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Abstract. Maple’s main strength is its ability to compute with mathematical formulas and not just with numbers.
It can multiply and factor, differentiate and integrate, and simplify formulas. In this article, using differentiation
as an example, I explain how to program with formulas in Maple. The key is the data representation that Maple
uses for a formula and the operations Maple provides for operating on formulas. I also discuss Automatic
Differentiation as an alternative which differentiates programs.
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1 Introduction

In 1979 I was taking a computing course in data structures and my instructor gave us an assignment
to write a Pascal program to differentiate a formula represented by a binary tree. In the binary tree
the internal nodes were the arithmetic operators and the leaf nodes were variables or integers. For
example, Figure 1 shows how x? + 3x + 5 would be represented by a binary tree where I've used 7
for the power symbol.

Fig. 1. A binary tree for the formula x? + (3x + 5).

I was captivated by this assignment. What I found was that differentiating was easy because the
rules for differentiation are simple, but, simplifying the derivative was difficult. My first exposure
to Maple was when I took the Symbolic Computation course with Bruce Char in January 1982.
Bruce showed us a Maple program to differentiate a formula. I was amazed at the brevity of the
program. What I’d like to do in this article is show you how to program with formulas in Maple
using the derivative problem as my working example. Programming (indefinite) integration is more
difficult because the algorithm is more difficult. But, in principle, the tools that I show you for
differentiation are sufficient to program integration. Now, to differentiate a formula we need
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2 Michael Monagan

1 an algorithm,
2 a data representation for a formula and a set of tools for operating on a formula, and
3 we need to simplify the resulting formula.

Why do we need simplification? Consider applying the sum rule to differentiate x* + 3. We
differentiate each term of the sum to get 2x + 0 then simplify this derivative to get 2x. When we
differentiate by hand we do the simplifications automatically without thinking much about them
but my Pascal program had to do them explicitly. The good news is that Maple automatically
simplifies formulas! So we will not have to explicitly simplify the derivative.

Since we already know how to differentiate from Calculus we need to focus on 2 the data
representation. How does Maple represent a formula? What tools does Maple provide us with to
work with formulas? Figure 2 shows the Maple data structure for a polynomial.

‘SEQ4‘x‘y‘z‘

(POLY12| o [5131) 9 |5032| -4 [4121] -6 |3300] -8 |0000| -5 |

Fig. 2. Maple’s data structure for the polynomial f = 9x13z — 4132% — 6 xy’z — 8 x> — 5.

Although I am personally very interested in the data structure, we do not need to know any
details about it and we do not need to manipulate it directly. What we need is to be able to test if a
given formula f in Maple is a constant, sum, product, power, function etc. so that we can apply the
right differentiation rule, that is, we need to be able to “inspect” a formula. We also need to be able
to “extract” parts of a formula so we can differentiate them. For example, if f is a sum of two terms,
we want to extract each term of f to differentiate it. Before I show you how to do this let me say a
word about Automatic Differentiation.

When you and I learned to differentiate a function f(x) in Calculus, the function was a formula
and the derivative was a formula. In scientific computing the function f is often represented by a
computer program which contains formulas but also may have loops and subroutine calls. We use
Automatic Differentiation (AD) to differentiate programs. I will end this article by showing some
Maple tools for AD which differentiate a function f : R™ — R™ that is represented by a Maple
procedure. If you haven’t see AD before, it may be eye-opening.

2 Inspecting and Manipulating Maple Formulas
In the example below the formula f is a sum of two terms and the formula g is a product of three
factors. We use the type command to inspect f, the nops command to tell us how many terms f
has and how many factors g has and we use the op command to extract a term of f. Then we do
likewise for the product g and function h. The Maple command op is short for “operand”.

> f 1= 3xx+2xx*2*sin(x);

f=3x+2x* sin(x)
> type(f, +7); # f is a sum
lrue

> nops(f); # f has 2 terms
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> op(1,f); # the first term

3x
g := op(2,f); # the second term

2x* sin(x)
type(g, *7); # g is a product
true

nops(g); # g has 3 factors

op(2,g); # the second factor
2
h := op(3,g); # the third factor
sin(x)
type(h, function); # h is a function

true

nops(h); # h has one parameter

1
op(9,h);
sin
op(1,h);
X

¢ ke

and function. Table 1 lists all the algebraic

f type nops(f) | op(@,f) | op(1,f) | op(2,f)
4 integer 1 Integer 4 an error
-2/3 | fraction 2 Fraction -2 3
3.14 float 2 Float 314 -2
X symbol 1 symbol x an error
x[2,3] | indexed 2 X 2 3
X+y+z T+ 3 a X y
X-y T+ 2 T+ X -y
-X*y T 3 TxT -1 x
x/y Tk 2 TS x y!
XN TAT 2 TAT x n
sin(x) | function 1 sin X an error
J(v,y) | function 2 J v y

Table 1. Maple’s algebraic types and their operands
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4 Michael Monagan

We will use type to inspect a Maple formula and op and nops to extract operands of a formula.
These three Maple commands are sufficient to write any program in Maple that computes with a
formula. But to simplify our code I will also use the typematch command and the map command.
To create a new formula we just use the arithmetic operators + - * / * and functions. Before we
get into the rules for differentiation consider the following Maple examples

> diff(x*2,%);

2x

> diff(f(x),x);
d
Ef(x)

> lprint(diff(f(x),x):
diff(f(x),x):

In the first example the Maple diff command computed the derivative 2x. In the second example
diff could not do anything as f(x) is an unknown function. But it did return something. It returned
itself as you can see from the output of 1print. In Maple lingo we say diff returned unevaluated.
How can we write a Maple procedure that returns unevaluated? We do it this way.

DIFF := proc(f::algebraic,x::name)
if f=x then 1 else 'DIFF'(f,x) end if;
end proc;

Procedure DIFF takes as input two arguments, f the expression to be differentiated and x the
variable of differentiation. Procedure DIFF only knows one differentiation rule, namely, dx/dx = 1.
Otherwise it returns unevaluated. The quotes around DIFF tell Maple to not execute DIFF recursively,
which would result in an infinite recursion. Instead Maple creates and returns the unevaluated
function call DIFF (f, x). Note, the Maple type algebraic is for a formula; it includes all the types
listed in Table 1. Note, the Maple type name is for a variable; it is either a symbol or indexed type
(see Table 1). Now we can add the rules for differentiation.

3 Programming Differentiation

Let us begin by implementing the following rules for differentiation.

Rule 1:if f is a constant the derivative is 0 e.g. DIFF(2/3, x)=0.
Rule 2: if f is a variable then the derivative is 1 if f = x otherwise 0, e.g. DIFF (y, x)=0.

There are three numerical types in Maple, namely, integers, fractions and decimal numbers. They
are of type integer, fraction, and float respectively. See Table 1. So rule [1] could be encoded
this way

if type(f,integer) or type(f,fraction) or type(f,float) then 0

The Maple type numeric is short for any one of integer, fraction or float so the type test
can be simplified to type(f,numeric). For rule 2 we use the Maple type name which includes
symbols (a letter followed by one or more letters or digits) e.g. X, x12 and alpha, and indexed
(subscripted) variables e.g. x[1] and A[1, 2]. This means we have
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How to program with formulas in Maple. 5

DIFF := proc(f::algebraic,x::name)
if type(f,numeric) then @
elif type(f,name) then
if f=x then 1 else 0@ end if
else 'DIFF'(f,x)
end if;
end proc;

We now add the sum rule, the product rule and the power rule.

dlu+v) du dov

Rule 3 (Sum rule): T —ix + e
d d d
Rule 4 (Product rule): (u xv) e P
dx dx dx
n d
Rule 5 (Power rule): if n is a constant then d(u ) d_u n-1
dx x

One way to code to the sum rule is to use a for loop as follows. We use nops(f) to tell us how
many terms are in the sum and op(i, f) to extract the i’th term.

elif type(f, +7) then
d :=0;
for i to nops(f) do
d :=d + DIFF(op(i,f),x)
end do;
d;

This loop builds up the derivative one term at a time which is not efficient when nops(f) is very
large. The loop can be replaced with either of the following equivalents
d :
d .

add( DIFF(op(i,f),x), i=1..nops(f) );
add( DIFF(u,x), u in f );

When I teach Calculus (our university uses Stewart’s text) I only teach our students how to
differentiate a product of two factors u X v. If we have more than two factors, u X v X w for example,
then we would apply the product rule twice using

dulow)) _ d—u(vw) + ud(vw) = du( w) + u(—W +Ud—w)
dx dx dx

dx
I will use the general product rule for f = ]—I?_1 fi which is

def

Here is a nice way to code this:

elif type(f, %) then
add( DIFF(op(i,f),x)*(f/op(i,f)), i=1..nops(f) );

Here is a really nice way:
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6 Michael Monagan

elif type(f, %) then
add( DIFF(u,x)*(f/u), u in f )

The power rule d f"/dx = n%f”‘1 is only true if n is a constant. How will we test if a Maple
formula n is a constant? The test type(n,numeric) is inadequate as it would not handle y or

sin(1) or f12 f(t)dt. The right way to test for a constant, mathematically speaking, is to test if the
derivative of n is 0, that is, if DIFF(n,x)=0 ! So we have

if type(f, ") and DIFF(op(2,f),x)=0 then
u = op(1,f); n :=op(2,f);
n*DIFF (u,x)*u”(n-1);

This is a little clumsy. I'll use Maple’s typematch command which avoids the two explicit assign-
ments of u and n. The above code is equivalent to the following.

if typematch(f, (u::algebraic)”*(n::algebraic)) and DIFF(n,x)=0@ then
n*xDIFF (u,x)*u”(n-1)

The typematch command first tests if f is of type algebraic*algebraic. If it is typematch
then assigns the variables u and n to the corresponding operands of f and returns true. If not
typematch returns false. Assembling rules 1 through 5 we have the following code.

DIFF := proc(f::algebraic,x::name) 1local i,u,n;
if type(f,numeric) then @
elif type(f,name) then
if f=x then 1 else 0@ end if
elif type(f, +) then
add(DIFF(u,x), u in f)
elif type(f, %) then
add(DIFF(u,x)*(f/u), u in f)
elif typematch(f, (u::algebraic)*(n::algebraic)) and DIFF(n,x)=0 then
nxDIFF (u,x)*u”(n-1)
else 'DIFF'(f,x)
end if;
end proc;

This is already a powerful routine. And so concise! Here is an example
> f 1= 3xx"2+x*exp(x)+3;
f=3x*+xe"+3

> DIFF(f,x);
6x +e* + DIFF(e*, x)x

What we are missing is the derivative of functions and also how to differentiate derivatives and
antiderivatives. Let’s add differentiation rules for exponentials and logarithms.
u

e u
Rule 6: d— = —e" and
ule 6 I dxe an
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How to program with formulas in Maple. 7

In(w) _dul

Rule 7: d = .
ue dx dxu

The Maple representations for e* and In x are exp(x) and 1n(x) respectively. Notice that e* is
represented as a function in Maple, not a power. This code will work

elif type(f,function) and op(@,f)=exp then
u :=op(1,f);
DIFF (u,x)*exp(u);

elif type(f,function) and op(@,f)=1n then
u :=op(1,f);
DIFF(u,x)/u;

Again, using typematch, we can simplify these to

elif type(f,'exp'(u::algebraic)) then DIFF(u,x)*exp(u)
elif type(f,'ln'(u::algebraic)) then DIFF(u,x)/u
The reason we put the ’ quotes here is to avoid the cost of evaluating the exponential and

the logarithm. Notice that if f = In 2 the differentiation rule for In will result in du/dx = 0 so
DIFF(1n(2),x) will output 0. We now give two further rules from integral calculus.

Rule 8 (Antiderivative): &L [ f(x)dx = f(x) and L [ f(x.y)dy = [(Z=f(x,y))dy.
Rule 9 (Definite integral) % fab f()dt = %f(b) - %f(a).

Rules 8 and 9 are easy using typematch. We just need to know that the antiderivative / f(x, y)dx

is represented in Maple as the Maple function int(f(x,y),x) and the definite integral fa b f(t)dt
is represented as int(f(t),t=a..b). Here are the rules.

elif typematch(f,'int'(g::algebraic,y::name)) then
if y=x then g else int(diff(g,x),y) end if

elif typematch(f,'int'(g::algebraic,y::name=a::algebraic..b::algebraic)) then
DIFF(b,x)*eval(g,y=a)-DIFF(a,x)*eval(g,y=b)

The representation of a definite integral in Maple uses the equation type and the range type. Let
us illustrate how we can work with these types using the type, nops and op commands.

/Oaf(t)dt

> h := int(f(t),t=0..a);

> nops(h);

2
> op(@,h);

int
> op(1,h); # the integrand

[
> e := op(2,h);

e:=1t=0.a
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8 Michael Monagan

> type(e,equation);

true
>r := op(2,e);
r:=0.a
> type(r,range);
true
Here is our most difficult rule to code.
& &
Rule 10 (Partial derivatives commute): flx,y) = f(x,y).
dyox oxay

Our Maple representation of the two partial derivatives is
DIFF(DIFF(f(x,y),x),y) and DIFF(DIFF(f(x,y),y),x).

Our idea is to compare the two variables x and y when we see a derivative in our DIFF procedure
and sort the variables. The rule we want to program is

if x < y then apply DIFF(DIFF(f(x,y),y),x) — DIFF(DIFF(f(x,y),Xx),y).
We can use Maple’s set ordering to decide if x < y or not. When you create a set in Maple e.g.
> S = {z,y,x,2};
S:={xy z}

Maple sorts the elements of a set and removes duplicates. For symbols it sorts them in alphabetical
order. So we could use

elif typematch(f::'DIFF'(g::algebraic,y::name)) and x<>y then
if op(1,{x,y}) = x then DIFF(DIFF(g,x),y) else f end if;

There is another way to do this. The Maple command lexorder(x,y) returns true if the symbol
x is less than or equal to y in lexicographical order. For example

> lexorder(y,x), lexorder(x,y), lexorder(x,x);

false, true, true

So an alternative is

elif typematch(f::'DIFF'(g::algebraic,y::name)) and x<>y
and lexorder(x,y) then DIFF(DIFF(g,x),y)

Does rule 10 work for nested cases like
DIFF(DIFF(DIFF(f(x,y,z),x),y),z) - DIFF(DIFF(DIFF(f(x,y,z),2),y),X)

which should simplify to 07 It turns out that it does! It sorts the second derivative to be the same as
the first. Can you see what sorting algorithm rule 10 is using?

Finally, we consider the Maple types sets, lists, Vectors and Matrices which are collections of
objects where we would like to simply differentiate each entry of the set, list, Vector, or Matrix.

Rule 11: if f is a set, list, or rtable then differentiate each entry of f.
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How to program with formulas in Maple. 9

Note type rtable includes the types Array, Matrix and Vector. Instead of using a loop we will use
the map command as follows.

elif type(f,list) then map(DIFF,f,x)

The command map(F,L) applies the Maple function or procedure F to the “components” of L.
The command map(F, L, X) also passes the additional argument X to F as illustrated below.

>L := [y, 2xx, sin(x) 1;
L = [y, 2x, sin(x)]

> map(F,L);
[F(y), F(2x), F(sin(x))]

> map(F,L,x);
[F(y,x), F(2x,x), F(sin(x),x)]
To include sets and rtables as well as lists we use
elif type(f,{list,set,rtable}) then map(DIFF,f,x);

In map(F,A), map does not always apply F to the operands of A. The exceptions are the atomic
objects, tables and rtables. I've put the details for the map command in an Appendix. Here is our
final DIFF program.

DIFF := proc(f::{algebraic,list,set,rtable},x: :name)

local i,u,v,n,y,g,a,b;

if type(f,numeric) then 0@

elif type(f,name) then # DIFF(x,x)=1 and DIFF(y,x)=0
if f=x then 1 else @ end if

elif type(f, +>) then # sum rule
add( DIFF(u,x), u in f )

elif type(f, x) then # product rule
add( DIFF(u,x)*(f/u), u in f )

elif typematch(f, (u::anything)”*(n::anything) ) and DIFF(n,x)=@ then
n*DIFF (u,x)*u*(n-1) # power rule

elif typematch(f, 'exp'(u::anything)) then DIFF(u,x)*exp(u)

elif typematch(f,'ln'(u::anything)) then DIFF(u,x)/u

elif typematch(f,'int'(g::algebraic,y::name)) then
if y=x then g else int(diff(g,x),y) end if;

elif typematch(f,'int'(g::algebraic,y::name=a::algebraic..b::algebraic)) then
DIFF (b,x)*eval(g,y=a)-DIFF(a,x)*eval(g,y=b)
elif typematch(f, 'DIFF'(u::anything,y::name)) and x<>y and lexorder(x,y) then

DIFF(DIFF(u,x),y) # sort partial derivative when x<y

elif type(f,{list,set,rtable}) then map(DIFF,f,x)

else 'DIFF'(f,x)

end if

end proc;
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10 Michael Monagan

4 Automatic Differentiation

All of us learned how to differentiate a formula. The derivative of a formula is another formula
which we get by applying the rules of differentiation. That’s what Maple’s diff command does.
Here is an example.

> f = sin(xty)*cos(x+y)*exp(-x-y);
f = sin(x +y) cos(x +y)e Y
> g := [diff(f,x),diff(f,y)];

g = [(cos® (x +y)) e ™Y — (sin® (x +y)) e Y —sin(x + y) cos(x +y) e ™Y,
(cos? (x +y)) e ¥ — (sin® (x +y)) e ™ ¥ — sin(x +y) cos(x +y) e Y]

Notice that the size of both partial derivatives is significantly larger than the size of the f. This
is because of the product rule. If we wanted to use the formula for f or g in a program, we would
write f and g as functions perhaps in C or Fortran or Matlab. Here is f as a Maple procedure.

F := proc(x,y)
local t,s,c,e,r;
t = xty;

s := sin(t);

c := cos(t);

e := exp(-t);

r := s*cxe;

d proc;

V V V V V V V V

en

Automatic Differentiation (AD for short) takes as input a program and outputs a program which
computes the derivatives. We compute g—i using the D operator. Here D[ 1] means differentiate F
with respect to the first argument.

> DL1I(F);
proc(x, y)
local c, cx, e, ex, s, sx, t;
t = x+y;
sx := cos(t);
s := sin(t);
cx := -sin(t);
c := cos(t);
ex := —exp(-t);
e := exp(-t);
CkexSX + Ckex*s + Ccx*e*s
end proc

Notice that the original statements in F appear in the derivative (except for the last statement
r := s*c*e which is not needed) and each statement is preceded by it’s derivative (except for
the first tx := 1; which has been optimized away). Notice also that the derivative has repeated
common subexpressions. We can optimize these away as follows
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> with(codegen):
> optimize(D[11(F));

proc(x, y)
local c, e, s, sx, t, t1;

t :=x +y;

sx := cos(t);

s := sin(t);

= sXx;

t1 := exp(-t);

e := t1;

Cc*exsX — C*xs*tl - exs*2
end proc

Maple’s optimize command is a Maple program that extracts the statements and formulas from
inside a Maple procedure, identifies common subexpressions using Maple’s builtin hash tables,
removes them, and constructs a new Maple procedure. Here is the gradient of F.

> with(codegen):
> G := GRADIENT(F,mode=forward);

G := proc(x, y)
local ¢, dc, de, ds, dt, e, r, s, t;
dc := array(1 .. 2);
de := array(1 .. 2);
ds := array(1 .. 2);
dt := array(1 .. 2);

dt[1] := 1;
dt[2] := 1;
t :=x +y;
ds[1] := dt[1]*cos(t);
ds[2] := dt[2]*cos(t);
s := sin(t);

dc[1] := -dt[1]*sin(t);

dc[2] := -dt[2]*sin(t);

c := cos(t);

de[1] := -dt[1]*exp(-t);

de[2] := -dt[2]*exp(-t);

e := exp(-t);

return cxexds[1] + c*s*de[1] + exs*xdc[1],

cxexds[2] + cxsxde[2] + e*xsxdc[2]
end proc

The procedure G was constructed using the “forward mode” of AD. For each statement it
computes the partial derivatives with respect to x and y and puts them in an array. In the following
we compute the gradient using the “reverse mode’ of AD.

> H := GRADIENT(F,mode=reverse);

, Vol. 1, No. 1, Article . Publication date: January 2023.



12 Michael Monagan

H := proc(x, y)
local c, df, e, s, t;

t = x+y;

s := sin(t);

c := cos(t);

e := exp(-t);

df := array(l .. 4);
df[4] := c*s;

df[3] := s*e;

df[2] := ex*c;

df[1] := -df[4]*exp(-t) - df[3]xsin(t) + df[2]xcos(t);
return df[1], df[1]
end proc

It will be less obvious how the reverse mode works. Notice that the first four statements in H are
copied from F. The last statement r := sxc*e; is omitted because it is not needed. The reverse
mode applies the chain rule starting from the last statement r := s*c*e; in procedure F and works
backwards through the statements in F. It first computes the partial derivatives of r with respect to
the local variables s, ¢ and e appearing in r and not x and y. For example df[4] = % =cs.

As you can see the size of the procedure computed with the reverse mode is smaller than the one
obtained with the forward mode. One of the most important results in AD is that if F is a function
of N variables x1, xy, . . ., X, with M arithmetic operations the number of arithmetic operations in
the gradient using the forward mode is O(MN) but in the reverse mode is only O(M + N)! Details
of the two modes of AD are presented on the Wikipedia page for Automatic Differentiation. Let’s

optimize H.
> H := optimize(H);

H := proc(x, y)
local c, df, e, s, t, t7;
t = x +y;
s := sin(t);
c := cos(t);
e = exp(-t);
df := array(1 .. 4);
df[4] := cx*s;
df[3] := s*e;
df[2] := e*c;
df[1] := cxdf[2] - exdf[4] - s*df[3];
t7 := df[1];
return t7, t7
end proc

Hmm, how do we know H is correct? Let’s check it.

> eval(g,{x=1.3,2.43}), H(1.3,2.4);

[-0.00026718023, —0.00026718023], [—0.000267180242, —0.000267180242]

That is convincing but it is not a proof. Here is a proof.
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How to program with formulas in Maple. 13

> [H(va)]_gy
[0,0]

Here H(x, y) builds the formulas for the partial derivatives. One of the editors challenged me
as to whether this really constitutes a proof since by my use of the word “proof”, he expected
to see a formal argument or an application of a program like the Coq proof assistant (see see
https://coq.inria.fr) that formally proves theorems. I replied that all forms of “proofs”, both human
written proofs and computer generated proofs are prone to error; just as Maple’s simplifier is. In
this case I trust Maple’s simplifier because it has been used millions of times and an error on a
simple example like this is now highly unlikely.

5 Appendix

In map(F,L), the map command generally applies F to the operands of L as defined by the op
command. For example if L = [1, 2, 3] then map(F,L) map outputs the list [F(1), F(2), F(3)] and if
L = x +y+zthen map(F,L) map outputs F(x) + F(y) + F(z). The exceptions are the atomic types,
the table types and the series type.

Atomic types. The atomic types are integer, fraction, numeric, complex(extended_numeric), symbol,
indexed, string procedure, and ‘module’. If A is an atomic type then map(F,A) returns F(A). For
example, map(F,2/3) returns F(2/3). It does not return F(2)/F(3).

Table types. The table types are table and rtable where rtable includes the Array, Matrix, and Vector
types. For a table type T, map(F,T) applies the function F to the entries of the table and not the
operands. Here is an example.

> A := Array(1..3,[5,6,71);
A =[5, 6, 7]
> type(A,Array), type(A,rtable), type(A,Vector);
true, true, false
> map(F,A);
[F(5), F(6), F(7)]

The series type. For a series S, map(F,S) applies F to the coefficients of the series S, and not the
terms of S. For example

> S := taylor(In(1+x),x);
1 1
S = x——x3+—x5+O(x7)
6 120
> map(F,S);

FU)x+P(—é)x3+F(f%)x5+F(O(U)x7

> type(S,series), nops(S), op(9,S);

true, 8, x

> seq( op(i,S), i=1..8 ); # the operands of S
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1,1, —1/6, 3, 1/120, 5, O(l), 7

As an example of an application of the atomic type and the map command we give a recursive
Maple procedure to evaluate a formula at x = a. Here EVAL(f,x,a) is equivalent to Maple’s
eval (f,x=a).

> EVAL := proc(f::anything,x::name,a::algebraic)
lprint(f); # just to see what happens
if f=x then a
elif type(f,atomic) then f
else map(EVAL,f,x,a)
end if;
end proc:

V V V V V V V

> L = [x"2+5/7,y=J(v,x),int(f(t),t=a..x)]:
> EVAL(L,x,z);

[x*2+5/7, int(f(t),t = a .. x)]
x*2+5/7

X2

X

2

5/7

int(f(t),t = a .. x)

f(t)

t

X O QO +
x

z22 + g f(t) dt]
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