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> restart:

Whereas the conventional wave equation contains partial derivatives in spatial and time
variables of both second order, Schroedinger's temporally dependent equation has the form of a
diffusion equation; it fails to conform to a relativistic requirement because it contains spatial
derivatives of second order whereas a temporal derivative of first order, as Schroedinger
recognised at the time of producing this equation. For comparison with the shapes of the surfaces
of amplitude functions from the solution of Schroedinger's temporally independent equations, we
present here the solutions to Dirac's equation for the hydrogen atom that contains derivatives with
respect to spatial and temporal variables both of first order, but the resulting amplitude functions
must become vectors with four components. To form these amplitude functions we recall four
Pauli spin matrices, as follows.

> sigma[0] := <<1|0>,<0]|1>>;
sigma[l] := sigma[x] = <<0|1>,<1|0>>;
sigma[2] := sigma[y] = <<0|-I>,<I|0>>;

sigma[3] sigma[z] = <<1|0>,<0]|-1>>;
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As introduced in exercise e6.113, these complex matrices are hermitian, such that a transpose of

each matrix is equal to a matrix of the complex conjugates of its elements, unitary, such that its
. . . . . 2 2 2 .
conjugate transpose is its inverse, and involutory, such that 6, =6, =0, =-i 0, 0,0, =1, the

unit mitrix. With these Pauli matrices as submatrices, we construct Dirac's dimensionless
velocity operators, as follows; each product with speed of light ¢ generates a component of
velocity. Although these Dirac matrices contain the Pauli matrices as sub-matrices, this condition
is fortuitous; the only matrices of order 4 for which the conditions of anticommuting and unit
squares are fulfilled are those with exactly the stated compositions. Although the conventional
notation for these velocity and aspect matrices comprises o and [3, respectively, here we use ol
and B1 to leave a free for use below as the fundamental physical constant known as the
fine-structure constant.
> alphal[x] := <<0|0]0|1>,<0|0]1]0>,<0|1]0]0>,<1|0]0]|0>>;
alphal[y] := <<0|0]|0|-I>,<0|0]|T|0>,<0|-T|0|0>,<I|0|0]|0>>;




alphal[z] := <<0|0]1]0>,<0|0]0|-1>,<1|0]0]|0>,<0|-1]|0]|0>>;

betal := <<1]0]0]0>,<0]1]0]0>,<0]0]-1|0>,<0|0|0|-1>>; #
aspect
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Like the Pauli matrices, the squares of these Dirac matrices are unit matrices,
> 'alphal[x] .alphal[x]' = alphal[x].alphal[x];
'alphall[y] .alphal[y]' = alphally].alphally];
'alphal[z] .alphal[z]' = alphal[z].alphal[z];
'betal.betal' = betal.betal;
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pL.B1= 0O 0 1 0
0 0 0 1
and the matrices anticommute such that x y = —y x, or the sum of these products in reverse order is



zero; both the Pauli and Dirac matrices have these properties.
> 'alphal[x]'.'alphal[y]' + 'alphally]'.'alphal[x]' =
alphal[x] .alphal[y] + alphally].alphal[x];

0O 0 0 O
0 0 00
((al,). (ol )+ ((aly). (al)) = 0 00 0
0 0 0
> 'alphal[x]'.'alphal[z]' + 'alphal[z]'.'alphal[x]' =
alphal[x] .alphal[z] + alphal[z].alphal[x];
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> 'alphal[y]'.'alphal[z]' + 'alphal[z]'.'alphal[y]' =
alphal[y] .alphal[z] + alphal[z].alphally];
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((aly). (al))+((al). Cal))=\ o 4 4
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> 'alphal[x]'.'betal' + 'betal'.'alphal[x]' = alphal[x].betal +
betal.alphal[x];
0 0 0 0
0 0 0O
((al,).BL)+(Bl.(al,))= 00 0 0
0O 0 0 O
> 'alphal[y]'.'betal' + 'betal'.'alphall[y]' = alphal[y].betal +

betal.alphally];
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> 'alphal[z]'.'betal' + 'betal'.'alphal[z]'
betal.alphal[z];
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To produce an energy of a system such as a hydrogen atom, Dirac formed an hamiltonian
relation of this form, H=—0 p c—a, p c—0 p c— Bm, ¢, because its square leads to the
IdemwMWmmaammmﬁnmaymmmw.E pxc+p28+p c+m2ﬁ

> E*2 = simplify((— alphal[x]*p[x]*c — alphally]*ply]*c -



alphal[z]*p[z]*c — betal*m[e] *c”*2)*2);
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provided that the square of each operator a.,, o, o, B becomes unity and that a product of any two
changes sign on multiplication in a reverse order; tests above prove that the specified Dirac
matrices fulfil these conditions. On that basis, Dirac’s system of equations for an electron of mass
m, in an electromagnetic field with scalar potential A and vector potential A = (A, A,, A;) is
expressible as

3
(pp I + za’jpj +Ppm,c)y =0,
j=1
in which y = (y;, ¥, Y3, W, ) is a vector with four components, I is a unit matrix of order 4, o,
and P are the Dirac matrices specified above and p; are momenta that become differential
operators of space variables or time:
ih 0 e ih 0 e

=3 t oA p=-T_—+—A forj=1273
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For the particular case of a central field of force such as a coulombic potential energy, A, = —

1
V(r)and A; =0 for j =1, 2, 3; for solutions periodic in time, p, becomes a parameter equal to —
c

a
times energy E. Assuming distances in unit _Z , in which appear Bohr radius a,, and atomic
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number Z, and eigenfunctions in terms of Dirac's equation, independent of time, for
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an atom of proton number Z and only one electron is then
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in which appear i =4/ —1, electronic charge —e and rest mass m,, speed of light c, electric
permittivity of free space €, Planck constant 4 and energy eigenvalue E, with four Dirac matrices

oL, O, O, B;m, ¢ represents the energy due to the rest mass of the electron. By dint of the
occurrence of matrices o and B both of order 4, that equation implies four separate equations; each

eigenfunction or amplitude function Y must be a column vector with four components,
> psi = <psi[l],psi[2],psil[3],psi[4]>;
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which cannot be directly combined into a single algebraic formula. In contrast, as the square of
the magnitude of y, the probability density| \p2 | = \p* Y becomes a scalar product of a row vector,
as the complex conjugate of Y in which each component is a complex conjugate of the respective

component of ,
> psitt* = <psi[l]7 * |psi[2]7 7 * |psi[3]17 *  |psi[4]” * >;

v=ly v vyl
and the above column vector,
> psit’* “*psi = '<psi[l]*T* T |psi[2]77* T |psi[3]7* C |psi[4]”*
*>' . <psi[l],psi[2],psi[3],psi[4]>;
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which evaluates to
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which is simply a scalar quantity as a sum of the four indicated terms, each a product of a

component of the vectorial eigenfunction with its complex conjugate.

We classify the eigenfunction or amplitude function of this Dirac equation independent of time
in terms of four quantum numbers:

e energy quantum number n, which originated from experiment through the formulae of Balmer
and Rydberg and which assumes values of positive integers; this quantum number can be
replaced for all purposes of identification with a sum of radial quantum number £, that indicates
the number of radial nodes in a particular component of the amplitude function, azimuthal
quantum number / and unity, such that n =k + [ + 1 as in the Schroedinger case in spherical
polar coordinates, so that a state becomes identified as lk+ [+1, [, j, m>;

¢ azimuthal quantum number /, which assumes values of non-negative integers up to n — 1, but
which is no longer a quantum number for angular momentum;

¢ angular-momentum quantum number j, which is invariably positive and assumes only two

values based on /, specifically j =/ + 5 orj=1[- 5, and

® magnetic quantum number m, which assumes all half-integer values from —j to +j, and which
is hence better designated as m; to distinguish it from m; that arises from Schroedinger's



equation, cf. section 12b53. The coefficient of i ¢ in exponential term in a solution of Dirac's

1 1
equation is m; + 5 or m; — 5 , 1.e. an integer, so that the condition of periodicity is fulfilled, so

(lyzle)  [m3)o

e ore . To avoid complications of notation we use simply m instead of m,
in the following treatment.

Unlike the solutions of Schroedinger's temporally independent equation that one represents as
W, (75 0, 0) in spherical polar coordinates with quantum numbers , /, m for which in general a
particular amplitude function is not associated with a specific state of the hydrogen atom as
defined with its energy and angular momentum, for these solutions of the Dirac equation each
amplitude function is associated with a particular spectrometric state specified with those four
quantum numbers . In spherical polar coordinates r, 0, ¢, as defined in this plot, with a sphere for
distance coordinate r, a cone about the polar axis for angular coordinate 0 and a half-plane for
angular coordinate 0,
> addcoords (scispherical, [r,theta,phi], [r*sin (theta) *cos (phi), r*s
in(theta) *sin(phi), r*cos (theta)l]);
> plots[implicitplot3d] ([r=1], theta=Pi/6, phi=3*Pi/5], r=0..4,
theta=0..Pi, phi=0..2*Pi,
axes=boxed, colour=[red, blue, green],
titlefont=[TIMES, BOLD, 14], labels=["x",6"y",6"z"],
grid=[30,30,30], view=[-1.5..1.5,-1.5..1.5,
-1.5..1.5], scaling=constrained,
title="surfaces of r=1 red, theta=Pi/6 blue,
phi=3*Pi/5 green",
coords=scispherical, orientation=[20,65]);



surfaces of =1 red, theta=Pi/6 blue, phi=3*Pi/5 green

>
we present, in terms of these quantum numbers in Dirac notation as kets of form In, [, j, m>, in
vectorial form several eigenfunctions of an atom of atomic number Z with one electron assuming

a
. . 0 . . . . .
distances in terms of 7 in which appear Bohr radius g, and proton number Z, and eigenfunctions

Z3

in terms of ;- as specified above; o that appears in these expressions denotes the
T a,
g
dimensionless physical parameter known as the fine-structure constant, ot = ﬁ =
g hc
0

0.0072973525664 ~1/137, and has no relation to the Dirac matrices above. Rather than to derive



the solutions to Dirac's equation as amplitude functions, we present these approximate formulae,
which lack normalising factors and which include terms of order only o Z, that appear in a paper
by R. E. Powell (Journal of Chemical Education, 45 (9), 558 - 563, 1968). The name of each
formula is precisely a ket function | > of which the four arugments are identically the four quantum
numbers; the amplitude function hence precisely identies uniquely the state of the atom with one
electron.
> “11,0,1/2,1/2>" :=
<exp(-r),0,1/2*I*alpha*Z*exp (-r) *cos (theta),1/2*I
*alpha*Z*exp (—r) *sin (theta) *exp (I*phi) >;
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11,0,1/2,1/2> = ElocZe cos(0)
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> 11,0,1/2,-1/2>" :=
<0, -exp(-r),-1/2*I*alpha*Z*exp (-r) *sin (theta)

*exp (—I*phi) ,1/2*I*alpha*Z*exp (-r) *cos (theta)>;

0
_ (=r)
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> 12,0,1/2,1/2>" :=
sqgrt (1/8) *<(1-r/2) *exp(-r/2),0,1/2*I*alpha*Z* (1-r/4) *exp (-xr/2)

*cos (theta) ,1/2*I*alpha*Z* (1-r/4) *exp (—r/2) *sin (theta) *exp (I*ph
i)>;
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> “12,0,1/2,-1/2>" :=
sqrt (1/8) *<0,-(1-r/2) *exp(-r/2) ,-1/2*I*alpha*Z* (1-r/4) *exp (-r/2



)

*sin (theta) *exp (-I*phi),1l/2*I*alpha*Z* (1-r/4) *exp(-r/2) *cos (the
ta)>;
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> " 12,1,1/2,1/2>" :=
sqgrt (1/32) *<-sqrt (1/3) *r*exp (-r/2) *cos (theta) ,—sqrt (1/3) *r*exp (
-r/2)

*sin (theta) *exp (I*phi), sqrt (3/4) *I*alpha*z* (1-r/6) *exp(-r/2),0>
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> 12,1,1/2,-1/2>" :=
sqgrt (1/32) *<sqrt (1/3) *r*exp (—-r/2) *sin (theta) *exp (-I*phi) , —sqrt (
1/3)

*r*exp (-r/2) *cos (theta), 0, sqrt (3/4) *I*alpha*Z* (1-r/6) *exp (-r/2)

>
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> "12,1,3/2,3/2> :=

sqgrt (1/32) *<sqrt (1/2) *r*exp (-r/2) *sin (theta) *exp (I*phi), 0, sgrt (
1/32)

*I*alpha*Z*r*exp (—-r/2) *sin (theta) *cos (theta) *exp (I*phi),

sqgrt (1/32) *I*alpha*Z*r*exp (-r/2) *sin (theta) *2*exp (2*I*phi) >;
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“12,1,3/2,-3/2>" :=
sqgrt (1/32) *<0, sqrt (1/2) *r*exp (-r/2) *sin (theta) *exp (-I*phi) , sqrt
(1/32)

*I*alpha*Z*r*exp (—-r/2) *sin (theta) *2*exp (-2*I*phi),

-sqrt (1/32) *I*alpha*Z*r*exp (—-r/2) *sin (theta) *cos (theta) *exp (-I*
phi) >;
i 0 1
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> “12,1,3/2,1/2>" :=
sqgrt (1/32) *<sqrt (2/3) *r*exp (-r/2) *cos (theta) ,-sqrt (1/6) *r*exp (-
r/2)

*sin (theta) *exp (I*phi), sqrt (3/32) *I*alpha*Z*r*exp(-r/2) * (cos (th
eta)~2-1/2),

sqgrt (3/32) *I*alpha*Z*r*exp (-r/2) *sin (theta) *cos (theta) *exp (I*ph
i)>;

Z—t‘«/za/gre_gjcos(e)
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1 _
&I«/E«/EOLZre ? sin(0) cos(0) e(M)

> "12,1,3/2,-1/2>" :=
sqgrt (1/32) *<-sqrt (1/6) *r*exp (-r/2) *sin (theta) *exp (-I*phi), —-sqrt
(2/3) *r*exp (-r/2)

*cos (theta) ,-sqrt (3/32) *I*alpha*Z*r*exp (—-r/2) *sin (theta) *cos (th
eta)

*exp (-I*phi), sqrt (3/32) *I*alpha*Z*r*exp (-r/2) * (cos (theta)*2-1/2

)>;
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The notable characteristics of these vectorial amplitude functions follow:

¢ of the four components of the vectors, one of which might be zero, two, specifically y, and y,,



contain, if not zero, product o Z that, for Z < 10, produces magnitudes of these components
much smaller than components , and , if not zero;

¢ we thus describe y, and W, as the large components and \, and y, as the small components;

e cach component of the four might in general be complex, having both real and imaginary parts;
there are hence up to eight distinguishable parts of a particular vectorial amplitude function, and

¢ the square \u* y of each amplitude function has only real parts, both small that contain o’ Z* and
large, as calculations below demonstrate.

The energies associated with these amplitude functions are expressible as, with Z2 = Z* before
the Taylor expansion below,
> E[n,j] := m[e]*c*2/sqgrt (1l + Z2*alpha”2/(k +

sqrt ( (j+1/2) ~2+Z2*alpha”2))~2) ;
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1+

2
«/4220(2+4j2+4j+1
k + 5

in which k is a quantum number analogous to radial quantum number £ in the solution of
Schroedinger's equation for the hydrogen atom in spherical polar coordinates as the number of

1
radial nodes. Here, k=n — ( j+ EJ’ which we insert.

> E[n,j] := subs(k:n—(j+1/2), E[n, jl1);
mec2
E A=
n,j 2
Z2 a
1+ 5
( ] «/4ZZa2+4j2+4j+1J
n—j—_+
2 2
When we make a Taylor expansion in Z2 and replace that with z,
> E[n,j] := subs(Z22=Z*2, taylor(E[n, j], Z2, 3)) assuming
positive;
2.2 4 4
1 m,c o 3
Enj:=m€cz———222+mecz( 3 + 4]24+O(Z(’)
’ 2 n n(l1+2j) 8n

we find that the first term in the result is just the energy associated with the rest mass of the
electron, the second term is equal to the energy of the hydrogen atom with Z = 1 as deduced by
Balmer and Rydberg from experiment and as reproduced in the derivation with Schroedinger's
equations, and the third and further terms are relativistic corrections to the energy that produce the
splitting of the otherwise degenerate energies of states with common n, as discussed in section
12b.53.



We proceed to plot some amplitude functions among those listed above. As we cannot plot an
eigenfunction directly because it comprises a vector of four components, we plot successively in
spherical polar coordinates the separate components in their real and imaginary parts and then the
squared amplitude function| \p2| = \p* Y, in which \I’* implies the complex conjugate of , in its
large and small parts. The lack of normalising factor has no effect on the shape of the plotted

1
objects because we select a value of y that is ﬁ of its maximum value; the resulting surface

hence would contain 0.995 of the total density of electronic charge, consistent with plots of
amplitude functions from the solutions of the Schroedinger equation in other sections.
> cond := [Z=1, alpha=0.0072973525664];
cond:=[Z=1,0=0.0072973525664 ]
We recall first 1,0,1/2,1/2> as a vector with four components in an unnormalised form,
> ']1,0,1/2,1/2>"' = *|1,0,1/2,1/2>";
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and plot the radial profile of the first component of 1,0,1/2,1/2>.
> plot([ 1,0,1/2,1/2>"[1], 0.01], r=0..6, 0..1, title=
"profile of amplitude function |1,0,1/2,1/2>, real component
1",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
linestyle=[1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |1,0,1/2,1/2>, real component 1
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We plot the surface of this first component of 11,0,1/2,1/2>
> plots[implicitplot3d] (*]1,0,1/2,1/2>"[1]=0.01,
r=0..5, theta=0..Pi, phi=0..2*Pi, colour=green,
labels=["x",6 "y","2z"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |1,0,1/2,1/2>, real component 1",

titlefont=[TIMES,BOLD, 14], view=[-5..5,-5..5,-5..5]1);



amplitude function |1,0,1/2,1/2>, real component 1
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which generates a perfect sphere because this component has no angular dependence. Whereas
the second component is identically zero, the third component is purely imaginary;

> '"11,0,1/2,1/2>"'[3] = " |1,0,1/2,1/2>" [3];

I .
I],0,1/2,1/2>3=510cZe( ’ cos(8)

we plot first the radial profile along the polar axis, for which 8 = 0, to obtain the criterion for the

surface,
> plot([eval(Im( |1,0,1/2,1/2>"[3]), [theta=0,op(cond)]),
0.0000365], r=0..6, 0..0.0037,
title="profile of amplitude function " |1,0,1/2,1/2>",
imaginary component 3",



titlefont=[TIMES,BOLD, 14], colour=[red, brown],
linestyle=[1, 2],

labels=["r", "psi"], thickness=[3,2]);
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in which the maximum amplitude is 0.00365, much less than unity for the first component, and
then the surface itself.
> plots[implicitplot3d] ([eval(Im( |1,0,1/2,1/2> [3]),
cond)=0.0000365,
eval(Im( |1,0,1/2,1/2>"[3]), cond)=-0.0000365], r=0..5,
theta=0. .Pi,
phi=0..2*Pi, colour=[red, blue], orientation=[0,90],
labels=["x","y", "z"],



coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |1,0,1/2,1/2>, imaginary component
3",
titlefont=[TIMES,BOLD, 14], view=[-5..5,-5..5,-5..5]);
amplitude function |1,0,1/2,1/2>, imaginary component 3
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The fourth component,
> '"11,0,1/2,1/2>" '[4] = evalc( 11,0,1/2,1/2>" [4]);

1 =r 1 —-r
1,012,125, =~ aZe " sin(0)sin(0) +510cZe( "sin(8) cos(0)

has both real and imaginary parts, of which we select those parts separately.
> rp := Re(rhs (%)) assuming real;



1 -
- ::—EocZe( " sin(0) sin(0)

> ip := Im(rhs(%%)) assuming real;
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We plot the surface itself in its real,
> plots[implicitplot3d] ([eval (rp, cond)=0.0000365,
eval (rp, cond)=-0.0000365], r=0..5, theta=0..Pi,
phi=0..2*Pi,
labels=["x","y","z"], colour=[cyan, brown],
orientation=[0,90],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |1,0,1/2,1/2>, component 4, real
part",
titlefont=[TIMES,BOLD,14], view=[-5..5,-5..5,-5..5]);



amplitude function |1,0,1/2,1/2>, component 4, real part
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and imaginary parts.
> plots[implicitplot3d] ([eval (ip, cond)=0.0000365,
eval (ip, cond)=-0.0000365], r=0..5, theta=0..Pi,
phi=0..2*P1i,
colour=[pink, coral], orientation=[90,90],
labels=["x",6"y","2"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |1,0,1/2,1/2>, component 4,
imaginary part",
titlefont=[TIMES,BOLD, 14], view=[-5..5,-5..5,-5..5]);



amplitude function |1,0,1/2,1/2>, component 4, imaginary part

4,

2_

0 5 7
;o

B
-2
_4,
a4 T2 e T 27T T AT

>
The surfaces in the preceding three plots resemble perfectly the surfaces of the amplitude

functions Yo . o(7, 6, ¢) and the real and imaginary parts of Yo 1. (r,0,9). From 1,0,1/2,1/2>,
>p := evale( 11,0,1/2,1/2>7);

(=r)
0

1 -
p = ElocZe( )cos(e)

1 -r 1 -
—EocZe( )sin(e) sin(¢)+510cZe( )sin(e)cos(d))

and its complex conjugate,




> pc := evalc(subs(I=-I, |1,0,1/2,1/2>"));

(=r)
e
0

1 ~,
pc = ElocZe( )cos(e)

R 1 L
—EocZe( ' in(8) sin(0) —ElocZe( " $in(8) cos()

we form scalar product 11,0,1/2,1/2>% . 1,0,1/2,1/2>,
> ps :=
simplify (evalc (expand (subs (I=-I,LinearAlgebra:-Transpose( |1,0,
1/2,1/2>")) . *|1,0,1/2,1/2>"))) assuming real;
1 -

2r
py=Ze RZHf+4)

which is entirely real and which we separate into two parts -- large that does not contain o and

small that contains o.. This formula lacks the normalising factor from I1,0,1/2,1/2>, which would
3

result in multiplicand in the total expression above for the scalar product.

3

T a,
> fl := simplify(remove (has, expand(ps), alpha));
(=2r)
fli=e
> fs := simplify(ps - fl);

We plot the radial profile of its large part,
> plot([eval(fl, cond), 0.01], r=0..3, 0..1, labels=["r", "psi"],
thickness=[3, 2],
linestyle=[1,2], titlefont=[TIMES,BOLD,14], colour=[red,
brown],
title="profile of squared amplitude function |1,0,1/2,1/2>,
large part");



profile of squared amplitude function |1,0,1/2,1/2>, large part
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>

and the surface of that squared 11,0,1/2,1/2> .
> plots[implicitplot3d] (eval (fl, cond)=0.01], r=0..3, theta=0..Pi,

phi=0..2*Pi, colour=gold, orientation=[45,45],
labels=["x",6"y","2"],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="squared amplitude function |1,0,1/2,1/2>, large
part",

titlefont=[TIMES, BOLD, 14],
view=[-2.5..2.5,-2.5..2.5,-2.5..2.5]);



squared amplitude function |1,0,1/2,1/2>, large part

>
The small part comprises one term, specified above,
> plot ([eval(fs, cond), 1.33e-7], r=0..3, labels=["r", "psi"],
thickness=[3, 2],
linestyle=[1,2], titlefont=[TIMES,BOLD,14], colour=[red,
brown],
title="profile of squared amplitude function |1,0,1/2,1/2>,
small part");



profile of squared amplitude function |1,0,1/2,1/2>, small part
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>

of which we accordingly plot the surface of the small part of 1,0,1/2,1/2> squared containing «,
> plots[implicitplot3d] (eval (fs, cond)=1.33e-7, r=0..3.5,
theta=0..Pi, phi=0..2*Pi,
colour=grey, orientation=[-90,60],coords = scispherical,
grid=[30, 30, 30],
scaling=constrained, axes=box,
view=[-2.5..2.5,-2.5..2.5,-2.5..2.5],
title="squared amplitude function |1,0,1/2,1/2>, small
part",
labels=["x","y","z"], titlefont=[TIMES,BOLD, 14]);



squared amplitude function |1,0,1/2,1/2>, small part
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which is again a perfect sphere; the surfaces of both large and small parts hence plot as spheres
that have the same diameter and are hence indistinguishable; if the criterion of the small term were
not ﬁ times its maximum amplitude but 1—(1)0 times the maximum amplitude of the large part,
the surface of the small part would be insignificant for Z = 1, and analogously for the small parts
of succeeding squares of amplitude functions.

According to these plots of profiles and surfaces of amplitude function 11,0,1/2,1/2> for the
hydrogen atom in its state of least energy as derived from Dirac's equation, of the four components
the spherically symmetric characteristic of the first component is similar to that of y,, , , from
Schroedinger's temporally independent equation that yields v, , . but there are two further
components not zero that might have both real and imaginary parts; their surfaces are not



spherically symmetric but cylindrically symmetric about the polar axis for the real third
component, similar to | , from Schroedinger's equation, and cylindrically symmetric equivalent
to o rotated about the other two cartesian axes for the real and imaginary parts of the fourth
part. The maximum amplitudes of the third and fourth components are much smaller than the

maximum amplitude of the first component because of factor o’ 7%, which for Z=1 of hydrogen
-5
evaluates to o’ Z> = 5.325 10( ); for an atomic nucleus of large atomic number the third and

fourth components would have much larger relative maximum amplitudes. For this squared
amplitude function [1,0,1/2,1/2> that is entirely real, both terms yield spherical surfaces. The

squared amplitude function, \|12| = \I’* Y , must contain only real parts; the density of electronic

charge in the vicinity of the atomic nucleus is supposed to be proportional to this squared quantity

as a probability density. Dirac's two coupled differential equations of first order for the large part

hence produce results similar to Schroedinger's single differential equation of second order.

We proceed to recall 1,0,1/2,-1/2> .

> '"]11,0,1/2,-1/2>""' = *|1,0,1/2,-1/2>";

i 0
_e(—r)

-1

10.12-12>=|" 10z e sin(0)e "

1 (-r)
ElocZe cos(0)

As the first component of 11,0,1/2,-1/2> is zero, we plot the radial profile of the second
component.
> plot([ |1,0,1/2,-1/2>"[2], -0.01], r=0..6, -1..0,
title="profile of amplitude function |1,0,1/2,-1/2>, real
component 2",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
linestyle=[1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |1,0,1/2,-1/2>, real component 2
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1
We plot the surface of this negative second component of 11,0,1/2,-1/2> at a value of y that is 1—00

of its maximum magnitude,
> plots[implicitplot3d] (°|1,0,1/2,-1/2>"[2]=-0.01,
r=0..5, theta=0..Pi, phi=0..2*Pi, colour=plum,
labels=["x",6"y","2"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |1,0,1/2,-1/2>, real component 2",

titlefont=[TIMES,BOLD, 14], view=[-5..5,-5..5,-5..5]);



amplitude function |1,0,1/2,-1/2>, real component 2

>
which generates a perfect sphere because this component has no angular dependence. The third

component has both real and imaginary parts,
> '11,0,1/2,-1/2>"'[3] = evale( |1,0,1/2,-1/2>"[3]);

I . I L
11,0,1/2,-1/2>, = —EocZe( " in(8) sin(0) —ElocZe( "in(8) cos(9)

of which we select those parts separately.
> rp := Re(rhs (%)) assuming real;

1 -r
rp = —EocZe( ) sin(0) sin(¢)

> ip := Im(rhs(%%)) assuming real;



1 -r
ip = —EocZe( : sin(0) cos(0)

We plot the surface itself separately in its real and imaginary parts.
> plots[implicitplot3d] ([eval (rp, cond)=0.0000365,
eval (rp, cond)=-0.0000365], r=0..5, theta=0..Pi,
phi=0..2*Pi, colour=[aquamarine, sienna],
orientation=[0,90], labels=["x",6"y","2z"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |1,0,1/2,-1/2>, component 3, real
part",
titlefont=[TIMES,BOLD, 14], view=[-5..5,-5..5,-5..5]);
amplitude function |1,0,1/2,-1/2>, component 3, real part




>
>

plots[implicitplot3d] ([eval (ip, cond)=0.0000365,

eval (ip, cond)=-0.0000365], r=0..5, theta=0..Pi,
phi=0..2*P1i,

labels=["x","y","2z"], colour=[maroon, khaki],
orientation=[90,90],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="amplitude function |1,0,1/2,-1/2>, component 3,
imaginary part",

titlefont=[TIMES,BOLD, 14], view=[-5..5,-5..5,-5..5]);

amplitude function |1,0,1/2,-1/2>, component 3, imaginary part




The surfaces in the preceding two plots resemble perfectly the surfaces of the real and imaginary
parts of ¥, , (7, 6, ¢). Whereas the first component is identically zero, the fourth component is
purely imaginary;

> '"11,0,1/2,-1/2>"'[4] = “|1,0,1/2,-1/2>" [4];

1 -
1,012,125, =3 1. e cos(8)

we plot first the profile along the polar axis, for which 6 = 0, to obtain the criterion for the surface,
> plot([eval(Im( |1,0,1/2,-1/2>"[4]), [theta=0,op(cond)]),
0.0000365], r=0..5,
title="profile of amplitude function |1,0,1/2,-1/2>,
imaginary component 4",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
linestyle=[1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |1,0,1/2,-1/2>, imaginary component 4
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>
and then the surface itself, which we plot.
> plots[implicitplot3d] ([eval(Im( |1,0,1/2,-1/2>"[4]),
cond)=0.0000365,
eval(Im( 1,0,1/2,-1/2>"[4]), cond)=-0.0000365], r=0..5,
theta=0. .Pji,
phi=0..2*Pi, colour=[navy, orange], orientation=[0,90],
labels=["x",6"y","2"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |1,0,1/2,-1/2>, imaginary
component 4",



titlefont=[TIMES,BOLD, 14], view=[-5..5,-5..5,-5..5]);
amplitude function |1,0,1/2,-1/2>, imaginary component 4

>
This imaginary amplitude function resembles perfectly Wy, | ((r, 6, ¢) that comprises only a real

part. From [1,0,1/2,-1/2>,
>p := evale('11,0,1/2,-1/2>");

(=r)
—€

1 -r 1 -
pi= —EocZe( )sin(e)sin(q))—EIocZe( )sin(e)cos((b)

1 (=)
EIOLZe cos(0)



and its complex conjugate,
> pc := evalc(subs(I=-I, |1,0,1/2,-1/2>"));
I 0
(=r)
e

1 —r 1 -r
pc: —EocZe( )sin(e)sin(¢)+51a2e( )sin(e)cos((b)

-1 (-r)
EIOLZe cos(0)
we form scalar product 11,0,1/2,-1/2>* . 11,0,1/2,-1/2>,
> ps :=
simplify (evalc (expand (subs (I=-I,LinearAlgebra:-Transpose( |1,0,
1/2,-1/2>")) . " |1,0,1/2,-1/2>")));
1 (=2r)

pm=Ze (Z%f+4)
which we separate into the two parts,
> fl := simplify(remove (has, expand(ps), alpha));
(-2r)
fli=e

> fs := simplify(ps - fl);

1 (=2r) o 2
tﬁ.—4e Z" o
and plot the profile of its part that does not contain .
> plot([eval (fl, cond), 0.01], r=0..3, 0..1,
title="profile of squared amplitude function |1,0,1/2,-1/2>,
large part",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
linestyle=][1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of squared amplitude function |1,0,1/2,-1/2>, large part
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For that large part of 11,0,1/2,-1/2> squared we plot its surface,
> plots[implicitplot3d] (eval (fl1l, cond)=0.01], r=0..5, theta=0..Pi,

phi=0..2*Pi, colour=yellow, orientation=[0,90],
labels=["x",6"y","2"],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="squared amplitude function |1,0,1/2,-1/2>, large
part",

titlefont=[TIMES, BOLD, 14],
view=[-2.5..2.5,-2.5..2.5,-2.5..2.5]);



squared amplitude function |1,0,1/2,-1/2>, large part
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obtain this profile along the polar axis.
> plot ([eval (fs, [op(cond), theta=0, phi=0]), 1.2e-7], r=0..3,
title="profile of squared amplitude function |1,0,1/2,-1/2>,
small part",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
linestyle=[1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of squared amplitude function |1,0,1/2,-1/2>, small part
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We accordingly plot the surface of the small part of 1,0,1/2,-1/2> squared,
> plots[implicitplot3d] (eval (fs, cond)=1.2e-7, r=0..3.5,
theta=0..Pi, phi=0..2*Pi,
colour=turquoise, axes=box, orientation=[-90,90],coords =
scispherical,
grid=[30,30,30], scaling=constrained,
view=[-2.5..2.5,-2.5..2.5,-2.5..2.5],
title="squared amplitude function |1,0,1/2,-1/2>, small
part",
labels=["x","y","z"], titlefont=[TIMES,BOLD, 14]);



squared amplitude function |1,0,1/2,-1/2>, small part

>
These surfaces of the large and small parts of squared 11,0,1/2,-1/2> have the same diameter. The
profiles and surfactes of these two eigenfunctions 11,0,1/2,1/2> and 11,0,1/2,-1/2>, which differ

1
only in their equatorial quantum numbers m = 5 and m = — 5, have notably similar graphical
characteristics.; comparison of these two eigenfunctions above indicates that differences between
them are only a different ordering of the components and a reversal of phase.

We investigate 12,0,1/2,1/2> analogously.
> 'Y12,0,1/2,1/2> " = *|2,0,1/2,1/2>";



12,0,1/2,1/2>=| 1 PN
gl 20”72 I_Z e cos(9)

1 ( V] “2) 01
—IN20Z|1——|e sin(0) e
L8 4 i
We plot the radial profile of the first component of 12,0,1/2,1/2>.
> plot([ 12,0,1/2,1/2>"[1], 0.0035, -0.0035], r=0..15,
title="profile of amplitude function |2,0,1/2,1/2>, real
component 1",
titlefont=[TIMES,BOLD, 14], colour=[red, brown, brown],
linestyle=]I[1, 2, 2],
labels=["r", "psi"], thickness=[3,2,2]);



profile of amplitude function |2,0,1/2,1/2>, real component 1
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1
We plot the surface of this first component of 12,0,1/2,1/2> at a value of y that is E of its

maximum value, cut open to show the inner lobe,
> plots[implicitplot3d] ([ |2,0,1/2,1/2>"[1]1=0.0035,
*12,0,1/2,1/2>"[1]=-0.0035],
r=0..15, theta=0..Pi, phi=0..3/2*Pi, colour=[yellow,
maroon], labels=["x",6"y","z"],
coords = scispherical, grid=[20,20,20], scaling=constrained,
axes=box,
title="amplitude function |2,0,1/2,1/2>, real component 1",
orientation=[-45,45],



titlefont=[TIMES,BOLD, 14], view=[-13..13,-13..13,-13..13]);
amplitude function |2,0,1/2,1/2>, real component 1
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>
which generates three concentric perfect spheres because this component has no angular
dependence; this surface is practically identical with that of W, (7, 6, ¢) in spherical polar
coordinates. The second component of 12,0,1/2,1/2> is zero; the third component is purely
imaginary;
> '"12,0,1/2,1/2>"'[3] = “|2,0,1/2,1/2>" [3];

-3)

1 r
12,0,1/2,1/2>, :gl 2 OLZ(I _Zj e cos(0)

we plot first the profile along the polar axis, for which 6 = 0, to obtain the criterion for the surface,
> plot([eval(Im( |2,0,1/2,1/2>"[3]), [theta=0,op(cond)]),



0.0000125, -0.0000125],

r=0..13, titlefont=[TIMES,BOLD,14], colour=[red, brown,
brown],

title="profile of amplitude function |2,0,1/2,1/2>,
imaginary component 3",

linestyle=[1,2,2], labels=["r", "psi"], thickness=[3,2]);

profile of amplitude function |2,0,1/2,1/2>, imaginary component 3
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>
and then the surface itself.
> plots[implicitplot3d] ([eval(Im( |2,0,1/2,1/2>" [3]),
cond)=0.00000365,
eval(Im( |2,0,1/2,1/2>"[3]), cond)=-0.00000365], r=0..15,
theta=0. .Pji,



phi=0..3/2*Pi, colour=[tan, wheat], orientation=[-45,90],
labels=["x",6"y","2z"],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="amplitude function |2,0,1/2,1/2>, imaginary component
3",

titlefont=[TIMES,BOLD, 14], view=[-14..14,-14..14,-14..14]);

amplitude function |2,0,1/2,1/2>, imaginary component 3
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This surface is practically identical with that of y, | (r, 6, ¢) in spherical polar coordinates. The

fourth component has both real and imaginary parts,
> '712,0,1/2,1/2>" '[4] = evalc( 12,0,1/2,1/2>" [4]);

12,0,1/2,1/2>, =



1 r _é ] ] 1 r ‘% )
—g 2 OCZ(I —Zje sin(0) sm(q))+§1«/;aZ(1 —Zje sin(0) cos(0)

of which we select those parts separately.
> rp := Re(rhs (%)) assuming real;

| T
== ZOLZ(I—ije ’ sin(0) sin(9)

> ip := Im(rhs(%%)) assuming real;

| _r
ip::gﬁaZ(l—ﬂe 2Jsin<e>cos<¢>

We plot the surfaces in their real and imaginary parts cut open to expose the inner lobes.
> plots[implicitplot3d] ([eval (rp, cond)=0.00000365,
eval (rp, cond)=-0.00000365], r=0..15, theta=0..3/4*Pi,
phi=0..2*Pi, colour=[cyan, violet], orientation=[0,180],
labels=["x",6"y","2"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |2,0,1/2,1/2>, component 4, real
part",
titlefont=[TIMES, BOLD, 14], view=[-14..14,-14..14,-14..14]);



amplitude function |2,0,1/2,1/2>, component 4, real part
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>
> plots[implicitplot3d] ([eval (ip, cond)=0.00000365,
eval (ip, cond)=-0.00000365], r=0..15, theta=0..3/4*Pi,
phi=0..2*P1i,
labels=["x","y","2z"], colour=[pink, corall],
orientation=[90,180],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |2,0,1/2,1/2>, component 4,
imaginary part",
titlefont=[TIMES,BOLD, 14], view=[-14..14,-14..14,-14..14]);



amplitude function |2,0,1/2,1/2>, component 4, imaginary part
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>
The latter three surfaces resemble those of W, , ((r, 6, ¢) symmetric about the polar axis or
rotated to become symmetric about the other two axes, equivalent to the real and imaginary parts
of y, | 1(r,6,¢). From 12,0,1/2,1/2>,

> p := evalc( 12,0,1/2,1/2>7);



1 r) 72
—I\20Z|1——|e cos(9)
8 4

1 r PE _ . 1 ry \2)
—g 20”72 1—2 e s1n(9)sm(¢)+§1«/zocz 1—2 e sin(0) cos(¢)
and its complex conjugate,
> pc := evalc(subs(I=-I, |2,0,1/2,1/2>"));

_ 1 r [‘ﬂ _
4@(1—2}3
0
pe = 1 ( j -
—IN20Z|1——|e cos(9)
8 4
l22(1LJ_3'G' l122(1LJ_§'G
__8 o =7 e sin( )sm(q))—8 o =7 e sin( )cos(q))_

we form scalar product 12,0,1/2,1/2>* . 12,0,1/2,1/2>,

> ps :=
simplify (evalc (subs (I=-I,LinearAlgebra:-Transpose( |2,0,1/2,1/2
>')) . '12,0,1/2,1/2>")) assuming real;

| ——
ps: — ¢ )(Z2062r2—8220(2r+16ZZOLZ+16}”2—64}’+64)

512
We separate the terms according to their content.
> fl1 := remove (has, expand(ps), alpha);
17 1r 11
=TT+
32 ¢ 8¢ 8¢
> fs := simplify(ps - fl1);
L o 2
si=——_e Z o (-4+r
5 512 ( )

of which there are no angular contributions in either case. For that large part of 12,0,1/2,1/2>
squared we plot its surface, cut open to reveal the inner lobe,
> plots[implicitplot3d] (eval (f1, cond)=0.00122, r=0..9,
theta=0. .Pi,
phi=0..3/2*Pi, colour=gold, orientation=[-45,60],
labels=["x",6"y","2"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,



title="squared amplitude function |2,0,1/2,1/2>, large
part",
titlefont=[TIMES,BOLD,14], view=[-7..7,-7..7,-7..71);
squared amplitude function |2,0,1/2,1/2>, large part
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>

which yields three perfectly concentric spheres at distances from the origin corresponding to the
three intersections of the red curve in the profile above with the brown line; from the small part of
the squared amplitude function, we obtain this profile along the polar axis, red curve, and the same
quantity multiplied by 100, green curve, to show that the red curve has an extremum about r = 4

units.
> plot ([eval (fs, cond), 100*eval(fs, cond)], r=0..14, 0..1.7e-6,

title="profile of squared amplitude function |2,0,1/2,1/2>,



small part",
titlefont=[TIMES,BOLD, 14], colour=[red, green, brown],
linestyle=I[1,1, 2],
labels=["r", "psi"], thickness=[3, 3,2]);
profile of squared amplitude function |2,0,1/2,1/2>, small part
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>
We accordingly plot the surface of the small part of 12,0,1/2,1/2> squared, showing first the inner
surface at the standard criterion of ,
> pll := plots[implicitplot3d] (eval(fs, cond)=8.3e-9, r=0..11,
theta=0..Pi, phi=0..2*Pi,
colour=tan, orientation=[30,80],coords = scispherical,
grid=[30,30,30], scaling=constrained,
axes=box, title="squared amplitude function |2,0,1/2,1/2>,



small part, inner surface",

labels=["x","y","z"], titlefont=[TIMES, BOLD, 14],
view=[-11..11,-11..11,-11..11]): pl1;

squared amplitude function |2,0,1/2,1/2>, small part, inner surface
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>

which shows only the inner lobe; when we decrease the criterion for the surface to be less than the
secondary extremum near r = 6, we see the outer surface,
> pl2 := plots[implicitplot3d] (eval(fs, cond)=8.3e-11, r=0..19,
theta=0..Pi, phi=0..2*Pi,
colour=aquamarine, orientation=[30,80], coords =
scispherical, grid=[30,30,30], scaling=constrained,
axes=box, title="squared amplitude function |2,0,1/2,1/2>,
small part, outer surface",



labels=["x","y","z"], titlefont=[TIMES,BOLD, 14],
view=[-12..12,-12..12,-12..12]): pl2;
squared amplitude function |2,0,1/2,1/2>, small part, outer surface
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>
and with the outer surface cut open to reveal the inner lobe.
> plots[display] (pll, pl2, labels=["x",6"y","2z"],
view=[-12..1,-12..12,-12..12],
title="squared amplitude function |2,0,1/2,1/2>, small
part",
titlefont=[TIMES, BOLD, 14]);



squared amplitude function |2,0,1/2,1/2>, small part
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The latter three plots demonstrate the inner lobe of this small component of 12,0,1/2,1/2> squared,

which like the real part of 12,0,1/2,1/2> squared resembles Vo, o(7, 0, ¢)2. When we expand the
scale for the sum of the real large and small parts,
> plot (eval(fl + fs, cond), r=0..14, -3.0e-5..1.0e-3,
title="magnified profile of squared amplitude function
|12,0,1/2,1/2>",
titlefont=[TIMES,BOLD, 14], colour=[red, brown], linestyle=1,

labels=["r", "psi"], thickness=2, resolution=2000);



magnified profile of squared amplitude function |2,0,1/2,1/2>
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we see that the curve of the sum of the large and small parts of the squared amplitude function

does not osculate the abscissal axis, unlike the radial nodal behaviour of Vo, o(7, 6, ¢)2 from
Schroedinger's temporally independent equation in spherical polar coordinates. Hence, although
each component of this amplitude function has a radial node, the squared total amplitude function
has no such radial node. We expect that the characteristics of the plots of 12,0,1/2,-1/2> resemble
those of the corresponding plots of 12,0,1/2,1/2> similarly to the conditions between 11,0,1/2,1/2>
and 11,0,1/2,-1/2>.

We investigate 12,1,1/2,1/2> analogously.
> ' 12,1,1/2,1/2>> " = “|2,1,1/2,1/2>";




_iﬁﬁre[_ﬂ cos(9)
1 _r
12,1,1/2,1/2> = _Zﬁﬁre ) in) e*”

ilﬁﬁaz(l —Lj e( !
16 6
L 0 |
We plot the radial profile of the first component of 12,1,1/2,1/2> , which is purely real.
> plot([eval( ]2,1,1/2,1/2>"[1], theta=0), -0.00075], r=0..18,
title="profile of amplitude function |2,1,1/2,1/2>, real
component 1",
titlefont=[TIMES,BOLD, 14], colour=[red, brown, brown],
linestyle=]I[1, 2, 2],
labels=["r", "psi"], thickness=[3,2,2]);




profile of amplitude function |2,1,1/2,1/2>, real component 1
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We plot the surface of this first component of 12,1,1/2,1/2> at a value of y that is E of its

maximum magnitude, cut open to show the lack of an inner lobe,
> plots[implicitplot3d] ([ 12,1,1/2,1/2>"[1]1=0.00075,
“12,1,1/2,1/2>" [1]=-0.00075],
r=0..18, theta=0..Pi, phi=0..3/2*Pi, colour=[magenta, tan],
labels=["x",6"y","2z"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |2,1,1/2,1/2>, real component 1",
orientation=[-45,85],



titlefont=[TIMES,BOLD,14], view=[-16..16,-16..16,-16..16]);
amplitude function |2,1,1/2,1/2>, real component 1
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which generates two separate nearly hemispherical lobes with rounded edges because of the
angular dependence of this component; the overall shape is still roughly spherical and this surface
resembles that of Yo 1. o(7, 0, 0). The second component of 12,1,1/2,1/2> has real and imaginary
parts;

> '712,1,1/2,1/2>"'[2] = evalc( |2,1,1/2,1/2>"[2]);

1 _r 1 _r
|2,1,1/2,1/2>2:—£ﬁﬁre ? sin(e)cos(q))—alw/gw/gre * in(0) sin(0)
> rp :=Re( 12,1,1/2,1/2>" [2]) assuming real;



I -3
rp :=—£«/§«/§re sin(0) cos(0)
> ip := Im( |2,1,1/2,1/2>" [2]) assuming real;

| _r
ip ::—Zﬁ«/gre ? sin(0) sin( ()

we plot first the profile of the real part along the polar axis, for which 8 = 0, to obtain the criterion
for the surface,
> plot([eval (rp, [theta=Pi/2,phi=0,0p(cond)]), -0.00075],
r=0..18,
titlefont=[TIMES,BOLD, 14], colour=[red, brown, brown],
title="profile of amplitude function (|2,1,1/2,1/2>,
component 2, real part",
linestyle=[1,2,2], labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |2,1,1/2,1/2>, component 2, real part
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>
and then the surface itself.
> plots[implicitplot3d] ([eval (rp, cond)=0.00075, eval (rp,
cond)=-0.00075],
r=0..17, theta=0..Pi, phi=0..2*Pi, colour=[red, green],
orientation=[-90,90],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
labels=["x","y","z"], title="amplitude function
|12,1,1/2,1/2>, component 2, real part",
titlefont=[TIMES, BOLD, 14],
view=[-16.5..16.5,-16.5..16.5,-16.5..16.5]);



amplitude function |2,1,1/2,1/2>, component 2, real part
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we plot next the profile of the imaginary part along the polar axis, for which 6 = 0, to obtain the
criterion for the surface,
> plot([eval (ip, [theta=Pi/2,phi=Pi/2,o0p(cond)]), -0.00075],
r=0..17, titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function (|2,1,1/2,1/2>,
component 2, imaginary part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |2,1,1/2,1/2>, component 2, imaginary part
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>
and then the surface itself.
> plots[implicitplot3d] ([eval (ip, cond)=0.00075, eval (ip,
cond)=-0.00075],
r=0..17, theta=0..Pi, phi=0..2*Pi, colour=[blue, wheat],
orientation=[0,90],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
labels=["x","y","z"], title="amplitude function
|12,1,1/2,1/2>, component 2, imaginary part",
titlefont=[TIMES, BOLD, 14],
view=[-16.5..16.5,-16.5..16.5,-16.5..16.5]);



amplitude function |2,1,1/2,1/2>, component 2, imaginary part
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>

The latter two surfaces resemble those of the corresponding real and imaginary parts of
Vo, 1..1(7, 8, ¢). Whereas the fourth component is identically zero, the third component,
> '"12,1,1/2,1/2>" '[3] = expand( 12,1,1/2,1/2> [3]);

r

S -2
—%I«/E«/gaZe r

> opl := simplify(Im(op(l,expand( |2,1,1/2,1/2> [3])))) assuming
real;

12,1,1/2,1/2>, =i1ﬁﬁ ocZe(_

r

opl ::%ﬁw/gocZe(_zj



> op2 := simplify(Im(op(2,expand( |2,1,1/2,1/2>"[3])))) assuming
real;

r

op2 :=—9—16«/5«/§(x2e(_2jr

which we split into two parts, is purely imaginary and lacks an angular dependence; the first part
has this profile that we apply to obtain the criterion for the surface.
> plot ([eval (opl, cond), 0.0000115], r=0..12,
titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function (|2,1,1/2,1/2>,
imaginary component 3, inner part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);
profile of amplitude function |2,1,1/2,1/2>, imaginary component 3, inner part
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>
We plot the surface itself in its imaginary part to show the inner lobe.
> pll := plots[implicitplot3d] (eval(opl, cond)=1.15e-4, r=0..7,
theta=0. .Pi,
phi=0..2*Pi, colour=orange, orientation=[0,180],
labels=["x",6"y","2"],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
title="amplitude function |2,1,1/2,1/2>, imaginary component
3, inner part",
titlefont=[TIMES,BOLD, 14], view=[-12..12,-12..12,-12..12]):
pll;
amplitude function |2,1,1/2,1/2>, imaginary component 3, inner part
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>
We plot the radial profile of the other part of imaginary component 3 of amplitude function
12,1,1/2,1/2>,
> plot ([eval (op2, cond), -1.36e-6], r=0..16,
titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function (|2,1,1/2,1/2>,
imaginary component 3, outer part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);
profile of amplitude function |2,1,1/2,1/2>, imaginary component 3, outer part
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which yields this surface, cut open to show the lack of internal strucutre.

> pl2 := plots[implicitplot3d] (eval (op2, cond)=-1.36e-6, r=0..16,
theta=0. .Pji,



phi=0..3/2*Pi, colour=plum, orientation=[-45,60],
labels=["x",6"y","2"],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="amplitude function |2,1,1/2,1/2>, imaginary component
3",

titlefont=[TIMES, BOLD, 14], view=[-17..17,-17..17,-17..17]):
pl2;

amplitude function |2,1,1/2,1/2>, imaginary component 3
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>

We combine these two plots to produce surfaces of the inner lobe and the outer lobe.

> plots[display] (pll,pl2, orientation=[-45,60],
titlefont=[TIMES, BOLD, 14],



title="amplitude function |2,1,1/2,1/2>, imaginary component
3",
view=[-17..17,-17..17,-17..171);
amplitude function |2,1,1/2,1/2>, imaginary component 3
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TMMm@mmywﬁmemwm&%ﬂmﬂﬁmdﬁmmmnha&n&¢)meQJJQJQk
> p := evale('12,1,1/2,1/2>);



—;Z«/E«/gre[_;jcos(e)
. —iﬁﬁre_; sin(e)cos(¢)—2—21«/5«/§re_; $in(0) sin()

i[ﬁﬁaz(l —éj e[_éj

0

and its complex conjugate,
> pc := evalc(subs(I=-I, |2,1,1/2,1/2>"));

—zawﬁgwﬁ;reﬁgjcoﬂe)
e = —iﬁﬁre_; sin(O)cos(¢)+iI«/5«/§re_; $in(0) sin(9)

ilﬁﬁaz[l_ije[ 3
16 6
L 0
we form scalar product 12,1,1/2,1/2>* . 12,1,1/2,1/2>,
> ps :=
simplify (evalc (subs (I=-I,LinearAlgebra:-Transpose( |2,1,1/2,1/2
>')) . "12,1,1/2,1/2>")) assuming real;

e (21220 r+36 224 +161)

s =
P 536
We separate the terms according to their content.
> fl := simplify(remove (has, expand(ps), alpha));
I n,
=——e r
s 96
> fs := simplify(ps - fl1);
(=) p 2 2
Si="—— Z o (r—6
/ 1536 ( )

and plot the radial profile of the large part.
> plot ([eval (fl, cond), 0.000053], r=0..12, linestyle=][1,2],
title="profile of squared amplitude function
|12,1,1/2,1/2>, large part",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
labels=["r", "psi"], thickness=[3,2]);



profile of squared amplitude function |2,1,1/2,1/2>, large part
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For that large part of 12,1,1/2,1/2> squared we plot its surface, cut open,
> plots[implicitplot3d] (eval (f1, cond)=0.000053, r=0..11,
theta=0..Pi, phi=0..3/2*Pji,
colour=navy, orientation=[-42,50],
labels=["x","y","z"], coords = scispherical,
grid=[30,30,30], axes=box,
title="squared amplitude function |2,1,1/2,11/2>, large
part",
scaling=constrained, titlefont=[TIMES, BOLD, 14],
view=[-10..10,-10..10,-10..10]1);



squared amplitude function |2,1,1/2,11/2>, large part

>
which yields one spherical lobe. The small component has a radial profile according to the red
curve; the maginfication times 1000 in the green curve shows a node r = 6 units and a local
maximum about r = 8 units.
> plot ([eval (fs, cond), 1000*eval(fs, cond), 1.24e-8], r=0..14,
0..1.3e-6,
title="profile of squared amplitude function |2,1,1/2,1/2>,
small part",
titlefont=[TIMES,BOLD, 14], colour=[red, green, brown],
linestyle=I[1,1, 2],
labels=["r", "psi"], thickness=[3, 3,2]);



profile of squared amplitude function |2,1,1/2,1/2>, small part
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We accordingly plot the surface of the large part of 12,1,1/2,1/2> squared, showing first the inner
surface at the standard criterion of ,
> pll := plots[implicitplot3d] (eval(fs, cond)=1.24e-8,
r=0..13, theta=0..Pi, phi=0..2*Pi, colour=coral,
labels=["x",6"y","2"],
orientation=[-45,80], coords = scispherical, grid=[30,30,30],
scaling=constrained,
axes=box, title="squared amplitude function |2,1,1/2,1/2>,
inner small part",
titlefont=[TIMES,BOLD, 14], view=[-12..12,-12..12,-12..12]):
pll;



squared amplitude function |2,1,1/2,1/2>, inner small part
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which shows only a spherical inner lobe; when we decrease the criterion for the surface to be less
than the secondary extremum near r = 6, we see the outer surface.
> pl2 := plots[implicitplot3d] (eval(fs, cond)*1000=1.24e-8,
r=6..13,
theta=0..Pi, phi=0..3/2*Pi, colour=grey,
labels=["x","y","2z"], axes=box,
orientation=[-45,80], coords = scispherical, grid=[30,30,30],
scaling=constrained,
title="squared amplitude function |2,1,1/2,1/2>, amplified
small part",
titlefont=[TIMES,BOLD, 14], view=[-12..12,-12..12,-12..12]):



pl2;
squared amplitude function |2,1,1/2,1/2>, amplified small part
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>
We plot the two parts together.
> plots[display] (pll,pl2, titlefont=[TIMES,BOLD, 14],
title="squared amplitude function |2,1,1/2,1/2>, both
parts");



squared amplitude function |2,1,1/2,1/2>, both parts
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>
This surface of the small part resembles that of y, , (7, 8, ¢), whereas the surface of the large
part has no counterpart as a direct solution of Schroedinger's equation for the hydrogen atom.

We proceed to investigate 12,1,3/2,3/2>.
> '12,1,3/2,3/2>"" “12,1,3/2,3/2>7;



12,1,3/2,3/2> =| 1 (‘_ (01)
3—210che sin(0) cos(0) e

r

1 2 21
—IloaZre sin(e)ze( o
L 32 i
For the first component of 12,1,3/2,3/2>, which is complex,
> '712,1,3/2,3/2>"'[1] = evale( 12,1,3/2,3/2>"[1]) assuming real;

r r

1 2 1
12,1,3/2,3/2>, =§re sin(0) cos(¢) +§Ir e ? sin(0) sin(¢)

> rp := Re( 12,1,3/2,3/2>"[1]) assuming real;

5
rp ::gre sin(0) cos(¢)

> ip := Im( |2,1,3/2,3/2>"[1]) assuming real;

r

1
ipi=gre * sin(8) sin(9)

we plot the radial profile of the real part.
> plot([eval (ip, [theta=Pi/2, phi=Pi/4]), 0.00066], r=0..18,
title="profile of amplitude function |2,1,3/2,3/2>,
component 1, real part",
titlefont=[TIMES,BOLD, 14], colour=[red, brown, brown],
linestyle=[1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |2,1,3/2,3/2>, component 1, real part
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>
We plot the surface of the real part of this first component of 12,1,1/2,1/2> at a value of y that is

— of its maximum magnitude,
100

> plots[implicitplot3d] ([rp=0.00066, rp=-0.00066], r=0..18,

theta=0..Pi, phi=0..2*Pi,

colour=[magenta, tan], labels=["x",6"y",6"z"],
orientation=[90,80],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="amplitude function |2,1,1/2,1/2>, component 1, real
part",



titlefont=[TIMES,BOLD, 14],
view=[-16.5..16.5,-16..16,-13..13]);
amplitude function |2,1,1/2,1/2>, component 1, real part
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which generates two separate nearly hemispherical lobes because of the angular dependence of
this component; the overall shape is still roughly spherical. We plot the corresponding imaginary

part of the first component of 12,1,3/2,3/2>.

> plots[implicitplot3d] ([ip=0.00094, ip=-0.00094], r=0..18,
theta=0..Pi, phi=0..2*Pi,

colour=[turquoise, khaki], labels=["x",6"y","z"],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="amplitude function |2,1,3/2,3/2>, component 1,



imaginary part",
orientation=[0,75], titlefont=[TIMES,BOLD, 14],
view=[-16..16,-16..16,-16..16]);
amplitude function |2,1,3/2,3/2>, component 1, imaginary part
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TM%mmMMM%mwbmmmﬁmwmhwmﬁ%¢40ﬁwﬂThwmmdwmmmmd
12,1,3/2,3/2> is zero but the third component has real and imaginary parts;

> '712,1,3/2,3/2>"'[3] = evalc( 12,1,3/2,3/2>"[3]);
12,1,3/2,3/2>, =

1 _r 1 _r
—gaxere(ZJSHKG)COQG)shK¢)+§51IXZre(2 sin(0) cos(0) cos(0)

> rp := Re( 12,1,3/2,3/2>"[3]) assuming real;



L |
rp :=—§oche sin(0) cos(0) sin(¢)
> ip := Im( |2,1,3/2,3/2>" [3]) assuming real;

r

1
ip ::goche ? sin(0) cos(0) cos(d)

we plot first the radial profile of the real part along the polar axis, for which 6 = 0, to obtain the
criterion for the surface,
> plot([eval (rp, [theta=Pi/4,phi=Pi/2,op(cond)]), -8.4e-7],
r=0..17, titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function (|2,1,1/2,1/2>,
component 3, real part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |2,1,1/2,1/2>, component 3, real part
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and then the surface itself.
> plots[implicitplot3d] ([eval (rp, cond)=8.4e-7, eval(rp,
cond)=-8.4e-7],
r=0..17, theta=0..Pi, phi=0..2*Pi, colour=[sienna, cyan],
orientation=[-20,90],
coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,
labels=["x","y","z"], title="amplitude function
|12,1,3/2,3/2>, component 3, real part",
titlefont=[TIMES,BOLD, 14], view=[-14..14,-14..14,-14..14]);



amplitude function |2,1,3/2,3/2>, component 3, real part
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>
we plot next the radial profile of the imaginary part along the polar axis, for which 0 = 0, to obtain
the criterion for the surface,
> plot([eval (ip, [theta=Pi/4,phi=0,0p(cond)]), 8.4e-7],
r=0..17, titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function |2,1,3/2,3/2>,
component 3, imaginary part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |2,1,3/2,3/2>, component 3, imaginary part
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and then the surface itself.

>

plots[implicitplot3d] ([eval (ip, cond)=8.4e-7, eval (ip,
cond)=-8.4e-7], r=0..17,
theta=0..Pi, phi=0..2*Pi, colour=[brown, yellow],

orientation=[70,90],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="amplitude function
imaginary part",

labels=["x","y","z"], titlefont=[TIMES,BOLD,14],
view=[-14..14,-14..14,-14..14]);

|12,1,3/2,3/2>, component 3,



amplitude function |2,1,3/2,3/2>, component 3, imaginary part
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These two surfaces resemble those of the corresponding real and imaginary parts of y, , (7, 8, ¢)
. The fourth component has both real and imaginary parts,
> '"12,1,3/2,3/2>" '[4] = evalc( 12,1,3/2,3/2>" [4]);

r r

1 2 1 2
21,322,325, ==~ aZre sin(0)* sin(2 o) +ylazre sin(0)* cos(2 0)

> rp := Re( 12,1,3/2,3/2>"[4]) assuming real;

r

1
pi=-saZre > in(0)? sin(2 ¢)

> ip := Im( |2,1,3/2,3/2>" [4]) assuming real;



L
ip::g(ere ? sin(G)zcos(2¢)

T
we plot next the radial profile of the real component along the polar axis, for which 6 = E’ to

obtain the criterion for the surface,
> plot([eval (rp, [theta=Pi/2,phi=Pi/4,op(cond)]), -1.6e-6],
r=0..17, titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function |2,1,3/2,3/2>,
component 4, real part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);
profile of amplitude function |2,1,3/2,3/2>, component 4, real part
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We plot the surface itself in its real part.
> plots[implicitplot3d] ([eval (rp, cond)=1.67e-6, eval (rp,
cond)=-1.67e-6], r=0..17, theta=0..Pi,
phi=0..2*Pi, colour=[aquamarine, violet],
orientation=[0,160], labels=["x",6"y","2z"],

coords = scispherical, grid=[30,30,30], scaling=constrained,

axes=box,
title="amplitude function |2,1,3/2,3/2>, component 4,
part",

titlefont=[TIMES, BOLD, 14], view=[-15..15,-15..15,-15..15]);

amplitude function |2,1,3/2,3/2>, component 4, real part

>

For the profile of the imaginray component, to obtain the criterion for the surface,



> plot([eval (ip, [theta=Pi/2,phi=0,o0p(cond)]), 1l.67e-6],
r=0..17, titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function |2,1,3/2,3/2>,
component 4, imaginary part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);
profile of amplitude function |2,1,3/2,3/2>, component 4, imaginary part
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>
We plot the surface itself in its imaginary part.
> plots[implicitplot3d] ([eval (ip, cond)=1.67e-6, eval (ip,
cond)=-1.67e-6], r=0..17,
theta=0..Pi, phi=0..2*Pi, colour=[blue, khaki],
orientation=[0,160],
coords = scispherical, grid=[30,30,30], scaling=constrained,



axes=box,
title="amplitude function |2,1,3/2,3/2>, component 4,
imaginary part",
labels=["x","y","2z"], titlefont=[TIMES, BOLD, 14],
view=[-16..16,-16..16,-16..16]);
amplitude function |2,1,3/2,3/2>, component 4, imaginary part

>

The latter two plots resemble the corresponding real and imaginary parts of y, , ,(r, 6, ¢). From
12,1,3/2,3/2>,
> p := evalc( 12,1,3/2,3/2>7);



r r

1 1
Sre 2 sin(0) cos(9) + = I re *" sin(8) sin()
0

p=| 1 -] 1 -]

—3—20che ? sin(e)cos(e)sin(¢)+3—zloche ’ sin(0) cos(0) cos(0)

r

L .

- aZre " sin(0)sin(29)+-laZre * 6in(0)? cos(2 0)

and its complex conjugate,
> pc := evalc(subs(I=-I, |2,1,3/2,3/2>"));

r r

1
gre ? sin(e)cos(q))—glre ? sin(0) sin(¢)
0

pei=| 1 -3 1 -]

-~ aZre ’ sin(6) cos() sin(0) - -l Zre 27 in(8) cos(8) cos( )

r r

I I -
- aZre ? sin(0)’sin(2¢) -~ aZre * 6in(0)? cos(2 0)

we form product 12,1,1/2,1/2>* . 12,1,1/2,1/2>,

> ps :=
evalc (simplify (subs (I=-I,LinearAlgebra:-Transpose( |2,1,3/2,3/2
>)) . "12,1,3/2,3/2>")) assuming real;

. (=r)
ps = 1024 sm(e)2 (Z2 o + 16) e
which we separate into the two parts.
> fl := simplify(remove (has, expand(ps), alpha));
1 (=)
=—sin(0)* e
fl 64 (0)
> fs := simplify(ps - fl1);
. (=r)
fs: sin(0)’ P e Z2 o

1024
We plot the radial profile of the large part of squared 12,1,3/2,3/2>,
> plot([eval(fl, [op(cond), theta=Pi/2]), 8.6e-5], r=0..12,
title="profile of squared amplitude function
|12,1,1/2,1/2>, large part",
titlefont=[TIMES,BOLD, 14], colour=[red, brown, green],
linestyle=[1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of squared amplitude function |2,1,1/2,1/2>, large part
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and its surface,
> plots[implicitplot3d] (eval (fl1, cond)=8.6e-5, r=0..13,
theta=0..Pi, phi=0..3/2*Pji,
colour=gold, orientation=[-50,70], labels=["x","y","z"],
coords = scispherical,
scaling=constrained, title="squared amplitude function
|12,1,3/2,3/2>, large part",
grid=[30,30,30], axes=box, titlefont=[TIMES,BOLD,14],
view=[-10..10,-10..10,-10..10]1);



squared amplitude function |2,1,3/2,3/2>, large part

>
which exhibits one toroidal lobe. We plot the radial profile along the polar axis of the small part.
> plot([eval(fs, [op(cond), theta=Pi/2]), 2.8e-10], r=0..14,
title="profile of squared amplitude function |2,1,1/2,1/2>,
small part",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
linestyle=][1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of squared amplitude function |2,1,1/2,1/2>, small part
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>
We accordingly plot the surface of the small part of 12,1,3/2,3/2> squared.
> plots[implicitplot3d] (eval (fs, cond)=2.8e-10, r=0..12,
theta=0..Pi, phi=0..3/2*Pji,
colour=magenta, orientation=[-50,80],coords = scispherical,
grid=[30,30,30], axes=box,
scaling=constrained, title="squared amplitude function
|12,1,3/2,3/2>, small part",
labels=["x","y","z"], titlefont=[TIMES,BOLD,14],
view=[-10..10,-10..10,-10..10]);
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squared amplitude function |2,1,3/2,3/2>, small part

>
The two tori of the large and small parts have the same geometric shape and size according to the

criterion for their plots and resemble Vo, 1. (r, 6, q))2 or Y, | (1,6, (1))2, which are identical.

We proceed to investigate 2,1,3/2,1/2>,
> '"12,1,3/2,1/2>"' = "|2,1,3/2,1/2>";



Z—Zﬁx/gre[_gj cos(0)
1 (‘%J . 01
—4—8«/3«/gre sin(0) e
6—14]«/5«/g002re[_zj (cos(e)z—%j

12,1,3/2,1/2> =

| _
6—41«/5«/g0c2re ’ sin(0) cos(0) e

which has four non-zero components. For the first component of 12,1,3/2,1/2> ,
>'"12,1,3/2,1/2>"'[1] = "|2,1,3/2,1/2>"[1];

(o1)

1 _r
|2,1,3/2,1/2>1=£ﬁﬁre * cos(0)

which is real, we plot the radial profile.
> plot([eval( 12,1,3/2,1/2>"[1], theta=0), 0.00107], r=0..18,
title="profile of amplitude function |2,1,3/2,1/2>, real
component 1",
titlefont=[TIMES,BOLD,14], colour=[red, brown],
linestyle=[1, 2],
labels=["r", "psi"], thickness=[3,2]);



profile of amplitude function |2,1,3/2,1/2>, real component 1
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>

1
We plot the surface of this real first component of 12,1,3/2,1/2> at a value of y that is E of its

maximum magnitude, cut open to show the lack of an inner lobe,
> plots[implicitplot3d] (['12,1,3/2,1/2>"[1]1=0.00107,
12,1,3/2,1/2>"[1]1=-0.00107],
r=0..18, theta=0..Pi, phi=0..3/2*Pi, colour=[navy, pink],
labels=["x",6"y","2z"],
orientation=[-40,80], coords = scispherical,
grid=[30,30,30], scaling=constrained,
axes=box, title="amplitude function |2,1,3/2,1/2>, real
component 1",



titlefont=[TIMES,BOLD, 14], view=[-17..17,-17..17,-17..171);
amplitude function |2,1,3/2,1/2>, real component 1
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>

The second component of 12,1,3/2,1/2> has real and imaginary parts;
> 'Y12,1,3/2,1/2>"'[2] = evale( |2,1,3/2,1/2>"[2]);

1 - 1 -
I2,],3/2,]/2>2:—&«/5«/gre ’ sin(e)cos(¢)—4—81«/5«/gre *" 5in(0) sin()
> rp := Re( 12,1,3/2,1/2>"[2]) assuming real;

1 _r
rp :=—&«/§«/€re ? sin(0) cos(0)
> ip := Im( |2,1,3/2,1/2>"[2]) assuming real;



| _r
ip ;=—&«/§«/€re * sin(0) sin()

we plot first the radial profile of the real part along the polar axis, for which 6 = 0, to obtain the
criterion for the surface,
> plot([eval(rp, [theta=Pi/2,phi=0]), -0.00053],
r=0..17, titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function (|2,1,1/2,1/2>,
component 2, real part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);
profile of amplitude function |2,1,1/2,1/2>, component 2, real part
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>

and then the surface itself.



>

plots[implicitplot3d] ([rp=5.3e-4, rp=-5.3e-4], r=0..17,
theta=0..Pi, phi=0..2*Pi,

colour=[orange, plum], orientation=[-90,90],
labels=["x",6"y","2"],

coords = scispherical, grid=[30,30,30], scaling=constrained,
axes=box,

title="amplitude function |2,1,3/2,1/2>, component 2, real
part",

titlefont=[TIMES,BOLD, 14], view=[-16..16,-16..16,-16..16]);

amplitude function |2,1,3/2,1/2>, component 2, real part
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we plot next the profile of the imaginary part along the polar axis, for which 0 = 0, to obtain the
criterion for the surface,



> plot([eval (ip, [theta=Pi/2,phi=Pi/2]), -5.3e-4],
r=0..17, titlefont=[TIMES,BOLD,14], colour=[red, brown],
title="profile of amplitude function |2,1,3/2,1/2>,
component 2, imaginary part",
linestyle=[1,2], labels=["r", "psi"], thickness=[3,2]);
profile of amplitude function |2,1,3/2,1/2>, component 2, imaginary part
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>
and then the surface itself.
> plots[implicitplot3d] ([ip=5.3e-4, ip=-5.3e-4], r=0..17,
theta=0..Pi, phi=0..2*Pi, colour=[turquoise, wheat],
orientation=[0,90],
coords = scisphe