the teaching of mathematics in schools.  We in no way 
advocate the replacement, during primary and secondary education, of acquiring substantial 
mental and manual skills in arithmetic and algebra by direct use of calculators and computers 
with their associated software, although such devices might enrich the teaching of pertinent 
topics through illustrative plots or otherwise.  Furthermore, when the total duration of primary 
and secondary education involves study of arithmetic and mathematics for twelve years or less, 
we have grave reservations about the inclusion of calculus as a significant component of that 
curriculum; instead, in addition to algebra and introductory statistical topics, geometry, with 
appropriate trigonometry, in both formal and descriptive aspects should be emphasized as a 
preparation of every adult to appreciate the concepts of space and form, as a basis of 
understanding architecture and art.  For the illustration of geometric operations and concepts, 



 16

there exists commendable heuristic software that is applicable to a school context. 
 
Conclusion  
 
      We must all agree not only that computers are here forever but also that they affect 
strongly the teaching and practice of mathematics, for chemistry students or otherwise, just like 
every other aspect of knowledge activity and communication; hence our student of chemistry 
who is deprived of a significant acquaintance with mathematical – not merely arithmetical – 
software is not being prepared properly for a technical career.  Currently available mathematical 
software, nominally for symbolic computation but with associated numerical and graphical 
capabilities highly developed, provides an invaluable tool for both teaching and doing 
mathematics, and should become an integral component of routine instructional presentation.  
Instruction should emphasize mathematical concepts and principles, with numerical and 
graphical interpretations and illustrations, and indicate how mathematical operations are 
implemented, although there is no necessity to restrict implementation to a single software 
product.  Just as each student practises manipulation of chemicals and instruments in the 
chemical laboratory, he or she should learn how to adopt an experimental and constructive 
approach to mathematics, based on mathematical software, rather than a sterile formal 
description according to theorems, corollaries, lemmas et cetera, for the chemist will be a user of 
mathematics not a developer of mathematics.  As mathematical software continues to evolve, 
both instructors and their students must expect to expand their mathematical horizons, and to 
progress in their own development stimulated through that software.  The future development of 
internet communication and its impact on education are difficult to predict – even a few years 
into the future, but what is certain is that both content and process of mathematical and chemical 
education are evolving rapidly as a consequence of the existence and deployment of digital 
computers and symbolic computation.  Each instructor of both chemistry and mathematics has a 
solemn duty and responsibility to adapt to, and to work with, computers to prepare optimally his 
or her students for future technical careers.  The future might be unpredictable in detail, but the 
trends are clear: computers and symbolic computation in the teaching and practice of chemistry 
and mathematics are indisputably part of them. 
 
 We must likewise accept that, just like the demise of manual calculation of square roots 
of numbers, the future practice – already well in progress – of mathematics by chemists will 
involve not manipulation of numbers and formulae by hand but mostly invocation of symbolic 
computation for such purposes.  At this time it is only sensible to revise the teaching of 
mathematics for students of chemistry to reflect the realities of available computer hardware and 
software; with an interactive electronic textbook, software in the form of sophisticated 
processors for computer algebra and cognate operations makes such study of mathematics for 
chemistry eminently practicable. 
 
 
 
 



 17

Literature cited 
 
1.  Monagan, M. B.; Geddes, K.; Heal, K.; Labahn, G.; Vorkoetter, S.; McCarron, J.; DeMarco, 
P.  Maple 10 Introductory Programming Guide.  Maplesoft: Waterloo, Canada, 2005.  ISBN 1-
894511-76. 
 
2.  Wolfram, S.  The Mathematica Book, Cambridge University Press: Cambridge, UK, 1996. 
     ISBN 0-5221-58889-8. 
 
3. Ogilvie, J. F. Teaching and doing mathematics with symbolic computation, in Proceedings, 
Eighth Asian Technology Conference in Mathematics 2003, 1, 16 – 22; http://www.atcminc.com  
 
4.  Monagan, M. B. 2D and 3D Graphical Routines for Teaching Linear Algebra, Proceedings, 
2002 Maple Summer Workshop, Waterloo Maple Inc., 2002; available from  
   http://www.cecm.sfu.ca/CAG/products2002.html 
 
5.  Simons, F. Computer algebra in service courses, CTI Math & Stats Newsletter, 8 (3), 1997 
August, CTI Centres for Mathematics and Statistics, University of Birmingham, UK  
   http://aweb.bham.ac.uk/ctimath/reviews/aug97/algebra.pdf 
 
6. Ogilvie, J. F.  with Doggett, G.; Fee, G. J.; and Monagan, M. B. Mathematics for Chemistry 
with Symbolic Computation, volume 1, Maplesoft, Waterloo, Canada, 2005;  
   http://www.maplesoft.com/products/thirdparty/math_for_chemistry/index.aspx 
 
 


