
Algorithms for Solving Linear Systems over

Cyclotomic Fields

Liang Chen and Michael Monagan

Department of Mathematics
Simon Fraser University

Burnaby, B.C. V5A 1S6, CANADA.

Abstract

We consider the problem of solving a linear system Ax = b over a cyclotomic field. What makes
cyclotomic fields of special interest is that we can easily find a prime p that splits the minimal
polynomial m(z) for the field into linear factors. This makes it possible to develop very fast
modular algorithms.

We give two output sensitive modular algorithms, one using multiple primes and Chinese
remaindering, and the other using linear p−adic lifting. Both of our algorithms use rational
reconstruction to recover the rational coefficients in the solution vector. We have implemented
both algorithms in Maple with key parts of the implementation implemented in C for efficiency.
A complexity analysis and experimental timings both show that Chinese remaindering is com-
petitive with p−adic lifting.

We also give a third algorithm which computes the solution x as a ratio of two determinants
modulo m(z) using Chinese remaindering. This representation is a factor of d = deg m more
compact in general, and because of this, we can compute it the fastest in general.

1. Introduction

In this paper we consider the problem of how to efficiently solve a linear system
Ax = b over an algebraic number field Q(ζ) where ζ is a k’th primitive root of unity.
These number fields, which include the complex rationals, are called the cyclotomic fields.
The minimal polynomial m(z) for ζ is Φk(z), the k’th cyclotomic polynomial. This is a
monic irreducible polynomial over Z of degree d = φ(k) where φ is Euler’s function. The
first few cyclotomic polynomials are shown in Table 1..

Our motivation for considering linear systems over cyclotomic fields arose from prob-
lems given to us by Vahid Dabbaghian from computational group theory – from the
search for a matrix representation over C for a finite group.
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k Φk(z) k Φk(z)

3 z2 + z + 1 7 z6 + z5 + z4 + z3 + z2 + z + 1

4 z2 + 1 8 z4 + 1

5 z4 + z3 + z2 + z + 1 9 z6 + z3 + 1

6 z2 − z + 1 10 z4 − z3 + z2 − z + 1

Table 1. Cyclotomic polynomials of order 3–10

Finding efficient algorithms for solving a linear system Ax = b over Q is a classical
problem in computer algebra. One approach is to solve Ax = b modulo a sequence of
primes p1, p2, ...., and recover the rational solutions in x using Chinese remaindering and
rational number reconstruction. For a linear system of dimension n with Ai,j , bi ∈ Z
where |Ai,j |, |bi| < 10c, that is, the size of the integers in the input are bounded by c
digits in length, in general, the size of integers in the solution vector x are n times longer
than those in A and b. This means that if we use machine primes, primes of constant bit
length, this method will need O(cn) primes in general. If ordinary Gaussian elimination is
used to solve the O(cn) linear systems modulo the primes, the complexity of this multiple
prime approach is dominated by cn · n3 if ordinary Gaussian elimination is used.

By using linear p−adic lifting one can reduce this to c · n3. The p−adic approach was
first applied to linear systems by Dixon in (4) and Moenck and Carter in (9). The recent
paper of Chen and Storjohann (1) describes an implementation of the this approach
which reduces the matrix inversion modulo p to floating point matrix multiplications so
that level 3 BLAS can be used. We also cite the work of Storjohann (12) which looks at
the complexity of solving Ax = b over Q and contains an extensive bibliography on the
problem.

In principle, the same two basic approaches, Chinese remaindering and linear p−adic
lifting, with rational number reconstruction, can be applied to linear systems over a
number field Q(α). What makes the cyclotomic fields of special interest is the following
well known property.

Lemma 1. Let m(z) be a cyclotomic polynomial of degree d and let p be a prime. The
probability that m(z) splits into distinct linear factors over Zp is asymptotically 1/d.

Lemma 1 means that there are many primes that split m(z) available. If Q(α) is an
algebraic number field with minimal polynomial f(z) of degree d, then, in general, the
probability that f(z) splits into linear factors over Zp is 1/d! which is too low to try to
split f(z). Furthermore, since we can efficiently factor m(z) into linear factors over Zp

we can solve Ax = b mod p at each root of m(z), potentially in parallel, then interpolate
the n polynomials in xi ∈ Zp[z], again, potentially in parallel. The advantage is that we
reduce the solving of Ax = b mod m(z) to solving d linear systems over Zp where, if we
choose the prime(s) p appropriately, all the arithmetic in Zp that needs to be done can
be done directly by the hardware of the computer.

Our paper is organized as follows. In section 2 we first look at the problem of find-
ing a prime p that splits a cyclotomic polynomial into linear factors over Zp. We then
present and analyze the running time of three modular algorithms. The first uses Chinese
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remaindering and rational reconstruction. The second uses linear p-adic lifting and ratio-
nal reconstruction. The third uses Chinese remaindering only to reconstruct the solutions
as ratios of determinants over Z.

We have implemented the algorithms in Maple 10. In Section 3 we present timings
comparing the algorithms on different problem sets including random inputs and real
systems given to us by Vahid Dabbaghian. Unlike the case of solving linear systems over
the rationals, where the linear p-adic method is clearly superior, when solving Ax = b
over a cyclotomic field, computation of the “error” makes the linear p-adic method more
expensive. Furthermore, the size of the integers in the solution vector x may give Chinese
remaindering an advantage. Chinese remaindering also has the advantage of being more
easily parallelized.

We assume the reader is familiar with rational reconstruction. Rational reconstruction
was invented by Paul Wang in (13). A more accessible description of the rational recon-
struction problem and the solution using Euclid’s algorithm can be found in (2). We use
the algorithm of Monagan in (10) because it allows us to control the failure probability.

2. Solving Systems Involving Roots of Unity

We present three modular algorithms for solving a linear system Ax = b modulo m(z)
where m(z) is a cyclotomic polynomial of degree d. We restrict to the case A is non-
singular. We assume fractions in the input system Ax = b have been cleared and powers
of z have been reduced modulo m(z) so that Ai,j , bi are polynomials in Z[z] of degree
less than d.

For the purpose of determining the complexity of our algorithms we use n = dim A,
d = deg m(z), and suppose that largest integer appearing in the input A, b is bounded by
10c and the largest integer appearing in the numerators and denominators of the rational
coefficients in the solution vector x is bounded by 10e. We also use the following notation
and lemma in our analyses.

Let f(z) =
∑l

i=0 aiz
i with ai ∈ Z. Let ||f ||∞ = maxi |ai| denote the height of f(z)

and let ||f ||1 =
∑

i |ai| denote the one-norm of f(z). For the matrix A and vector b of
polynomials in Z[z] let

||A|| = max
i,j

||Ai,j ||∞ and ||b|| = max
i
||bi||∞.

Lemma 2. Let m(z) = xd +
∑d−1

i=0 aiz
i with ai ∈ Z. Let f(z) =

∑l
i=0 biz

i with bi ∈ Z.
Let r be the remainder of f divided m. Then r ∈ Z[x] (because m is monic) and ||r||∞ ≤
(1 + ||m||∞)δ||f ||∞ where δ = l − d + 1.

Proof. The quotient of f divided m has degree l−d, hence, there are at most l−d+1 = δ
subtractions in the division algorithm. The first subtraction is f1 := f − blx

l−dm. We
have ||blm||∞ ≤ ||f ||∞||m||∞, hence,

||f1||∞ ≤ ||f ||∞ + ||m||∞||f ||∞ = (1 + ||m||∞)||f ||∞.

For the purpose of bounding ||r||∞ we assume deg f1 = l − 1. The next subtraction is
f2 := f1 − lc(f1)xl−1−dm. Bounding |lc(f1)| ≤ ||f1||∞ we have

||f2||∞ ≤ ||f1||∞ + ||f1||∞||m||∞ = (1 + ||m||∞)2||f ||∞.

Repeating this argument the result is obtained. 2
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2.1. Splitting m(z) into linear factors.

Let m(z) = Φk(z) be the k’th cyclotomic polynomial of degree d = φ(k). The following
fact (see Huang (8) which mentions this result and other useful results about cyclotomic
polynomials and their factorization modulo primes) characterizes precisely which primes
split m(z) into distinct linear factors and tells us how to find them. For completeness we
give a proof.

Lemma 3. Let p be a prime and let m(z) = Φk(z) be the kth cyclotomic polynomial. If
p - k then m(z) has distinct roots in Zp if and only if p ≡ 1 (mod k).

Proof. Recall that if p is a prime then Fermat’s little theorem says ap ≡ a mod p for
all integers a, hence, 0, 1, 2, ..., p − 1 are roots of the polynomial zp − z over Zp. Since
m(z)|zk − 1, to prove the Lemma it suffices to show zk − 1|zp−1 − 1 over Zp if and only
if k|p− 1. The easiest way to see this is to verify that if p− 1 = kq then

zp−1 − 1 = zkq − 1 = (zk − 1)(zk(q−1) + zk(q−2) + ... + zk + 1)

and if p− 1 = kq + r with remainder r 6= 0 then the remainder of zkq+r − 1 divided by
zk − 1 is zr − 1 which is not zero over Zp. 2

Suppose we have found a prime p satisfying the condition in Lemma 3. Then m(z)
has d roots in Zp. To compute the roots we use use the probabilistic algorithm of Rabin
in (11) which is based on the following observation. For a prime p > 2, the polynomial
zp − z = z(z(p−1)/2 − 1)(z(p−1)/2 + 1) has as roots 0, 1, 2, ..., p − 1 in Zp. Therefore for
α ∈ Z, the polynomial (z + α)(p−1)/2 − 1 has (p − 1)/2 of the integers 0, 1, ..., p − 1 as
roots in Zp. Thus for d > 1 if one computes

g = gcd((z + α)
p−1
2 −1 − 1,m(z))

one will likely get a non-trivial factor of m(z). By repeating this gcd computation for
different α one eventually splits m(z). Then one splits g and m/g recursively.

If α is chosen at random then one can show (see (6) Ch. 8) that

Pr(g 6= 1 and g 6= m) >
1
2
− 1

2p2
≥ 4/9.

In order to compute g efficiently for large p one needs to use the repeated squaring
with remainder algorithm – one computes the remainder r(z) of (z + α)(p−1)/2 divided
m(z) using repeated squaring modulo m(z) then computes g = gcd(r(z)− 1,m(z)).

An analysis of the time complexity for factorization of univariate polynomials over
finite fields can be found in Gerhard and von zur Gathen’s book (5). Adapting Theorem
14.1 of their book to the case where m(z) is a product of linear factors, we have the
following result.

Theorem 4. The expected number of arithmetic operations in Zp that Rabin’s algorithm
takes to split m(z) into linear factors over Zp is O(log d(log p + log d)M(d)) where M(d)
is the cost of multiplying two polynomials of degree d over Zp.

Note, the first contribution to the cost, log d log p M(d), is the repeated squaring cost
and the second contribution, log2 d M(d), is the gcd computation cost. If one uses classi-
cal quadratic algorithms for univariate polynomial multiplication and gcd, the expected
running time is O(log p d2 log d).
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Gerhard and von zur Gathen also point out in their text that the basic ideas behind
this probabilistic algorithm, in particular, the gcd used to split m(z), were already known
to Legendre in 1785!

It is natural to ask whether, for cyclotomic m(z), we can compute the roots faster
than Theorem 4. Suppose we can find one root α of m(z). Then since α is a primitive
root of unity, αk = 1, and hence the other roots of m(z) are simply the d powers αi for
0 < i < k with gcd(i, k) = 1 which can be computed in O(k) multiplications in Zp. So
the question now is, how fast can be compute one root of m(z)?

If we modify Rabin’s algorithm to compute only one root of m(z) in the obvious
way, namely, split recursively either g or m/g, whichever has smaller degree, then we
can compute one root in time O((log p + log d) M(d)). And since the computation of the
other roots is trivial, we have the following result which improves Lemma 4 by a factor
of log d.

Theorem 5. Let m(z) = Φk(z) be the kth cyclotomic polynomial and d = φ(k) and p
be a prime such that p ≡ 1 mod k. The d roots of m(z) which are in Zp can be computed
in O((log p + log d)M(d)) arithmetic operations in Zp (on average).

2.2. Chinese Remaindering

2.2.1. The Algorithm

Algorithm 1 CRT Approach
Input: A ∈ Zn×n[z], b ∈ Zn[z], m ∈ Z[z] a cyclotomic polynomial of degree d.
Output: x ∈ Qn[z] which satisfies A.x ≡ b (mod m).
1: Set x(0) = 0 and P = 1.
2: for k = 1, 2, 3, . . . do
3: Find a new prime pk s.t. m(z) has d distinct roots αk1, .., αkd in Zpk

and compute
them.

4: Let Ak = A mod pk and bk = b mod pk

5: for i = 1 to d do
6: Evaluate Ak and bk at z = αki mod pk.
7: Solve Ak(αki).xki ≡ bk(αki) mod pk for xki.
8: If Ak(αki) is not invertible modulo p goto Step 3.
9: end for

10: Interpolate xk(z) using (αk1, xk1), .., (αkd, xkd).
11: Apply Chinese remaindering to recover x(k) from x(k−1) mod P and xk mod pk

and set P = pk × P .
12: if k ∈ {1, 2, 4, 8, 16, . . .} then
13: Let x be the output of applying rational reconstruction to the integer coefficients

of x(k) mod P.
14: If rational reconstruction succeeded and m(z)|(A.x− b) then output x.
15: end if
16: end for

Algorithm 1 as stated assumes that A is invertible over Q. In order to prove that
Algorithm 1 is correct, we need to show that all images of the solutions used in the
reconstruction of the solution x over Q are correct. Consider the 1 by 1 linear system

[10z + 15]x = [1]
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where m(z) = z2 + z + 1. The solution is

x = [−2/35z + 1/35].

Looking at the solution we see that our algorithm cannot work if it uses primes 5 or 7.
It is clear that the matrix A = [10z + 15] is singular mod 5 and Algorithm 1 detects
this in step 8. But what about the prime 7? The determinant D = detA = 10z + 15
is not 0 modulo 7 but D−1 does not exist mod 7 and hence A is not invertible mod 7.
Does Algorithm 1 also eliminate the prime 7? Lemma 6 below proves that it does. First
a definition.

Definition 2.1. Let D = det(A) ∈ Z[z]. A prime p chosen by Algorithm 1 is said to be
unlucky if D is invertible modulo m(z) but D is not invertible modulo m(z) modulo p.

Lemma 6. Let p be a prime chosen in Algorithm 1 so that m(z) = Πd
i=1(z − αi) for

distinct αi ∈ Zp. Then p is unlucky ⇒ A(αi) is not invertible modulo p for some i.

Proof. Let D = det A ∈ Z[z]. Then p is unlucky ⇒ D is not invertible modulo (m(z), p)
⇒ degz gcd(D mod p, m mod p) > 0 ⇒ z − αi|D mod p for some i ⇒ D(αi) = 0 mod p
⇒ A(αi) is not invertible mod p (for some i). 2

From the proof we can see also that the unlucky primes are precisely the primes that
divide the resultant

R = resz(D(z),m(z)).
It follows that for given inputs A, b and m(z) with A invertible in characteristic 0, there
are finitely many unlucky primes, and therefore, if the primes chosen by Algorithm 1 are
chosen from a sufficiently large set, Algorithm 1 will rarely encounter an unlucky prime.
Lemma 11 in Section 2.4 bounds the size of the integer R and can be used to bound the
probability that Algorithm 1 chooses an unlucky prime. It can also be used to modify
Algorithm 1 to detect whether A is singular in characteristic 0.

In our analysis of the running time of Algorithm 1 below we have assumed that
unlucky primes are rare, and hence, do not affect the running time. Our implementation
of Algorithm 1 uses machine primes, 31 bit primes on a 64 bit machine, and 25 bit floating
point primes on a 32 bit machine, and consequently unlucky primes are rare in practice.

2.2.2. Analysis
We state the running time of Algorithm 1 in terms of n, d, c which quantify the size of

the input and L, the number of primes needed by Algorithm 1 to reconstruct x. Because
we use machine primes, primes of constant bit-length that fit into a machine word, L is
linear in e, the length of the largest integer appearing in the rational coefficients in x.

In general, the length of the rationals appearing in the output can be slighty more
then nd times longer than those in the input (see Lemma 11). But in section 3.1 our
linear systems arising in practice illustrate that L can be much much smaller. Thus we
state the running times for L and also for L ∈ O(cnd).

Theorem 7. The running time for Algorithm 1, assuming no unlucky primes are en-
countered, and not counting the cost of the trial divisions m(z)|A.x − b (in the next
section we will show that the trial divisions can be eliminated from Algorithm 1), is

O(n3dL + n2d2L + n2dLc + ndL2).
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Moreover, if L ∈ O(cnd) then the cost is

O(n4d2c + n3d3c2).

The first term n3dL is the cost of the linear solves modulo p, the second n2d2L is for
evaluating A at the d roots modulo p, the third n2dLc is for reducing the input matrix A

modulo p, and the fourth ndL2 is the cost of the Chinese remaindering and the rational
reconstruction.

Note, rational reconstruction is not attempted at each step because, unlike Chinese
remaindering, it cannot be done efficiently incrementally. Thus our description of the
algorithm implies that Algorithm 1 may use up to twice as many primes (so O(L) primes)
as are necessary to reconstruct x.

Proof. In step 3 the cost of finding a new machine primes pk which split the minimal
polynomial m(z) into linear factors is negligible. The cost of computing the roots is
O(log d(log p + log d)M(d)) where M(d) is the cost of multiplication of polynomials of
degree d over Zp. Since our primes are machine primes, of constant bitlength, this reduces
to O(log2 dM(d)). If Karatsuba’s multiplication algorithm, or a faster multiplication
algorithm, is used, this is in O(d2). This is smaller than the other terms in the cost.

In step 4 we reduce the integer coefficients in the inputs modulo p before the eval-
uations in step 6 to reduce the complexity. To reduce the coefficients in A and b takes
O(n2dLc) arithmetic operations in Zp since there are n2 entries in A and n in b to re-
duce and each entry is a polynomial with at most d non-zero terms. This needs to be
done for each of the L primes that we choose. The evaluation step evaluates Ai,j(z) and
bi(z) at each root αk1, · · · , αkd modulo pk. This costs O(n2d2L) because there are n2 +n

polynomials to be evaluated, where each requires O(d) arithmetic operations in Zp us-
ing Horner’s rule. This operation needs to be done for all L primes. Solving the system
Ak(αki).xki ≡ bk(αki) mod pk for xki takes O(n3) operations using Gaussian Elimination
and this is done over all the roots modulo all primes for a total of O(n3dL) arithmetic
operations in Zp. Interpolation takes O(nd2L) arithmetic operations since we only need
to interpolate the solution vector which has n elements over the d roots. Interpolation is
dominated by the evaluations.

Chinese remaindering is applied to integer coefficients of x(k−1) mod P and xk mod pk.
There are at most nd integers to reconstruct. The incremental cost at step k is O(k) per
coefficient since P is a product of k − 1 primes. Summing O(knd) for k = 1..O(L), the
total cost is O(ndL2).

If classical Euclid’s algorithm is used for rational reconstruction, rational reconstruc-
tion from an integer modulo P, a product of k machine primes, primes of size O(1), costs
O(k2). Since we attempt rational reconstruction after k = 1, 2, 4, 6, 16, ... primes, the final
successful rational reconstruction will dominate total the cost of rational reconstruction.
Since the solution vector x has at most nd rational coefficients, the total cost of the final
successful reconstruction is O(ndL2). Adding the above contributions gives the running
time as stated. 2
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2.2.3. Rational Reconstruction
In our implementation of Algorithm 1, we found, consistent with (1), that for dense

inputs with integer coefficients in A and b chosen uniformly at random, the rationals
in the solution vector x are much longer than the integers in A and b. For such inputs
rational reconstruction and Chinese remaindering can dominate the cost.

Obviously, one may employ asymptotically fast algorithms for Chinese remaindering
and rational reconstruction to reduce the theoretical complexity of Algorithm 1. From
a practical viewpoint, however, all one needs is fast integer multiplication and division.
This is relevant because Maple is using the GMP integer arithmetic package which has
fast integer multiplication and long division but no fast Euclidean algorithm, hence, no
fast Chinese remaindering and rational reconstruction are available.

One can effectively reduce the cost of Chinese remaindering to that of integer multi-
plication without using asymptotically fast Chinese remaindering as follows. At step
k = 2j+1 suppose we have obtained u satisfying Au ≡ b mod m(z) mod P where
P = p1 × p2 × ...× p2j from step k = 2j . Suppose we next compute v satisfying Av ≡ b
mod m(z) mod Q where Q = p2j+1×p2j+2× ...×p2j+1 . We then need to solve for xk sat-
isfying Axk ≡ b mod m(z) mod PQ. If we write xk = u + wP we have w = (v−u)P−1

mod Q. This requires inverting P modulo Q which costs O((2j)2) using the classical Eu-
clidean algorithm. But this is done once and then the scalar multiplication of the vector of
(v−u) by P−1 mod Q and the vector w by P costs O(ndM(2j)) where M(k) is the cost
of multiplying and dividing integers of length k. If a fast algorithm is used here the total
cost of Chinese remaindering can be reduced from O(ndL2) to O(L2 + nd log LM(L)).

The cost of the successful rational reconstruction of the ≤ nd rational coefficients in x
can similarly be reduced to roughly one rational reconstruction and O(nd) long multipli-
cations and divisions using a clever trick. Suppose we are reconstructing a rational from
an image u mod P and b is the LCM of the denominators of all rationals reconstructed
so far. The idea is to apply rational reconstruction to b× u mod P instead. We refer the
reader to (1) for details. Assuming fast integer multiplication and division are available,
these improvements effectively reduce the cost of Chinese remaindering and rational re-
construction to that of fast multiplication, that is, from O(ndL2) to O(L2 + ndM(L))
where M(L) is the cost of multiplication of integers of length L digits and the L2 term
is the cost of the classical Euclidean algorithm which we use for computing inverses and
rational reconstruction.

For rational reconstruction we use the Maximal Quotient Rational Reconstruction al-
gorithm of Monagan (10) because it will fail with high probability when the modulus
P is not large enough yet to reconstruct the rational number. One applies rational re-
construction to the coefficients in x sequentially until it fails. When the next rational
reconstruction attempt is made, one should start in x where the last failure occurred.

2.3. Linear p-adic Lifting

2.3.1. The Algorithm

2.3.2. Analysis
We state the running time of Algorithm 2 in terms of n, d, c and L, the number of

lifting steps that Algorithm 2 takes. For pL to be large enough to reconstruct rationals
of length e in x, L ∈ O(e).
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Algorithm 2 Linear p-adic Lifting Approach
Input: A ∈ Zn×n[z], b ∈ Zn[z], m ∈ Z[z] a cyclotomic polynomial of degree d.
Output: x ∈ Qn[z] which satisfies A.x = b (mod m)
1: Find a machine prime p s.t. m splits linearly over Zp, and compute the roots α1, .., αd

of m(z) mod p
2: Let e0 = b, x(0) = 0
3: Invert A(αi) mod p for all roots.

If any A(αi) is not invertible mod p then Goto Step 1.
4: for k = 0, 1, 2, . . . do
5: Reduce ek mod p
6: for i = 1 to d do
7: Evaluate the error ek at z = αi mod p.
8: Compute xki ≡ A(αi)−1.eki mod p
9: end for

10: Interpolate xk(z) from (α1, xk1), ...,(αd, xkd).
11: Set ek+1 = (ek −A.xk mod m(z)) / p
12: x(k+1) = x(k) + xk × pk

13: if k + 1 ∈ {1, 2, 4, 8, 16, ..., } then
14: Let x be the output of applying rational reconstruction to x(k+1) mod pk+1.
15: If rational reconstruction succeeds and m(z)|(A.x− b) then output x.
16: end if
17: end for

Theorem 8. The running time for Algorithm 2, not counting the cost of the trial
divisions in m(z)|A.x− b, is

O(n3d + n2d2Lc + ndL2).

Moreover, if L ∈ O(cnd) then the cost is

O(n3d + n3d3c2 + n3d3c2) = O(n3d3c2).

The first contribution, n3d, is the cost of the d matrix inverses. The second, n2d2Lc, is
the total cost of computing the error ek. The third, ndL2, is the cost of step 12 which is
a conversion from the p-adic representation of the solution to an integer representation.
The last, ndL2, is the cost of rational reconstruction.

Proof. In this algorithm, we only need one prime p such that the minimal polynomial
splits linearly over Zp. The time for computing this can be ignored. In Step 3 we pre-
compute the inverse of the input matrix A at each root d modulo p using Gaussian
Elimination. This costs O(n3d) arithmetic operations in Zp in total. To reduce the error
ek modulo p in Step 5 costs O(ndcL) operations since ek is a vector of n polynomials
of degree < d with coefficients of length c digits and this is done O(L) times. The
substitution of all d roots into ek costs O(nd2L) arithmetic operations. Computing the
solution vector xki is just a matrix vector multiplication modulo p which costs O(n2dL)
in total. Interpolation costs O(nd2L) which is the same as in Algorithm 1. To compute
the error ek in Step 11 we need to do a matrix vector multiplication of polynomials
over Z then divide by m(z). This is dominated by the matrix vector multiplication
which requires n2 multiplications of polynomials of degree less than d. Now the integer
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coefficients of the polynomials in A are of size O(c) but the integers in xk are modulo p,
that is, of size O(1). Consequently fast integer multiplication is not applicable here. This
costs O(n2d2Lc) in total using classical polynomial multiplication. In Step 12, adding
xkpk to x(k) costs O(ndk) operations for each lifting step. In total this is O(ndL2) which
note is the same as the cost of the incremental Chinese remaindering in Algorithm 1. The
rational reconstruction cost is the same as for Algorithm 1, namely O(ndL2). Therefore,
the total running time for this algorithm is O(n3d + n2d2Lc + ndL2). 2

2.3.3. Computing the error.
In our implementation of Algorithm 2, one of the most expensive components are the

computation of the error in step 11, in particular, the matrix vector multiplication in
A.xk which needs to be computed over Z. This requires n2 polynomial multiplications. It
has complexity O(n2d2c) assuming classical multiplication. Since the length of the vector
A.xk is more than O(n2dc) in general, we cannot reduce the complexity of computing
the error by more than a factor of d. We have attempted to speed this up, by a fac-
tor of d, by choosing primes p1, p2, ... such that m(z) has d roots αij in Zpi

, evaluating
A(αij) mod pi, caching these primes, αij and matrices for the next lifting step, multiply-
ing A(αij).xk(αij) mod pi, interpolating, and then Chinese remaindering. But, the result
was somewhat disappointing; it was sometimes slower than computing the A.xk mod
m(z) over the integers.

Because the computation of the error is expensive, Algorithm 1 is often better despite
the n3dL term in Algorithm 1’s complexity. The error computation involves polynomial
arithmetic but the linear solves in Algorithm 1 are done using machine arithmetic.

Reconstruction cost.
The other most expensive component of Algorithm 2 is the reconstruction cost O(ndL2)

when L is large. If a fast multiplication is available, we have already mentioned how the
rational reconstruction cost can be reduced to O(nd log LM(L)+L2) where M(L) is the
cost of multiplying integers of size L. The cost of Step 11 can also be reduced similarly
from O(ndL2) to O(L2 + nd log LM(L)), as follows. Noting that the algorithm only at-
tempts rational reconstruction for
k ∈ {1, 2, 4, 8, ..., 2j , ...}, that is, we only need to compute x(k) for these values of k. Now

x(k) = x0 + x1p + ... + xk−1p
k−1

thus
x(2k) = x0 + x1p + ... + x2k−1p

2k−1 = x(k) + pk∆k

where ∆k = xk + xk+1p + ... + x2k−1p
k−1. To compute x(2k), if we first compute x(k)

then ∆k then the scalar multiplication of ∆k by pk costs O(ndM(k)) where M(k) is
the integer multiplication cost. Now if one computes both x(k) using the same method
recursively, and also ∆k using the same method recursively, the cost of computing x(2k)

is the cost of computing x0, x1, ..., x2k−1 plus

T (2k) ≤ 2T (k) + ndO(M(k)).

Solving for T (L) we obtain a total cost of O(nd log LM(L)).
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2.4. Trial Division

Algorithms 1 and 2 both terminate when rational reconstruction of x succeeds and
m(z)|b−Ax over Q. This trial division can be sped up if one avoids arithmetic with the
fractions that appear in x. One computes D the least common multiple of the denomina-
tors of all fractions appearing in the coefficients of the polynomials in x, then computes
Dx to clear fractions in x, and tests if m(z)|Db − A(Dx). Here all arithmetic is over Z
since m(z) is monic over Z. In our experiments, the time spent doing trial divisions this
way is a few percent or less of the total time.

However, we show that the trial division can be omitted entirely if the modulus M =
p1 × p2 × ... × pk in Algorithm 1 (M = pk in Algorithm 2) is sufficiently large. That
is, by using additional primes (if necessary) in Algorithm 1, or doing additional lifting
steps (if necessary) in Algorithm 2, we can omit the test. The idea is to bound the size
of the integer coefficients in the remainder of Db−A(Dx) divided m(z) and require that
the modulus M be greater than twice (allowing for positive and negative integers) the
bound.

Let N = ||Dx||. First ||A(Dx)|| ≤ ndN ||A|| since each entry in the vector A(Dx) is
obtained by adding n products of polynomials of degree at most d− 1. Hence

||Db−A(Dx)|| ≤ D||b||+ ndN ||A|| = B.

Now we compute the remainder ri of the i’th entry of the vector Db−A(Dx) divided by
m(z). Applying Lemma 2 with δ = (2d− 2)− d + 1 = d− 1 we have, for all i,

||ri||∞ ≤ (1 + ||m(z)||∞)d−1B.

Hence we can state the following result.

Theorem 9. If rational reconstruction succeeds in Algorithms 1 and 2 and the modulus
M satisfies

M > 2(1 + ||m(z)||∞)d−1(D||b||+ ndN ||A||)
then m(z)|b−Ax over Q.

Now we observe that if m(z) is a cyclotomic polynomial, ||m||∞ is small. There are five
cyclotomic polynomials of order less than 1000 with height 3, 53 with height 2, and
the rest have height 1 and the first cyclotomic polynomial with ||m|| > 1 is Φ105(x). In
particular, for ||m(z)||∞ = 1 then Theorem 9 requires M > 2d(D||b||+ ndN ||A||). So for
cyclotomic m(z), the length of M needed to satisfy Theorem 9 is not much longer than
D||b|| + N ||A||. We now argue that if rational reconstruction succeeds and x is correct
then the value of M in Algorithms 1 and 2 likely satisfies Theorem 9 with no additional
primes (lifting steps) needed.

When the rational number reconstruction of Monagan in (10) succeeds in Algorithms
1 and 2, with high probability, we have the correct solution vector x and thus M >
2B × 2∆ where B ≥ |ab| for all rational numbers a/b appearing in the coefficients of
the polynomials in the solution vector x and ∆ is the number of extra bits to make the
probability of correctness high.

Normally, B is about the same size as ND but it can be smaller. The reader may
now see that if M > 2B2∆ and ||m|| = 1 then indeed M will likely be greater than

11



2d(D||b|| + ndN ||A||) when B, the size of the rationals in x, is larger than the ||b|| and
||A||, the size of the integers in the input, which is normally the case. This is confirmed
by our experiments. For all linear systems that we tried, after rational reconstruction
succeeded for the first time, Theorem 9 was satisfied immediately, that is, no additional
primes (lifting steps) were needed.

2.5. A Bound for D

Recall that D is the LCM of the denominators of the fractions appearing in the solution
vector x where x = A−1b mod m(z). Thus D divides the LCM of the denominators of
the fractions appearing in the inverse of the polynomial det A modulo m(z), that is,
D|resz(detA,m(z)) ∈ Z. We have degz detA ≤ n(d− 1) since degz Ai,j < d. We use the
following result (see (7)) to bound ||det(A)||∞.

Lemma 10 ( Goldstein and Graham, 1974 ). Let A be an n by n matrix of poly-
nomials in Z[z]. Let A′ be the matrix of integers with A′i,j = ||Ai,j ||1 that is, A′i,j is the
one norm of Ai,j . Let H be Hadamard’s bound for det A′. Then ||det A||∞ ≤ H.

Since degz Ai,j ≤ d − 1 we have A′i,j ≤ dC. Applying Hadamard’s bound to bound
|detA′| we obtain

||det A||∞ ≤ Πn
i=1

√
Σn

j=1A
′2
i,j = dnnn/2||A||n.

To calculate resz(detA,m(z)), because m(z) is monic

resz(detA,m(z)) = ± res(r(z),m(z))

where r(z) is the remainder of det A divided m(z). Applying Lemma 2 to determine
||r||∞ we have degz detA ≤ n(d− 1) thus δ ≤ n(d− 1)− d + 1 = (n− 1)(d− 1) and

||r||∞ ≤ (1 + ||m||∞)(n−1)(d−1)dnnn/2||A||n.

Let R = resz(r(z),m(z)). Note that R is an integer. To bound |R| recall that R = detS
where S is Sylvester’s matrix for the polynomials r(z) and m(z). Now degz r < d but
for the purpose of bounding |R| we assume degz r = d− 1. Then S is a 2d− 1 by 2d− 1
matrix of integers where the d coefficients of r(z) are repeated in the first d rows of S and
the d + 1 coefficients of m(z) are repeated in the last d− 1 rows. Applying Hadamard’s
bound to the rows of S we obtain

|det S| ≤
√

d||r||2∞
d
×

√
(d + 1)||m||2∞

d−1

from which we obtain the following result where we used
√

d + 1
d−1

<
√

d
d

for d > 1 to
simplify the result.

Lemma 11. Let R = resz(detA,m(z)). Then

|R| < dnd+d||m||d−1
∞ (1 + ||m||∞)(n−1)(d−1)dndn/2||A||nd.

The bound says the size of the denominators in x = A−1b can could more than nd times
longer than ||A||. Indeed if one constructs inputs A and b with polynomials of degree
d− 1 with coefficients chosen randomly from [0, 10c), so that ||A|| < 10c, ||b|| < 10c and
the bit-length of the input is O(n2d log 10c) = O(cn2d), then one readily finds examples
with D > 10cnd.

The bound can also be used to bound the probability that our choice of primes in
Algorithms 1 and 2 might result in a non-singular system.
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2.6. Determinant Ratios

From Cramers rule, the solution vector x of the linear system Ax = b mod m(z) may
be expressed as

xi =
det(A(j))
det(A)

mod m(z)

where A(j) is the matrix A with the j′th column replaced by b. The analysis in the
previous section showed that the rationals in the solution vector x may be up to nd
times longer than the integers in the input A, b, which means that x may be d times
longer than the input. The factor of d comes from inverting det(A) modulo m(z). If we
choose instead to write the solutions in the form

xj =
det(A(j)) mod m(z)
det(A) mod m(z)

,

in general, the integers in the determinants will be a factor of d times smaller. Moreover
we can easily compute images of det(A(j)) and det A by modifying the solving of A(αi)x =
b(αi) mod pk in Algorithm 1. One also computes the determinant d = det(A(αi)) mod pk

(at negligible additional cost) to obtain images of detA and then multiplies the scalars
xj(αi) mod pk by d (at negligible additional cost) to obtain images of detA(j). In order
to reconstruct det A mod m(z) and the det(A(j)) mod m(z), we will need bounds on
their heights. We state these in the following lemma.

Lemma 12.

||det A mod m(z)||∞ ≤ dn||A||n(1 + ||m||∞)(n−1)(d−1)

and
||detA(j) mod m(z)||∞ ≤ dn||A||n−1||b||∞(1 + ||m||∞)(n−1)(d−1).

Proof. In the previous section we have determined that ||det A||∞ ≤ dn||A||n. Now
detA ∈ Z[z] has degree at most n(d − 1) in z. Applying Lemma 2 to bound bound
||det A mod m(z)||∞ yields the first result. The second result follows by noting that
Lemma 10, which is stated in terms of the rows of A, also applies to the columns of
A. 2

We now give the algorithm. Since we use these bounds to determine the number
of primes needed in advance, we recursively solve Ax = b mod m(z) modulo half the
primes, then modulo the other half, and Chinese remainder the two results. This reduces
the integer Chinese remaindering cost (which can be the largest cost when the solutions
have large integers) to the cost of integer multiplication (there is one inverse computed
modulo the product of half the primes but O(nd) multiplications of large integers).
That is, asymptotically fast Chinese remaindering is not needed unless c >> nd to get
asymptotically fast reconstruction in practice.

In comparing Algorithm 1 and Algorithm 3, since Algorithm 3 needs to reconstruct
integers (not rationals) of length d times smaller than Algorithm 1 it needs a factor of
2d fewer primes and hence will be 2d times faster than Algorithm 1 in general. However,
the size of the rationals in the solution vectors of real applications may be much smaller
than the bound in Lemma 11. Indeed, all the linear systems from Dhabbigian (3) have
small solutions, some very small. Thus in our experiments, Algorithms 1 and 2 were much
faster than Algorithm 3 in our real application.
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Algorithm 3 Determinant Ratio.
Input: A ∈ Z[z]n×n, b ∈ Z[z]n, m ∈ Z[z] a cyclotomic polynomial of degree d.
Output: D ∈ Z[z] and x ∈ Z[z]n which satisfy

D = det A mod m(z) and A.x ≡ Db mod m(z).
1: Let B = dn||A||n−1 max(||A||, ||b||)(1 + ||m||)(n−1)(d−1).
2: Let P = {p1, ..., pk} be a set of primes such that Πpi > 2B and m(z) splits into

distinct linear factors modulo pi.
3: Call Subroutine M with inputs A, b,m and P .

Algorithm 4 Subroutine M
Input: A, b,m in Z[z] and P = {p1, p2, ..., pk} a set of primes.
Output: (D,X, M) satisfying D = det A mod m(z) mod M and m(z)|AX−Db mod M.
1: if k > 1 then
2: Set l = bk/2c.
3: Let D1, X1 be the output from Subroutine M applied to inputs A, b,M and P =

{p1, p2, ..., pl}.
4: Let D2, X2 be the output from Subroutine M applied to inputs A, b,M and P =

{pl+1, ..., pk}
5: Let M1 = Πl

i=1pi, M2 = Πk
i=l+1 and let M = M1M2.

6: Compute I = M−1
1 mod M2.

7: Set ∆D = I(D1−D2) mod M2 and ∆X = I(X1−X2) mod M2 using the symmetric
range for the integers modulo M2.

8: Set D = D1 + ∆DM1 ∈ ZM [z].
Set X = X1 + ∆XM1 ∈ ZM [z]n.

9: Ouput (D,X, M)
10: else
11: Compute the roots α1, ..., αd of m(z) mod p1.
12: Set A = A mod p1 and b = b mod p1

13: for i = 1 to d do
14: Evaluate A and b at z = αi mod p1.
15: Solve A(αi).xi ≡ b(αi) mod p1 for xi ∈ Zn

p1
and compute also Di =

det A(αi) mod p1.
16: if Di 6= 0 then set xi = Di × xi mod p1

else pick a new prime p > p1 s.t. m(z) splits into linear factors and restart
Algorithm M using p1 = p.

17: end for
18: Interpolate D ∈ Zp[z] from (α1, D1), ..., (αd, Dd).
19: Interpolate x ∈ Zp[z]n from (α1, x1), ..., (αd, xd).
20: Output D,x, p1.
21: end if

3. Implementation and Timings

We have implemented all three algorithms in Maple 10. In our programs, we used
the Maple library routines iratrecon for rational number reconstruction, and our own
routine iscyclotomic to find the order k of the given cyclotomic polynomial. We used
the library routine Roots(m) mod p to find the roots of m(z) in Zp. We use 25 bit
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floating point primes on 32 bit machines, and 31 bit integer primes on 64 bit ma-
chines. If we choose the primes as stated, we can take advantage of the fast C code in
the LinearAlgebra:-Modular package which provides fast polynomial evaluation, linear
solving and matrix inversion over Zp.

3.1. Timings

We compare our algorithms on three data sets. In the first data set the integer co-
efficients in A and b are generated at random and hence the size of the integers in the
solution vector x are large. The second data set is a set of real problems which have
small rationals in the solution vectors x and some of the systems are sparse. For the
second data set, we also timed Maple’s linear solver, the LinearSolve command in the
LinearAlgebra package. Maple uses a sparse fraction-free Gaussian elimination algorithm
to solve a linear system over an algebraic number field. Maple represents linear equations
as a polynomials in x1, x2, ..., xn, which is a sparse representation.

All timings we give in the following were obtained using Maple 10 on an AMD r©
Opteron 150 processor @ 2.4 GHz with 2GB of RAM. Our programs are designed for
random dense inputs. They do not take advantage of any structure if the input systems
are sparse.

Data Set 1:
For the first data set we use the 7th cyclotomic polynomial m(z) = 1+ z + z2 + z3 + z4 +
z5 + z6. The first data set consists of systems of dimension 5, 10, 20, 40, 80, 160 where the
entries of A and b were generated using the Maple command
> f := randpoly(z,dense,degree=5,coeffs=rand(2^c)):
for different values of c which specifies the lengths of the integer coefficients in binary
digits. This Maple command will give us a dense polynomial in z with degree 5 and
coefficients uniformly chosen at random from [0, 2c).

Table 1 shows the running time of dense random polynomial inputs for both algo-
rithms. We observe that the linear p-adic lifting approach is faster than the Chinese
remaindering approach when the dimension n of the input matrix and input vector gets
larger as expected.

The first entry in each cell is the runtime (in CPU seconds) using linear p-adic lifting;
the second one is for using Chinese remaindering, and ”−” means the runtime is > 10000
seconds. We also put the number of primes that were used to recover the coefficients
in the solution vector. It corresponds to the number of lifting steps in the linear p-adic
lifting method.
Data Set 2:
The problems in this data set were given to us by Vahid Dabbaghian. They include sys-
tems with various dimensions, coefficient lengths, and minimal polynomials. The systems
are available at
http://www.cecm.sfu.ca/CAG/code/VahidsSystems.zip

Table 2 shows the running times for the systems given to us by Vahid Dabbaghian.
The line Linsolve in the table is the time for Maple’s LinearSolve command from the
LinearAlgebra package. One can see that the modular algorithms are typically 1000 times
faster on these systems.

Most of the input systems in this problem set are sparse, and the solutions are small.
That is, in most cases one prime number is sufficient to successfully reconstruct the
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n \ c 4 16 64 256 1024 Remark

.096 .446 3.071 38.77 707.1 Lin

5 .069 .447 2.766 28.782 565.7 CRT

26 122 401 1601 6401 # primes

.301 1.423 11.80 161.3 3084 Lin

10 .262 1.317 10.367 140.0 3109 CRT

65 226 842 3250 12770 # primes

1.067 5.308 49.87 725.7 – Lin

20 .905 5.654 52.01 787.2 – CRT

122 442 1682 6401 n/a # primes

4.035 21.68 236.4 4120 – Lin

40 4.699 31.99 327.6 5508 – CRT

226 842 3250 12997 n/a # primes

20.90 111.4 1505 – – Lin

80 33.64 235.0 2802 – – CRT

485 1682 6562 n/a n/a # primes

126.9 665.6 – – – Lin

160 269.7 2061 – – – CRT

962 3365 n/a n/a n/a # primes

Table 2. Runtime (in CPU seconds) of Random dense input with various dimensions and
coefficients.

polynomial coefficients in the solution vector. In this problem set, both algorithms have
similar performance because of the simplicity of the solutions. We state the maximum
length of the coefficients in the inputs A and b and the output x in binary digits. The
bottom row shows the number of primes used to successfully reconstruct the coefficients
in the solutions. It also corresponds to the number of lifting steps.
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