
A Graph Theory Package for Maple, Part II: Graph
Coloring, Graph Drawing, Support Tools, and

Networks.

Mohammad Ali Ebrahimi, Mohammad Ghebleh, Mahdi Javadi
Michael Monagan , Allan Wittkopf

Department of Mathematics, Simon Fraser University
Burnaby, BC, Canada, V5A1S6

{mebrahim,mghebleh,mmonagan,sjavadi,wittkopf}@cecm.sfu.ca

March 21, 2006

1 Introduction

This is the second paper detailing a new Maple package for graph theory, called
GraphTheory, [1], that is being developed at Simon Fraser University as part of our
MITACS research project.

The package is intended for both research and teaching. It supports directed and
undirected graphs, weighted and unweighted graphs, and networks, but not multi-
graphs. The package includes procedures for drawing graphs in 2 and 3 dimensions.
To make the package easy to use we have added ‘context menus’.

In this paper we describe new functionality added to support graph input, storing of
arbitrary information about edges and vertices, importing graphs from and exporting
graphs to other software, including support for MetaPost for use with LATEX.

We describe a graph drawing algorithm that models a graph as a physical system
that leads to a system of second order differential equations that needs to be solved.
This approach gives very good drawings of graphs. It is limited in that its complexity is
inherently O(n2) where n is the number of vertices in the graph. Our implementation
is effective for n up to about 100.

We also describe the facilities for graph coloring and for networks.

1

2 Defining Graphs

2.1 The Graph and Digraph commands

The commands Graph and Digraph are used to construct a graph or digraph by spec-
ifying its parameters. Here we give a description of how the Graph command is used.

The following parameters of the graph can be given in any order as arguments of the
Graph command: number of vertices, vertex labels, edges/arcs, the adjacency matrix,
the weight matrix, the keywords directed, undirected, weighted, and unweighted.

Vertex labels are specified in a list (in a fixed order). Each label can be either an
integer, a symbol, or a string.

Edges are of the form {x,y} and arcs are of the form [x,y] where x and y are
valid vertex labels. A convenient solution for entering the edges of a graph is to use
trails. For example Trail(1,2,3,4,2,3,5) for an undirected graph is short for the
edges {{1,2},{2, 3},{3,4},{2,4},{3,5}}.

If the graph to be constructed is weighted, then the weights of edges/arcs can be
given in a weight matrix, or in the set of edges in the form [e,w], where e is an edge/arc
and w is the weight of e. If no weight is assigned to an edge, it is assigned the weight 1
by default. In the following we present some examples.

> G := Graph(5);

Graph 1 : an undirected unweighted graph with 5 vertices and 0 edge(s)

> Vertices(G), Edges(G);

[1, 2, 3, 4, 5], {}
> Graph([a,b,c,d,e], {{a,b}, {b,c}, {c,e}, {a,c}});

Graph 2 : an undirected unweighted graph with 5 vertices and 4 edge(s)
> Graph({{a,b}, {b,c}, {c,e}, {a,c}});

Graph 3 : an undirected unweighted graph with 5 vertices and 4 edge(s)
> G := Graph([a,b,c,d,e], Trail(c,a,b,c,e));

G := Graph 5 : an undirected unweighted graph with 5 vertices and 4 edge(s)
> Edges(G);

{{c, a}, {c, b}, {c, e}, {a, b}}
> W := Matrix(6, {(1,2)=2,(2,3)=4,(2,6)=7,(3,4)=6,(3,5)=5,(4,5)=3},

shape=symmetric):

> G := Graph([$1..6], W):

> Edges(G, weights);

{[{1, 2}, 2], [{2, 3}, 4], [{2, 6}, 7], [{3, 4}, 6], [{3, 5}, 5], [{4, 5}, 3]}

> A := Matrix([[0,1,1,1],[1,0,1,0],[1,1,0,1],[1,0,1,0]]);

2

> Edges(Graph([a,b,c,d], A));

{{a, b}, {a, c}, {a, d}, {b, c}, {c, d}}

A graph may also be defined by specifying its list of neighborhoods. This argument
must be of type list or Array. For example:

> A := Array([{2,3}, {1,3,4,5}, {1,2,4,5}, {2,3}, {2,3}]);

> Edges(Graph([v1,v2,v3,v4,v5], A));

{{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v3, v5}}

2.2 The data structure

The GraphTheory package stores graphs in Maple as functions. The following is the
general form of a graph generated by the GraphTheory package:

GRAPHLN(dir, wt, vlist, listn, ginfo, ewts)

In this structure, dir and wt are symbols indicating whether the graph is directed
or undirected and whether it is weighted or unweighted. The argument vlist is the
list of vertex labels of the graph. Each label can be of type integer, string or symbol.
Internally, the vertices are labelled by numbers 1, 2, . . . , n where n is the number of
vertices of the graph. The adjacency structure of the graph is stored in listn which
is an Array of sets. The ith entry in listn is the set of neighbors of the ith vertex.
If the graph is weighted, the edge weights are stored in ewts which is of type Matrix.
Additional information such as vertex positions and vertex and edge information will
be stored in ginfo which is a of type table.

The choice of ‘list of neighbors’ as the graph data structure provides ease of modifi-
cation of adjacency information (the edges of the graph) while adding/removing vertices
is more expensive. Another restriction of the list of neighbors as the graph structure
is that multiple edges are not supported.

2.3 Vertex/edge attributes

Attributes are used to store arbitrary information for the vertices and/or edges of a
graph. Each attribute is an equation of the form tag = value. For example

> G := Graph(Trail(a, b, c, d, b)):

> SetVertexAttribute(G, b, msg="text");

> SetVertexAttribute(G, c, [msg="message", timesvisited=10]);

> GetVertexAttribute(G, b);

[msg = ”text”]
> GetVertexAttribute(G, c, timesvisited);

10
> GetVertexAttribute(G, b, timesvisited);

3

FAIL
> SetEdgeAttribute(G, {a,b}, msg="weak edge");

> SetEdgeAttribute(G, {c,d}, [tag=fake,visited=true,cost=3]);

> DiscardEdgeAttribute(G, {c,d}, tag);

> GetEdgeAttribute(G, {c,d});

[visited = true, cost = 3]

2.4 Special graphs

The defenitions of some special graphs are included in the submodule SpecialGraphs

of the GraphTheory package. The following is a list of these special graphs.

ClebschGraph GridGraph PappusGraph

CompleteBinaryTree GrinbergGraph PathGraph

CompleteGraph GrotzschGraph PayleyGraph

CompleteKaryTree HeawoodGraph PetersenGraph

CycleGraph HerschelGraph PrismGraph

DesarguesGraph HypercubeGraph ShrikhandeGraph

DodecahedronGraph IcosahedronGraph SoccerBallGraph

DoubleStarSnark KneserGraph SzekeresSnark

DyckGraph LCFGraph TetrahedronGraph

FlowerSnark LeviGraph TorusGridGraph

FosterGraph MobiusKantorGraph WebGraph

GeneralizedPetersenGraph OctahedronGraph WheelGraph

GoldbergSnark OddGraph

2.5 Context menu

The context menu is a convenient way to access some of the GraphTheory package
commands. The context menu of a graph can be accessed in the Maple graphical user
interface by right-clicking on the graph. An example is depicted in the following figure.

4

3 Drawing Graphs

The GraphTheory package provides a command DrawGraph for drawing graphs and
digraphs. If a graph doesn’t contain drawing information, it is checked for being a
tree or a bipartite graph in which cases it is drawn with respect to those structures.
Otherwise the vertices are positioned on a circle. To force a style of drawing, one may
specify a second argument which is of the form style=· · · In the remainder of this
section we describe one of these styles, namely the spring style. The spring method
may be used to generate 2-dimensional or 3-dimensional drawings of a graph. The
default dimension is 2 and an extra argument dimension=3 can be used to generate a
3D drawing. Once a drawing is generated it will be stored in the memory for future
reference. To force generation of a new drawing, which is useful for the spring method
which uses random initial positions, one may use the option redraw in the DrawGraph

command.
Let G be a connected graph with n vertices V and m edges E. We want our

algorithm to find an aesthetic layout of the graph that clearly conveys its structure
and assign a location for each vertex and a route for each edge, so that the resulting
drawing is ‘nice’. The method we use models a graph as a physical system that leads
to a system of second order differential equations that needs to be solved. Starting
from random initial position for the vertices, the algorithm finds a local minimal total
energy of the system.

We model edges in the graph with springs with zero rest length. We model vertices
as electrically charged particles which repel each other. And we add damping to the
physical system to dampen oscillations.

Thus we construct a system of second order differential equations where the equation
for vertex i is the following:

d2

dt2
Xi(t) =

∑
j∈N(i)

(Xi(t) − Xj(t)) − d

dt
Xi(t) +

∑
j∈V

|Xi(t) − Xj(t)|
(Xi(t) − Xj(t))3

where V is the set of vertices of G, N(i) are the vertices adjacent to vertex i, and Xi

is the position of vertex i, a vector. Thus if there are n vertices in the graph and we
model the system in 2 dimensions, there are 2n second order differential equations in 2n
unknowns. For the initial values, we set initial velocities to 0 and choose initial positions
at random inside the unit square (in 2 dimensions) and unit box (in 3 dimensions).

We solve this system by the Fehlberg fourth-fifth order Runge-Kutta method (RKF45)
with degree four interpolant. This is done in Maple by using the dsolve[numeric]

command which is adaptive.
While graph drawing is a complicated problem in general, an advantage of this

approach is that it requires no special knowledge about the structure of the graph such
as whether it has articulation points or not. It also gives very good drawings of graphs.
It is limited in that the complexity is inherently O(n2). This is because the model of

5

vertices being charged particles repelling each other means each differential equation
has n non-zero terms in it. Our implementation can treat graphs with n up to 100 in
a few seconds.

Damping Constants

In order to reconstruct good graphs from the randomly positioned initial vertices it is
important that the spring model is neither over damped nor under damped. Since we
are solving the system of differential equations numerically, in case of over damped or
under damped, reaching to the local minimum is almost impossible. To correct this we
choose the damping constant, spring constant, and repelling constants carefully. After
experimenting with different graphs we have concluded that a dynamic model with
respect to different graphs is required.

We suggest that the value of damping constant be proportional to the degree of each
node. For example if we have a node with three edges connected to it then there is more
damping required for that node. We suggest that the value of the spring constant and
also repulsion constant be directly related. For example if we increase the strength of
the spring then we need to have stronger repulsion force. However the relation between
the spring and repulsion constant is not linear. We suggest the ratio A

B
=
√

n where A
is the repulsion constant and B is the spring constant. On the other hand if we have
a vertex with high degree then the repulsion force should be small on this vertex and
consequently less force for our spring. In summary A =

√
n

di
and B = 1

di
where di is the

degree of vertex i.
The first example shows that the algorithm recovers the ‘wheel graph’. The graph

on the left was constructed by placing all vertices in a circle using the command
DrawGraph(G,style=circle). The graph on the right is using the algorithm. The
command is DrawGraph(G,style=spring).

10

9

8

7

65

4

3

2

1

0

10

9

8

7

6 5

4

3

2

1
0

In this second example, we have constructed the Petersen graph. The graph on the
right below is the default output of the DrawGraph command. This is usual way of
drawing the Petersen graph. To obtain this output, the GraphTheory package stores
the vertex positions for this special graph. The graph on the left is the output of the
spring algorithm. It is another symmetric drawing of the Petersen graph.

6

9

10

67

8

5

4

3

2

1
10

98

7

6

5

4 3

2

1

The final two examples are in three dimensions. The spring algorithm is easy to
generalize to higher dimensions. In three dimensions, it is possible that the orientation
of the result, of say the wheel graph, would end up showing as a line. To prevent this
from happening, we rotate the graph through various angles and choose the orientation
which maximizes the area of the convex hull of the vertices when projected onto the
viewing plane. The first example is a docdecahedron. This graph has 20 vertices and
30 edges.

1611

17 20

7 12 15
18 19

2
8 10 1413

3 5
9

4

The second example is a graph of a soccer ball. The surface of a soccer ball consists
of pentagons and hexagons. There are 60 vertices and 90 edges. The spring algorithm
recovered the soccer ball in 0.546 seconds on an AMD 64 bit Opteron running at 2.2
GHz.

33 3246 4145 3447 31
4250 35

52 5148 3649
44 43

29 56
5528 578

53 3724 609 3930 54
7 3858

26 5910 13 146 18 1912 215 20
1 15 17411

162 3

7

4 Graph Coloring

There are several commands implemented in the GraphTheory package for dealing
with graph coloring problems. Since coloring problems are NP-Complete in general,
the commands usually use brute-force search methods.

The two commands ChromaticNumber and ChromaticIndex return the chromatic
number and the chromatic index (edge chromatic number) of a graph respectively.
These commands also return an optimal coloring. To speed up the search, these com-
mands calculate upper and lower bounds on the chromatic number of the given graph.
The upper bound is obtained from a greedy coloring of the graph while the lower bound
is the maximum of ω(G) and n

α(G)
for a graph G where n is the number of vertices,

ω(G) is the clique number, and α(G) is the independence number of G. The call
ChromaticNumber(G, bound) calculates and returns the bounds without searching for
the chromatic number. The commands IsKColorable and IsKEdgeColorable can be
used to check if a graph is k-colorable or edge k-colorable for a fixed number k.

Circular colorings of graphs are also supported in the GraphTheory package. The
commands CircularChromaticNumber and CircularChromaticIndex return the cir-
cular chromatic number and the circular edge chromatic number of a given graph along
with the corresponding optimal circular colorings. The commands IsKDColorable and
IsKDEdgeColorable are used to check (k, d)-colorability or edge (k, d)-colorability for
a fixed pair (k, d) of integers.

From König’s theorem we know that the chromatic index of every bipartite graph is
equal to the maximum degree of a vertex in the graph. This theorem gives a polynomial-
time algorithm for obtaining an optimal edge coloring of a bipartite graph. This al-
gorithm is based on the maximum bipartite matching algorithm implemented in the
GraphTheory package in the command BipartiteMatching. The ChromaticIndex

command uses this method to obtain optimal edge colorings of bipartite graphs in
polynomial time.

These commands along with the ImportGraph and ExportGraph commands, and
definitions of some families of snarks in SpecialGraphs, provide a good collection of
tools for teaching and research in graph coloring.

5 Networks

There are four commands in the GraphTheory package for dealing with networks. They
are IsNetwork, RandomNetwork, MaxFlow and DrawNetwork.

Here we define a network to be a directed graph with at least one source and one
sink. A source is a vertex of the network with no incoming arcs and a sink is a vertex
with no outgoing arcs.

8

5.1 Network Test

The command IsNetwork is used to test whether a graph is a network or not. The
command can also be used to determine whether a graph with two specified sets of
vertices as sources and sinks is a network or not.

> N := Digraph({[a,b], [c,d], [b,d], [d,e]});

N := Graph 1 : a directed unweighted graph with 5 vertices and 4 arc(s)
> IsNetwork(N);

true, {c, a}, {e}
> IsNetwork(N, a, d);

false
> IsNetwork(N, c, e);

true

5.2 Generating Random Networks

The command RandomNetwork can be used to create a random network with specified
set or number of vertices. The generated Network has exactly one source and one sink.

We partition the vertices of the network into levels. The source and sink are in the
first and last levels respectively. If u and v are two vertices in the network, if there is
an arc from u to v and u belongs to the ith level then v must be in the (i + 1)st level.

The user can specify the number of levels in the generated network with an argument
p which is a number between 0 and 1. The larger p is, the larger the number of levels
will be. For example for p = 1 the number of levels would be exactly the number of
vertices and the ith level will only has the ith vertex as its member.

There is also an optional argument q which determines the probability of having an
arc between each pair of vertices. The generated network can be forced to be weighted
or acyclic by adding each of these terms in the list of arguments.

> N := RandomNetwork(10, 0.3);

> IsNetwork(N);

true, {1}, {10}
> N := RandomNetwork(10, 0.3, acyclic, weighted);

> IsNetwork(N);

true, {1}, {10}
> MaxFlow(N, 1, 10);

1.119382241

9

5.3 Drawing Networks

The GraphTheory package includes a command named DrawNetwork for displaying
networks. The user can specify the set of vertices for sources and sinks of the network,
otherwise the sets of all possible sources and sinks will be chosen. The user can also
choose the network to be displayed either horizontally or vertically.

> N := RandomNetwork(10, 0.3, .4, acyclic);

N := Graph 2 : a directed unweighted graph with 10 vertices and 34 arc(s)!
> DrawNetwork(N);

8

10

4

97

1

6532

6 The ImportGraph and ExportGraph Commands

The ImportGraph and ExportGraph commands provide a way to read graphs from
files into the GraphTheory package and to output graphs to files in some formats. One
format is used in the DIMACS graph coloring challenge. For example the command

ExportGraph(SpecialGraphs:-CycleGraph(5), "C5.col", dimacs)

generates a file C5.col in the current working directory with the following contents:

c Generated by the Maple GraphTheory package

p edge 5 10

e 2 3

e 3 2

e 1 2

e 2 1

e 3 4

e 4 3

10

e 1 5

e 5 1

e 4 5

e 5 4

This file may be read into the GraphTheory package using the command
ImportGraph("C5.col", dimacs).

Another format supported by the ImportGraph and ExportGraph commands is the
format used by the Mathematica package “Combinatorica”.

ExportGraph also supports export to MetaPost. The resulting file may be com-
piled using the mpost command (in Unix systems, for other systems refer to your
LATEXmanual). Figure 1 shows the final result of the following commands.

> G := SpecialGraphs:-DoubleStarSnark();

> ExportGraph(G, "dblstar.mp", metapost);

1 2 3

4

5

6

7
8

910
11

12

13

14

15 16 17 18

19
20
21

22
23

2425
26

27

28
29
30

Figure 1: The double-star snark exported to MetaPost

The MetaPost file generated by ExportGraph may be edited to customize the result.
For example one may remove some vertex labels or change the size of the vertices.

7 List of Commands

AcyclicPolynomial GetVertexPositions MakeDirected

AddArc Girth MakeWeighted

11

AddEdge Graph MaxFlow

AddVertex GraphComplement MaximumClique

AdjacencyMatrix GraphDifference MaximumDegree

AllPairsDistance GraphJoin MaximumIndependentSet

Arrivals GraphPolynomial MinimalSpanningTree

ArticulationPoints GraphPower MinimumDegree

BiconnectedComponents GraphRank Mycielski

BipartiteMatching GraphSpectrum Neighbors

Blocks GraphSum NumberOfEdges

CartesianProduct GraphUnion NumberOfSpanningTrees

CharacteristicPolynomial GreedyColor NumberOfVertices

ChromaticIndex Head OptimalEdgeColoring

ChromaticNumber HighlightEdge OptimalVertexColoring

ChromaticPolynomial HighlightVertex OutDegree

CircularChromaticIndex ImportGraph PermuteVertices

CircularChromaticNumber InDegree PrimsAlgorithm

CircularEdgeChromaticNumberIncidenceMatrix RandomBipartiteGraph

CliqueNumber IncidentEdges RandomDigraph

ClosedNeighborhood IndependenceNumber RandomGraph

CompleteGraph InducedSubgraph RandomNetwork

ConnectedComponents Internal RandomTournament

Contract IsAcyclic RandomTree

CopyGraph IsBiconnected RankPolynomial

CycleBasis IsBipartite RelabelVertices

CycleGraph IsClique SeidelSpectrum

Deck IsConnected SeidelSwitch

Degree IsCutSet SequenceGraph

DegreeSequence IsDirected SetEdgeAttribute

DeleteArc IsEulerian SetEdgeWeight

DeleteEdge IsForest SetVertexAttribute

DeleteVertex IsGraphicSequence SetVertexPositions

Departures IsHamiltonian ShortestPath

Diameter IsIntegerGraph SpanningPolynomial

Digraph IsKColorable SpanningTree

DiscardEdgeAttribute IsKDColorable StronglyConnectedComponents

DiscardVertexAttribute IsKDEdgeColorable Subdivide

Distance IsKEdgeColorable Subgraph

DrawGraph IsNetwork Tail

DrawNetwork IsPlanar TopologicalSort

EdgeChromaticNumber IsRegular TravelingSalesman

EdgeConnectivity IsStronglyConnected TreeHeight

12

Edges IsTree TuttePolynomial

ExportGraph IsTwoEdgeConnected TwoEdgeConnectedComponents

FlowPolynomial IsWeighted UnderlyingGraph

FundamentalCycle Join VertexConnectivity

GetEdgeAttribute KruskalsAlgorithm Vertices

GetEdgeWeight LineGraph WeightMatrix

GetVertexAttribute

References

[1] J. Farr, M. Khatirinejad, S. Khodadad, M. Monagan, A Graph Theory Package for
Maple, Proceedings of the 2005 Maple Conference, pp. 260-271, Maplesoft, 2005.

13

