
A Graph Theory Package for Maple

Jeffrey Farr∗, Mahdad Khatirinejad∗, Sara Khodadad∗, Michael Monagan∗

We present a new graph theory package for Maple. The package is presently intended
for teaching and research usage, and expected to treat graphs of up to 1000 vertices in a rea-
sonable time. The current tool in Maple for solving problems in graph theory is the networks
package. This package is over ten years old and is designed primarily with applications of
networks in mind. The data structure is too heavy and cumbersome for treating elementary
graph theory problems. Therefore, one design criterion for the new GraphTheory package
is a simple, yet flexible, data structure designed primarily for solving problems related to
graphs rather than networks. All of the operations present in the networks package and all
of the standard operations for graphs are, however, available in the GraphTheory package.

The package includes a drawing algorithm. The following example shows how one can
find a spanning tree of a random graph which has 15 vertices and every edge is present with
probability 0.3:

> G := RandomGraph(15,.3);

GRAPHLN(undirected, unweighted,[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15], [{13} ,
{4, 5, 7, 8, 13} , {4, 5, 8, 9}, {2, 3, 10, 12, 13, 14} , {2, 3, 9, 12, 13, 14} , {8,12} , {2, 10}
, {2, 3, 6, 11} , {3, 5, 12} , {4, 7} , {8, 15} , {4, 5, 6, 9, 14} , {1, 2, 4, 5} , {4, 5, 12, 15} ,
{11, 14}], table([]) ,0)

> DrawGraph(SpanningTree(G));

1

2

10

5

6

9

13

4

11

38 14127

15

∗Supported by the MITACS NCE of Canada.

1

We will explain the data structure. In order to construct a (di)graph, one may use the
constructor commands Graph() or Digraph().

> G := Graph([a,b,c],{ { a,b } , { b,c } });

GRAPHLN(undirected,unweighted, [a, b, c], [{2} , {1, 3} , {2}], table([]), 0)

The above example constructed the unweighted graph G = (V, E) where V = {a, b, c} and
E = {{a, b} , {b, c}}. The data structure of a (di)graph is as follows:

GRAPHLN(D, W, V, A, T,EW)

where D and W are of type symbol, V is of type list, A is of type Array, T is of type table,
and EW is of type Matrix. Two symbols, namely directed or undirected, are possible for
D. Also, two symbols can be used for W , namely weighted or unweighted. The list V stores
the labels of the vertices of the graph. The array A contains the set of neighbors of every
vertex in an array. Notice that each element of A is of type set(posint). The table T stores
some of the graph properties which are expensive to find, but are cheap to store. The matrix
EW stores the edge weights of the graph when the graph is weighted. When the graph is
unweighted, EW is not a matrix and is set to 0.

Some algorithmic details of the MaximumClique, IsPlanar,

and MaxFlow commands

The problem of finding a maximum clique (or a maximum independent set) of a graph
is known to be NP-complete. We have implemented a backtracking (branch and bound)
algorithm which is fast (see [2]). For example on an Apple G5 machine, it takes about
2 seconds to find the maximum clique of a random graph with 1000 vertices and 250, 000
edges. The number of vertices of a maximum clique of such a graph is usually about 10 to
15. A bounding function helps to reduce the size of state space tree. The bounding function
that we have used is the greedy coloring of a graph.

To test whether a graph on n vertices is planar or not, we have implemented an algorithm
due to Demoucroun, et al. (see [1]), which has running time O(n2). There are some algo-
rithms, such as Hopcroft-Tarjan algorithm, which are linear time. However, the algorithm
we have used is much simpler and seems to be more efficient for graphs with less than 1000
vertices. If a graph is planar, we output the plane embedding of the graph as a set of faces.
This information is obviously useful for drawing the planar graph.

The basic problem of finding a maximal flow in a network occurs not only in trans-
portation and communication networks, but also in currency arbitrage, image enhancement,
machine scheduling and many other applications. To find the maximum flow of a network
on n vertices and m edges, we have implemented the so called preflow-push (push-relabel)
algorithm. This algorithm runs in O(n2m) time, an improvement over the O(nm2) augment-
ing path algorithms, such as Edmonds-Karp, which are often used. We have also used this
algorithm to find the vertex connectivity and edge connectivity of a graph.

2

List of commands of the GraphTheory package

AcyclicPolynomial AddArc AddEdge
AddVertex AdjacencyMatrix AllPairs
Arrivals BiConnectedComponents CayleyGraph
CharacteristicPolynomial ChromaticNumber ChromaticPolynomial
ClebschGraph CliqueNumber CompleteGraph
Connect ConnectedComponents Contract
CopyGraph CycleBasis CycleGraph
Deck Degree DegreeSequence
DeleteArc DeleteEdge DeleteVertex
Departures Diameter Digraph
Distance DodecahedronGraph EdgeConnectivity
Edges FlowPolynomial FundamentalCycle
Girth Graph GraphComplement
GraphDifference GraphIntersection GraphJoin
GraphPower GraphRank GraphSum
GraphUnion GridGraph Head
HyperCubeGraph IcosahedronGraph IncidenceMatrix
IncidentEdges InDegree IndependenceNumber
InducedSubgraph Internal IsAcyclic
IsClique IsConnected IsCutSet
IsDirected IsEulerian IsGraphicSequence
IsHamiltonian IsPlanar IsRegular
IsTree IsWeighted LineGraph
MakeWeighted MaxFlow MaximumClique
MaximumDegree MaximumIndependentSet MinimumDegree
MinimumSpanningTree MycielskiGraph Neighbors
NumberOfEdges NumberOfTrees NumberOfVertices
OctahedronGraph OutDegree PathGraph
PetersenGraph RankPolynomial RandomDigraph
RandomGraph RandomTournament SeidelSpectrum
SequenceGraph ShortestPath ShrikhandeGraph
SpanningPolynomial SpanningTree Spectrum
StandardGraph Subdivide Subgraph
Switch Tail TetrahedronGraph
TopologicSort TravelingSalesman TuttePolynomial
UnderlyingGraph VertexConnectivity Vertices

References

[1] Alan Gibbons, Algorithmic Graph Theory. Cambridge University Press, 1985.

[2] D. L. Kreher, D. R. Stinson, Combinatorial algorithms: generation, enumeration, and
search. CRC Press, 1999.

3

