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Abstract. We comment on the implementation of various algorithms in mul-

tivariate polynomial theory. Specifically, we describe a modular computation

of triangular sets and possible applications. Next we discuss an implementa-
tion of the F4 algorithm for computing Gröbner bases. We also give examples

of how to use Gröbner bases for vanishing ideals in polynomial and rational

function interpolation.

1. Introduction

Since Maple9, the ability of Maple to handle larger and more varied problems
dealing multivariate polynomials has increased significantly. In fact a new package,
PolynomialIdeals, was introduced in Maple9.5 and is described in [10]. In this
paper we present enhancements, extensions and applications of these improvements.
We first describe the computation of triangular sets, which in some applications
provide a more efficient alternative to Gröbner bases, and we discuss a modular
implementation. In the next section, we deal with an implementation of the so-
called F4 algorithm for computing Gröbner bases. This algorithm gives a substantial
improvement over the Buchberger algorithm in practice. Finally, we describe a
new Maple command to compute a Gröbner basis for the vanishing ideal of a
set of multidimensional affine points and show how to use this command to solve
multivariate polynomial and rational function interpolation problems.

2. Triangular Sets

It is well known that lexicographic Gröbner bases can have exceptionally large
coefficients and that alternative triangular forms for polynomial systems offer sub-
stantial savings. In particular, Dahan and Schost [3] describe a representation in
which the coefficient length is linear in the number of solutions of the system. This
compares quite favorably to lexicographic Gröbner bases, for which the coefficient
length is quadratic. Starting from a lexicographic basis, the Dahan-Schost form
can be computed as follows.

Dahan-Schost Transform

Input [g1, . . . , gt] a sorted (ascending) lexicographic Gröbner basis
for a zero dimensional ideal with x1 < · · · < xn.

Output [h1, . . . , hn] the Dahan-Schost form
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h1 ← g1

d1 ← g′1 / gcd(g1, g
′
1)

for i from 2 to n do
select the smallest gj with leading monomial xk

i

hi ← (d1 · gj) mod g1

end loop

return [h1, . . . , hn]

Our goal is to compute this representation without first computing a lexico-
graphic Gröbner basis. We have developed a probabilistic modular method based
on the FGLM algorithm for converting Gröbner bases [7].

The FGLM algorithm counts up through the monomials of the polynomial ring
while testing their normal forms for linear dependence. Each dependency produces
a linear combination of monomials which is in the ideal, or equivalently, is an
element of the desired Gröbner basis. At the end of the algorithm one can express
this basis as the solution of a linear system AX = B, where the columns of A
consist of the independent normal forms and the columns of B are the dependent
ones.

The first step of our algorithm constructs this system for a lexicographic Gröbner
basis; however, all of the linear dependency checking is done modulo a small batch
of primes. The system is then solved modulo batches of primes and Chinese remain-
dering is applied, resulting in the image of a lex Gröbner basis modulo the product
of the primes. The Dahan-Schost transformation converts this image into that of
a triangular set, and rational reconstruction recovers the result. The advantage of
constructing the linear system exactly is that should rational reconstruction fail,
additional primes can be added with very little recomputation.

The pseudocode below also contains two other optimizations which make the al-
gorithm more efficient. First, we do not compute every element of the lexicographic
Gröbner basis; we solve only for the elements which are needed to construct the
triangular set. Secondly, the algorithm reconstructs polynomials one at a time, so
that in practice some computations are done using a smaller modulus.

We have implemented this algorithm in Maple using the hardware datatypes
and compiled routines in the LinearAlgebra:-Modular package. The float[8]
datatype, which uses 25-bit primes, tends to give the best performance overall.
The initial linear dependency calculations use a batch of ten primes, which results
in a probability of error which is typically less than 10−50.

Table 2 compares our ability to compute triangular sets versus lexicographic
Gröbner bases, starting from a total degree Gröbner basis. This is significant
because there are algorithms for primality testing, primary decomposition, and
radical computation which currently use lexicographic Gröbner bases but could be
adapted to use triangular sets instead [8].
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Multimodular Triangular Set

Input G a Gröbner basis for a zero-dimensional ideal I
[x1, . . . , xn] a list of variables

Output T = [t1, . . . , tn] the Dahan-Schost form

# construct AX = B
MG ← a vector of the monomials not reducible by G
MA ← an |MG| × 1 vector
MB ← an n× 1 vector
A← an |MG| × |MG| matrix
B ← an |MG| × n matrix
border ← {}
m← 1
while m 6= FAIL do

r ← NormalForm(m,G)
C ← the coefficients of r, with C ·MG = r
if C is independent of the current columns of A

write C into the next column of A
write m into the next column of MA

else if C is dependent and m = xk
i then

write C into the next column of B
write m into the next column of MB

border ← border ∪ {m}
m← the next monomial not divisible by a border element

end loop

# solve AX = B
X ← an |M | × 1 zero vector
N ← 1
i← 1
while tn not constructed do

choose a batch of new primes {p1, . . . , ps}
{X1, . . . , Xs} ← the solution of AX = B mod pj

X ← ChineseRemainder([X, N ], [X1, p1], . . . , [Xs, ps])
N ← (

∏s
j=1 pj)N

while i ≤ n and no failure has occurred do
if i = 1 then

t1 ← RationalReconstruction(MB [i]−MA ·Xi, N)
if t1 6= FAIL then

d1 ← t′1 / gcd(t1, t′1)
i← i + 1

else
ti ← RationalReconstruction(d1 (MB [i]−MA ·Xi) mod t1, N)
if ti 6= FAIL then

i← i + 1
end loop

end loop
return T = [t1, . . . , tn]
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System Dim Tdigits Tsec Ldigits Lsec

Katsura-5 32 35 1.03 576 1.02
Katsura-6 64 76 4.25 2016 4.93
Katsura-7 128 179 32.3 10892 248.33
Katsura-8 256 379 364 big 9708
Katsura-9 512 859 5220 – –

The first column, Dim, is the size of the matrix A or, equivalently, the dimension
of the quotient ring as a vector space. The columns Tdigits and Ldigits are the
sizes of the coefficients in the triangular set and the lexicographic Gröbner basis,
respectively. The triangular set computations were done using 64-bit Maple10
on an Opteron 248 2.2 GHz with 4 GB of RAM. The lexicographic computations
used the computer algebra system Magma 2.11-12 on an Opteron 250 2.4 GHz with
8 GB RAM. Magma uses sparse p-adic lifting and floating point arithmetic with
moduli up to 24 bits [11], so the linear algebra implementations are comparable.

We are presently working to integrate this algorithm into Maple. Our goal is
to modify all possible algorithms in the PolynomialIdeals package so that they
use triangular sets instead of lexicographic Gröbner bases.

3. The F4 Algorithm

Computing a Gröbner basis is often a first step towards solving or working with
a system of polynomial equations. It can also be the most difficult step since
the polynomials lack any particular mathematical structure. The F4 algorithm for
computing Gröbner bases was first described in [6], and the current implementation
in Magma is among the fastest widely available routines for computing Gröbner
bases [11].

One way to visualize the F4 algoritm is to consider the reduction of a single
S-polynomial in the Buchberger algorithm. For example, let G = [x2 + y, xy2 −
xy, y3 − 1] and consider the syzygy S1,2 = x2y + y3 under graded lex order. In
the division algorithm, we will reduce S1,2 first by subtracting y G1 and then by
subtracting G3, as shown below.

x2y + y3 → x2y + y3 − y (x2 + y) = y3 − y2

→ y3 − y2 − (y3 − 1) = −y2 + 1

The key observation is that this reduction process is equivalent to a matrix tri-
angularization. In the example below, the columns of the matrix correspond to the
monomials [x2y, y3, y2, 1], while the rows contain S1,2, y G1, and G3, respectively.
Examining the reduced matrix on the right, we find one new pivot belonging to
y2 − 1.  1 1 0 0

1 0 1 0
0 1 0 −1

 −→
 1 1 0 0

0 1 −1 0
0 0 1 −1


From this perspective we can see what is “wrong” with the Buchberger algorithm.

It selects syzygies one by one, and for each one it triangularizes an entire matrix.
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In general these matrices are big, and it is not hard to imagine that they may have
many rows in common.

The F4 algorithm consists of a very simple improvement: one runs the Buch-
berger algorithm but at each step selects multiple syzygies. They are placed into
a common matrix along with any rows that are needed for the reduction process,
and this matrix is triangularized. The rows with new pivots correspond to new
polynomials, which are then added to the basis.

Faugère discusses various strategies for the F4 algorithm in [6]. In particular, one
should select all of the syzygies of smallest degree at each step of the algorithm, and
reuse rows from previously reduced matrices where possible. To this we contribute
the following observation. Below is a matrix from a step in the computation for
cyclic-6. On the left is the original system, followed by its row echelon form and
reduced row echelon form, respectively.

All of these matrices are sparse, however the reduced row echelon form is ex-
tremely sparse. We suggest that if one is to reuse rows from previous matrices
frequently, it is worth the extra cost to reduce each matrix to reduced row echelon
form. Computer experiments have borne out this hypothesis. In homogeneous com-
putations, in which the degrees of the syzygies increase monotonically, this strategy
produces smaller matrices over the course of the algorithm, typically on the order
of 15 to 20 percent.

This potential improvement is not fully realized, however, because a second im-
provement, computing modulo a number of primes, offsets some of the advantage.
In such an algorithm, the matrix will be reduced modulo a number of primes until
the desired rows can be recovered using Chinese remaindering and rational recon-
struction. Over algebraic function fields sparse rational function interpolation will
also be used so that the cost of recovering each row becomes significantly higher.

In any case, the best strategy seems to be a hybrid approach. That is, after
the initial reductions modulo a prime, one can identify rows with new pivots and
further reduce them using the rest of the matrix. These sparse rows are easier to
reconstruct, and as a side effect one computes the reduced Gröbner basis automat-
ically.

Since conducting these experiments, we have been working on a more robust
implementation of F4 for Maple. Early prototypes have shown that significant
improvements are possible relative to the implementation of Buchberger’s algorithm
in Maple10. Our initial focus is on rational coefficients and the integers modulo
a prime, although algebraic function fields will be supported in the final version.
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The most pressing need at this time is enhanced algorithms and data structures for
sparse linear algebra in Maple.

4. Vanishing ideals and multivariate interpolation

In some situations we may be given a collection of points V ⊆ Fn, where F is
any field, and be asked to find a (reduced) Gröbner basis with respect to a given
term order for the vanishing ideal defined by

I(V ) = {f ∈ F[x1, . . . , xn] : f(P ) = 0 for all P ∈ V }.
Unlike many Gröbner basis problems, this one is not hard to solve in the sense
that there exist algorithms that produce a solution in polynomial (in the number
of points and in the number of variables) time. Such an algorithm, based on Gauss
elimination, was first given by Buchberger and Möller [2]. Subsequent improvements
and generalizations include [9, 1]. These algorithms may be viewed as multivariate
analogues of univariate Lagrange interpolation. Recently, an alternate solution,
analogous to univariate Newton interpolation, was presented [5] and is included in
the PolynomialIdeals package in Maple10 with the command VanishingIdeal.
We illustrate the command with the following example. The output is of type
‘PolynomialIdeal’, and the generators that are displayed are the Gröbner basis
elements.

Example 1.
> with(PolynomialIdeals):
> V:=[[1,-1],[1,1],[1,3],[2,-1],[2,1],[2,3],[4,-1],[4,1],[4,3],[0,0]]:
> VanishingIdeal( V, [x,y], tdeg(y,x) );

〈x4− 7x3 + 14x2− 8x, x3y− 7x2y + 14xy− 8y, 8y3 + 3x3− 24y2− 21x2− 8y + 42x〉
While the computation of Gröbner bases for vanishing ideals is an interesting

study in its own right, it is also implicitly present in several applications. We present
here several algorithms that we have implemented and are working to integrate into
Maple. First, suppose that for each point Pi ∈ V we have a corresponding value
ri ∈ F. Then the multivariate interpolation problem is to find the “smallest”
polynomial f such that f(Pi) = ri.

This problem is not trivial. In particular, there is no single set of m monomials
that can serve as a basis for an interpolation space for m points in Fn. For in-
stance, take the set V of 10 points in Q2 in Example 1. Suppose the interpolant
desired is the one with smallest total degree (although any other monomial order
is also acceptable). It is incorrect to assume that the set of 10 smallest monomials
in Q[x, y], namely {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}, may serve as a basis for an
interpolation space in the case in which the points in V are the independent points.
In fact these monomials cannot form a basis because they are linearly dependent
on the points of V ; i.e., g = 8y3 +3x3−24y2−21x2−8y+42x = 0 for every P ∈ V
as the presence of g in the Gröbner basis for I(V ) indicates.

Hence, an appropriate interpolation space must be found for each set of indepen-
dent points before the actual interpolation takes place. The monomial basis of an
ideal with respect to a certain term order is the set of all monomials not divisible by
the leading term of any polynomial in the Gröbner basis of the ideal with respect to
that term order, and the members of the monomial basis are linearly independent
on the points of V . So by computing the Gröbner basis above, we have actually
already found the desired interpolation space: {1, x, y, x2, xy, y2, x3, x2y, xy2, x2y2}.
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The above explanation means that we can find the interpolating polynomial f
by finding the Gröbner basis of the vanishing ideal of the set of points (Pi, ri). The
monomial order that must be used is an elimination order for the new variable
corresponding to the ri; the original term order is used on the remaining variables.
We have implemented this algorithm as MultivariateInterpolation.

> r := [6,10,-10,5,13,-11,9,25,41,9]:
> MultivariateInterpolation( V, r, [x,y], tdeg(y,x) );

x2y2 − 4xy2 + 2xy + 2x + 9

Both VanishingIdeal and MultivariateInterpolation have versions that al-
low the user to work modulo a prime.

> VanishingIdeal(V,[x,y],tdeg(y,x)) mod 7;
> MultivariateInterpolation( V, r, [x,y], tdeg(y,x) ) mod 7;

〈x4 + 6x, 3x3 + y3 + 6y + 4y2, x3y + 6y〉

x2y2 + 3xy2 + 2xy + 2x + 2

Another natural interpolation problem involving multivariate polynomials is ra-
tional function interpolation. While there are several ways to approach this prob-
lem, a recent result [4] provides the most complete solution using a Gröbner basis
approach. The first part of the solution is to find the interpolation space, which we
accomplish as before. But the main difficulty that this algorithm overcomes is in
determining a suitable term order for the vanishing ideal computation. The solution
given, though, requires using modules of rank two over the polynomial ring rather
than using polynomial ideals. However, due to the flexibility of Maple’s ‘matrix’
term order, we can work (carefully!) within the PolynomialIdeals package and
not call on the more expensive machinery for modules. Once again, computing
modulo a prime is allowed.

Example 2. We consider the set V below of eight points from Q2. The mono-
mial basis of I(V ) with respect to tdeg(x, y) is B = {1, y, x, y2, xy, x2, y3, xy2}.
The MultivariateRationalInterpolation command requires one additional pa-
rameter, t1. This parameter indicates the size of the numerator; specifically, the
numerator must be in the linear span of the first t1 elements of B. The denominator
must be in the linear span of the first |V | − t1 + 1 elements of B. Since one of the
coefficients in the numerator or denominator may be fixed (we fix the denomina-
tor to be monic), there are |V | coefficients to determine. In this example we take
t1 = 5, so the numerator is in the span of {1, y, x, y2, xy} and the denominator in
{1, y, x, y2}.

> V:=[[2,3],[1,0],[1,2],[2,1],[3,0],[2,2],[3,4],[0,2]]:
> r:=[10,10,4,-8,-18,22,-16,2,0]:
> MultivariateRationalInterpolation(V,r,5, [x,y], tdeg(x,y));

(xy − 2y2 + 6x + 2y + 4)
(y2 − 3y + 1)
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If we keep V and r the same but change to a weighted term order, we obtain a
different interpolant.

> MultivariateRationalInterpolation(V,r,5, [x,y], wdeg([2,1],[x,y]));

−2(43y3 − 528x− 200y2 + 404y − 352)
(151y2 − 456y + 176)

To this point we have implicitly assumed that the points in V are distinct. Of
course this is not always the case. Multiplicity in a multivariate setting has various
meanings, but even under a fairly broad algebraic definition each of these algorithms
can be modified to handle nontrivial multiplicities. For the rational function inter-
polation problem, the extreme case of having one point with multiplicity is, in fact,
multivariate Padé approximation. We illustrate with a final example.

Example 3. Without loss of generality we may assume that the point in ques-
tion is the origin. The set MB denotes the monomial basis for a monomial ideal I
and defines multiplicity in the sense described in the following paragraph. As in
MultivariateRationalInterpolation, the parameter “10” gives the size of the
numerator.

> h := mtaylor( sin(x+y) + cos(x+y), [x,y], 8);
> MB:=[1,x,y,x^2,xy,y^2,x^3,x^2y,xy^2,y^3,x^4,x^3y,x^2y^2,xy^3,y^4]:
> hpade := MultivariatePade(h, MB, 10, [x,y,NewVar],
> ‘matrix’([[1,1,1],[0,1,1],[0,0,1]], [x,y,NewVar]), 0);

h := 1 + x + y − 1/2x2 − xy − 1/2y2 · · · − 1/240y5x2 − 1/720y6x− 1/5040y7

hpade :=
(−4xy + 5x3 − 6x− 4x2 + 10x2y + 5xy2)

2(xy + x2 − 3x)
The measure of “closeness” that the approximant must satisfy is the so-called

weak interpolation criterion; that is, if a/b is the approximant, then b · h − a ∈ I.
In other words the coefficient for each element in MB in the polynomial bh− a must
be zero. We verify that this is so by using the trailing coefficient command, tcoeff.

> g := simplify( denom(hpade)*h - numer(hpade) ):
> tcoeff(g,[y,x],‘tm’):
> tm;

x5
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Gröbner bases by change of ordering, J. Symbolic Comput. 16 (1993), 329–344.

[8] P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decompositions of poly-
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