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 abstract 

Chemists are aware of the solution of Schroedinger's equations for the hydrogen atom in 

only spherical polar coordinates, but the spatial variables are separable also in three other 

systems -- paraboloidal, ellipsoidal and spheroconical; we report here explicit algebraic 

solutions directly derived in ellipsoidal and spheroconical coordinates for the first time. 

Our solutions progress from those previously known in spherical polar but not entirely 

understood, through those little known in paraboloidal, to those in systems of ellipsoidal 

and spheroconical coordinates unknown before the present work. Applications of these 

solutions include angular momenta, a quantitative calculation of the discrete absorption 

spectrum and accurate plots of surfaces of amplitude functions.  The shape of a surface of 

a particular amplitude function, and even the quantum numbers in a particular set to 

specify such an individual function, depend on a particular chosen system of coordinates, 

and are therefore artefacts of that coordinate representation within wave mechanics; a 

choice of a coordinate system to discuss atomic or molecular properties based on the 

shapes of amplitude functions or their respective quantum numbers is hence arbitrary.  

 key words:  hydrogen atom, wave mechanics, spherical polar coordinates, paraboloidal

 coordinates, ellipsoidal coordinates, spheroconical coordinates 
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resumen 

 

Los químicos estan consciente de la resolución de las ecuaciones de Schroedinger para el átomo 

de hidrógeno solo en las coordinadas polar esféricas, sin embargo los variables espaciales estan 

separables en tres otros sistemas también -- coordinadas de paraboloides, coordinadas de 

elipsoides, y coordinadas de esferocónica; se reporta aca las resoluciones explicitas algebraicas 

deducidas directamente en las coordinadas de elipsoides y esferocónica por la primera vez. Las 

resoluciones avanzan de las coordinadas polar esféricas conocidas antes (pero no completamente 

entendidas), mediante las coordinadas de paraboloides (poco conocido), hasta los sistemas de 

coordinadas de elipsoides y de esferocónica (desconocidos antes de este trabajo). Las 

aplicaciones de estas resoluciones incluyen los momentos angulares, una calculación cuantitativa 

del espectro de absorción discreto y gráficos exactos de las superficies de las funciones de 

amplitud. La forma de la superficie de una función de amplitud particular, y incluso los números 

cuánticos en un conjunto particular para expresar tal función individual, depende de un sistema 

escogido de coordinadas y, por lo tanto, son artefactos de esa representación de la coordinada  

dentro de mecánica de ondas; una selección de un sistema de coordinadas para discutir las 

propiedades atómicas o moleculares basadas en las formas de las funciones de amplitud o los 

números cuánticos respectivos es por tanto arbitraria. 
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1  Introduction 

The hydrogen atom is a fundamental topic not only as a solvable quantum-mechanical system in 

physics but especially as a basis of chemical theories about the binding within molecules and 

materials, because this simple system of a single atomic nucleus and its single associated 

electron is amenable to ‘exact’ treatments within many frames of calculation.  Advanced general 

mathematical software that enables not merely computer algebra but includes sophisticated 

methods to solve partial-differential equations and to form illuminating plots of the geometrical 

aspects of any calculable object can be brought to bear on such a mathematically well defined 

system to produce astonishingly diverse and profound results that expand and enlighten our 

understanding of the constitution of chemical matter.  In this report we combine an application of 

symbolic computation to atomic hydrogen with a comprehensive investigation of all possible 

systems of coordinates so as to generate directly, for the first time, explicit solutions to 

Schroedinger’s equations that have served as the foundation of an understanding of the nature of 

the chemical bond. 

Distinct from quantum physics, which implies physical experiments on systems on an 

atomic scale, and from quantum chemistry, which generally implies a programmed calculation of 

electronic structure of molecules or materials with more or less fixed relative positions of atomic 

nuclei, quantum mechanics is recognized to imply a collection of methods of calculation, or 

algorithms, applicable to systems on an atomic scale [1, 2].  Although there exist at least twelve 

such distinct methods [3, 4], including Dirac’s relativistic wave mechanics and quaternionic 

quantum mechanics, the methods most commonly applied within physics and chemistry are 

wave mechanics and matrix mechanics. 

 Quantum mechanics originated with the work of Heisenberg, who recognized that the 

fundamentally observable properties of an atomic system are the frequencies and intensities of its 

spectral lines; he developed matrix mechanics with the intention to avoid recourse to quantities 

unobservable, such as the orbits in Bohr's theory.  Pauli applied a symbolic method to derive the 

energies of the hydrogen atom, but was unable to cope with the intensities of the discrete 

transitions [5]. Among two of his four seminal papers in 1926 under the title translated as 

Quantisation as a Problem of Proper Values [6] in which he introduced wave mechanics, 

Schroedinger solved the hydrogen atom first to obtain the energies of the discrete states, and 

subsequently to calculate the intensities of transitions between those states. In the first article 

Schroedinger derived amplitude functions in spherical polar coordinates that are known 

universally in physics and chemistry [6], and obtained the energies of the discrete states.  In the 

third article [6], apart from developing a perturbation theory and calculating the intensities of 

transitions, Schroedinger treated that atom in paraboloidal coordinates. Although some textbooks 

of physics outline the latter derivation, it is entirely absent from textbooks of chemistry that, in 

contrast, typically discuss, at considerable length and with many explicit formulae and (generally 

inaccurate) figures, the solution of Schroedinger's temporally independent equation in spherical 

polar coordinates -- but seldom in SI units (recommended by IUPAC and IUPAP), as we 
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accomplish here.  For coordinates in two additional systems as variables in which Schroedinger's 

partial-differential equations are separable [7] and for which we here generate direct algebraic 

expressions for the first time, the solutions are investigated little and indirectly in ellipsoidal 

coordinates [8], and even less, without explicit formulae, in spheroconical coordinates [9].  We 

present solutions to one or other Schroedinger equation in all four systems in a similar form to 

facilitate comparison and to enable a profound understanding of the mathematics underlying any 

chemical applications.  

 Within wave mechanics a treatment of the hydrogen atom in coordinates in any system 

must reproduce the energies of the discrete states as being proportional to the inverse square of 

an integer, generally denoted n, thus defining an energy quantum number. The latter result is a 

conclusion purely from experiment, specifically the deductions made by Balmer and Rydberg 

from the wave lengths of spectral lines of the hydrogen atom emitted in the visible region; these 

spectral lines, measurable as circular frequency ν or wave length λ in the optical spectrum and 

associated with transitions between states of the hydrogen atom, were fitted to a formula 

equivalent to  

∆E = E2 − E1 =  =  h ν  = h c / λ 

containing, with Planck constant h and speed of light c, rydberg constant R in wavenumber unit 

that (as R∞) is the most accurately known fundamental physical constant; an experimentally 

measured wave length of photons is thus related to an energy difference between atomic states 

characterized with positive integers n1 and n2, with n1 < n2. The energies the hydrogen atom in its 

discrete states are hence implied to be expressible as E = −R h c / n
2
 + C, in which C is a constant 

that includes all other energy of the atomic system, including mass energy, that is not involved 

perceptibly in a transition between the states that yield an observed spectral line and that can 

hence be ignored for the present purposes. Without C, the energies of discrete states are negative 

because work must be done to remove an electron from a region near the atomic nucleus.  We 

accordingly view n as an integer quantity that is purely experimentally derived, bereft of any 

intrinsic theoretical significance, but which any acceptable theoretical treatment must reproduce.  

This formula might be the first result in quantum physics, and has no inherent connection to 

quantum mechanics that it preceded by a few decades. We must, however, expect that any 

succeeding derivation of a solution of Schroedinger's equations for discrete states of the 

hydrogen atom in coordinates of various systems must yield parameters, parochial to each 

treatment, of which an appropriate combination becomes equivalent to that positive integer, n. 

 The objective of the present work is, for purpose of comparison, not only to derive 

directly, for the first time, the algebraic solutions of Schroedinger's equations in coordinates of 

all four systems [7] but also to shed new light on aspects of the first solution in spherical polar 

coordinates. The description of this system of coordinates, simply referred to as 'polar' in 
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Schroedinger's paper [6], as spherical polar is superior to merely spherical because the former 

term emphasizes the importance of the polar axis, in contrast with spheroconical coordinates that 

has also a sphere as a constant coordinate. We treat here the amplitude functions of the discrete 

states that produce the line spectra; the absorption continuum beyond the threshold of ionization 

and the associated amplitude functions in spherical polar coordinates are developed elsewhere 

[10].  For our purpose, we applied advanced mathematical software, Maple, to produce explicit 

and accurate algebraic formulae and quantitative graphical representations; to preclude possible 

error of transcription, pertinent formulae are presented directly as output from Maple.   Here we 

present the algebraic aspects of the Schroedinger partial-differential equations in the temporally 

dependent or independent form in all four systems of coordinates in which these equations are 

separable and their solutions.  In papers in the following set we show a diagram to define each 

coordinate system and several plots of the surfaces of the amplitude functions at a selected value. 

 According to the fundamental postulate of quantum mechanics, component k of position 

or coordinate or displacement, qk, of a particle might fail to commute with component j of 

momentum, pj, such that the commutator  (with cartesian coordinates implied) is expressed as 

[pj, qk]  ≡  pj qk − qk  pj   =  −i δjk h/2π, 

in which appear i = and Kronecker's delta function; δjk = 1 if j = k or 0 otherwise. An 

application of this commutator to the differential operators pertinent to Schroedinger's 

formulation implies that either, with q taken as an algebraic quantity according to a coordinate 

representation, p becomes –i h/2π , or, with p as an algebraic quantity according to a 

momentum representation, q becomes +i h/2π . The particular choice of variables in either 

representation remains an option for the convenience of a particular calculation of an observable 

quantity; here we investigate the coordinate representation and coordinates in four systems. 

2  H atom in spherical polar coordinates 

Although many authors have written much, in both journal articles and textbooks, about 

solutions of the general Coulomb problem according to Schroedinger's wave mechanics, 

appreciable misunderstanding of fundamental aspects of these solutions remains. Assuming an 

elimination of the motion of the centre of mass of the system, we begin here with Schroedinger's 

equation in its most pure and fundamental form in the coordinate representation, containing only 

four variables – three spatial coordinates r, θ, φ in the spherical polar system and time, t – and 

fundamental physical constants, so devoid of parameter other than reduced mass, 

of the system with nuclear mass Mn and electronic rest mass me, and atomic number, Z = 1 for H.  

If we express this equation in atomic units instead of SI units, even those physical constants 

might seem to disappear, but the retention of SI units enables a clear understanding of the 
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dimensional nature of various quantities, and ultimately yields numerical values that are readily 

recognizable according to the known dimensions of an atomic system. As this system of 

coordinates is routinely explained in most textbooks on quantum mechanics in physics and 

chemistry, we here present merely the most relevant aspects for comparison with solutions in 

other systems of coordinates. 

 A differential operator requires an operand, which we call in Schroedinger's formulation 

an amplitude function with only spatial variables or a wave function with also a temporal 

variable, according to Schroedinger's usage [6]. For spherical polar coordinates and time, we 

thus provide as operand wave function Ψ(r, θ, φ, t); the relation of these spatial coordinates to 

conventional cartesian coordinates x,y,z is, according to ISO standard 80000-2:2009,  

x = r sin(θ) cos(φ),   y = r sin(θ) sin(φ),   z = r cos(θ). 

These coordinates are defined as radius r, which is the distance of reduced mass µ bearing 

electric charge −e from the origin near which is located electric charge +Z e and having domain 0 

< r < ∞, azimuthal angle θ of inclination subtended between polar axis z and the radius vector 

having domain 0 < θ <  π rad, and equatorial angle φ subtended between the projection in plane 

xy of the radius vector and cartesian axis x having domain 0 < φ < 2π rad. The centre of mass of 

the atomic system coincides with the atomic nucleus at the origin of coordinates only in the limit 

of infinite mass of that nucleus. The jacobian for volume integrals of amplitude functions is r
2 

sin(θ).   After separation of the motion of the centre of mass, Schroedinger's partial-differential 

equation for the H atom is expressed explicitly in SI units as follows.  

 

This equation contains only wave function Ψ with its derivatives in spatial and temporal 

variables, no quantity other than the pertinent fundamental physical constants and parameters 

reduced mass µ, and atomic number Z; the latter serves as a scaling factor for an atomic system 

comprising one atomic nucleus and one electron. Through the separation of variables and the 

subsequent solution of four ordinary-differential equations [6], the complete solution of this 

partial-differential equation for the bound states is expressed as this product, 

Ψ(r, θ, φ, t) = R(r) Θ(θ) Φ(φ) T(t) = ψ(r, θ, φ) T(t) 

as follows. 
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In the partial-differential equation and its solution, apart from atomic number Z and reduced 

mass µ appear protonic charge e and electric permittivity ε0 of free space. In the solution of the 

separate ordinary-differential equation for each spatial variable r, θ, φ, a boundary condition 

imposes an integer value on each of three quantum numbers: the equation for R(r) defines radial 

quantum number k > 0 as explained below, the equation for Θ(θ) defines azimuthal quantum 

number l > 0 that has no restriction on its value relative to k, and the equation for Φ(φ) defines 

equatorial (Schroedinger's usage [6]), or magnetic, quantum number m, with −l < m < +l, 

according to the indicated ranges.  This radial quantum number k is limited to this coordinate 

system within wave mechanics; its significance is that it specifies the number of radial nodes of 

product Ψ∗ Ψ – those radii at which |ψ2| becomes zero between r = 0 and r →  ∞, whereas 

azimuthal quantum number l not only indicates the number of angular nodes between θ = 0 and θ 

= π rad but also pertains to the orbital angular momentum, vide infra. Ψ∗
 implies the complex 

conjugate of Ψ.  In this directly generated solution of the governing partial-differential equation, 

the exponential term containing distance r directly contains a minus sign, implying an 

exponential decay of ψ(r,θ,φ) as r → ∞; if a plus sign appeared in that direct solution, that 
formula might still be acceptable, provided that a polynomial factor in r, here expressed as an 

associated Laguerre function [11], generally denoted Lk
2l+1

(r), as a product with associated 

Legendre functions of the first kind [11], generally denoted Pl
m
(cos θ), possesses an appropriate 

form [12]. 

The quantity multiplying it in the exponential factor within T(t), and hence within Ψ(r, θ, 

φ, t), has the physical significance of an angular frequency, as Schroedinger recognised [6]; in 

this context we interpret that angular frequency as an energy E divided by Planck constant h, 

which Schroedinger also considered; a further factor 2 π to convert to a circular frequency yields 

this expression. 
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In the denominator of this formula for energy appears a sum of two non-negative integer 

quantum numbers, k and l, plus unity; that sum must consequently equal a positive integer, which 

we associate with an energy quantum number, denoted n, that was deduced from experiment by 

Balmer and Rydberg. The cluster of accompanying constants hence becomes equivalent to R h c, 

as described above.  The zero of the energy scale is set according to the potential energy; V(r) = 

0 as r→∞ with no relative motion of proton and electron. As n = k + l + 1, the energy of a 

discrete state of H, defined with quantum numbers k, l, m, for which E < 0 and subject to no 

external influence, depends on values of k and l in the specified combination in this system of 

coordinates, and is thus independent of the value of equatorial quantum number m. For a H atom 

in the presence of an externally applied magnetic field, the energy of a state depends also on 

equatorial quantum number m, according to the Zeeman effect, either normal or anomalous (with 

account taken of the intrinsic angular momentum of the electron). 

 Like three following solutions in coordinates of other systems, the total solution, above, 

of the partial-differential equation contains coefficient c (not speed of light) that equals any 

complex quantity of modulus unity such as the fourth roots of unity – c = ±1, ± √−1, which 

appears because Schroedinger’s temporally dependent equation is homogeneous, or equally 

because the corresponding temporally independent equation has the form of an eigenvalue 

relation. One might equally express that coefficient as an exponential phase factor, c = e
iα

. The 

conventional choice c = 1 or α = 0, which is arbitrary and lacks physical justification, signifies 

that some solutions ψ(r,θ,φ), as amplitude functions from the temporally independent 

Schroedinger equation, might appear in a real form if m = 0, whereas most are complex because 

of the presence of factor e
imφ

, having real and imaginary parts for m ≠ 0; with a mathematically 

viable alternative choice c = √−1, some amplitude functions would be purely imaginary but most 

would still be complex.   

 To heed another aspect of these wave functions that might be conventionally overlooked, 

consistent with Heisenberg's focus on the spectral properties of an atom, we calculate the 

intensity of a spectral transition, from the electronic ground state, that is proportional to the 

squared matrix element involving the electric dipolar (or other) moment as operator, which we 

express in two forms, taking cartesian coordinate z= r cos(θ) as the direction of both the dipolar 

moment of the transition and the electric vector of an electromagnetic wave incident on the atom. 

< e z >  ≡ <k', l', m' |e z| k, l, m >  =  < 0, l, 0 | e r cos(θ) | 0, 0, 0 > 
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 ≡  

In Dirac’s bracket notation, the upper line defines a matrix element specifying quantum numbers 

k, l, m of amplitude functions of two particular combining states in the bra and ket quantities, one 

being the ground electronic state; the integral in the lower line expresses a general calculation 

directly in terms of the wave functions associated with any two states. We distinguish between a 

state – i.e. a spectrometric state – and an amplitude or wave function that is an artefact of wave 

mechanics, and of which its quantum numbers enable a calculation of the energy of that state.  

For the electronic transition to a state of least energy from the initial ground state in absorption, 

for which the terminal state has bra quantity is < 0, 1, 0|, an explicit integration according to the 

lower formula yields this result. 

 

Because temporally dependent wave functions appear in the preceding triple integral over spatial 

coordinates, the exponent in the result contains a function of time; the coefficient of !2 π it in the 

exponent,  

ν  =  

we interpret directly as circular frequency ν of a photon involved in a transition between the 

specified discrete states, rather than as an energy difference ∆E divided by Planck's constant; we 

thus contrast the interpretation of the corresponding coefficient, in the original wave functions 

before their subjection to integration, as an energy.  The evaluation of those matrix elements and 

frequencies enables one to plot an absorption spectrum that is quantitatively accurate [10], within 

the Schroedinger formalism, corresponding to spectral lines in the Lyman series in the vacuum-

ultraviolet region. The temporal factor in the matrix element above does not affect the intensity 

because the exponent vanishes in forming the square of the magnitude of the matrix element to 

produce the oscillator strength, or f value, as a dimensionless measure of intensity: 

 

With appropriately formed amplitude functions and operators for electric dipolar moment, the 

intensity is equally well calculated in other coordinate systems; vide infra. 
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3   H atom in paraboloidal coordinates 

A treatment of the H atom in paraboloidal coordinates u, v, φ is typically only sketched in some 

textbooks of physics and is entirely absent from textbooks of chemistry. As those treatments 

differ in any case from the strategy of a direct solution in SI units practicable with Maple, we 

present here in a little detail the pertinent solution of Schroedinger's temporally independent 

equation; the temporal part is analogous to that for spherical polar coordinates. According to 

Spiegel's definition [13], the relations between cartesian and paraboloidal coordinates u, v, φ are  

x = u v cos(φ),  y = u v sin(φ),  z = (u
2 

− v
2
),  r =  (u

2
 + v

2
) 

with domains 0 < u< ∞, 0 < v < ∞ and 0 < φ < 2 π rad; the reduced mass is located at distance r 

from the origin near which is located charge +Z e. Surfaces of constant u and v are paraboloids, 

of circular cross section, about axis z, opening toward −z and +z, respectively; a surface of 

constant φ is a half-plane containing axis z. The distinguishing feature of these coordinates is the 

presence of these paraboloids, which makes a description of the coordinates as paraboloidal 

preferable to parabolic.  The jacobian for volume integrals is u v (u
2
 + v

2
). As the temporal 

component separates just as readily in other systems of coordinates as in spherical polar 

coordinates and has a common factor Τ(t) that becomes interpreted in terms of energy quantum 

number n, we henceforth present the results for amplitude functions, thus involving only the 

spatial coordinates. Schroedinger's equation independent of time is accordingly expressed in 

paraboloidal coordinates as 

 

 

in which appears amplitude function ψ(u,v,φ) of these spatial variables.  This partial-differential 

equation becomes solved on separation of the variables into three ordinary-differential equations 

with appropriate separation parameters.  The angular solution for Φ(φ) is the same as in spherical 

polar coordinates and hence contains equatorial quantum number m, namely, 
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After conversion from Whittaker functions in Maple's direct solution of the ordinary-differential 

equations for U(u) and V(v) because Schroedinger’s equation in these coordinates is a special 

case of Whittaker’s differential equation, through Kummer functions to preserve the phase 

characteristics, to associated Laguerre functions [11] that both U(u) and V(v) contain, and setting 

the first arguments of these Laguerre functions to non-negative integers n1 and n2, respectively, 

the algebraic solutions for the coordinates of length type become 

 

 

and 

 

 

in which appear the indicated binomial coefficients.  These two separate equations for U(u) and 

V(v) have equivalent forms; the energy must depend on both n1 and n2 in an equivalent manner: 

for this purpose we replace 2 n1 or 2 n2, wherever this quantity appear, by n1 + n2. Among 

alternative arguments, Bethe and Salpeter [14] associated part of nuclear charge Z with one 

distance coordinate and the other part with the other distance coordinate; other authors use 

similarly convoluted explanations to achieve the same result, but the above argument is 

convenient here. Apart from these quantum numbers that are imposed to conform to the 

boundary conditions applicable to U(u) and V(v) through the associated Laguerre polynomials, 

and from Nu and Nv that are normalizing factors to be evaluated, the notation is similar to that 

applied for spherical polar coordinates.  Including the correct total normalizing factor, for bound 

states the exact product ψ(u,v,φ) = U(u) V(v) Φ(φ) of the three solutions of the spatial ordinary-

differential equations becomes expressed as this explicit amplitude function: 
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According to the coefficient of t in the temporal exponent of the corresponding wave function 

(not shown), or the exponential term above containing u
2
 + v

2
, the energy associated with an 

amplitude function characterized with quantum numbers n1, n2, m becomes expressed as   

 

 

Quantum numbers n1 and n2 assume values of only non-negative integers; quantum number m 

takes values of negative and positive integers and zero but without constraint of n1 o rn2.  In the 

denominator of this formula for energy appear in a sum two non-negative integers n1 and n2 and 

the absolute value of another integer quantum number m and unity; this sum must consequently 

equal a positive integer, denoted n, which we again associate with an energy quantum number 

from experiment, so n = n1 + n2 + |m| + 1. The energy associated with an amplitude function 

pertaining to a discrete state of H defined with these quantum numbers thus depends directly on 

all three local quantum numbers in combination, hence including equatorial quantum number m 

even in the absence of an externally applied magnetic field, but |m| is precisely a lower limit of 

azimuthal quantum number l that appears directly in the solution of Schroedinger's equation in 

spherical polar coordinates. 

4  H atom in ellipsoidal coordinates 

In this coordinate system, electric charge + Z e is located at the origin that is also one focus of an 

ellipsoid; another focus is located at distance d along the positive z axis. The distance of mass 

µ of negative charge −e from that origin is r1; its distance from the other focus is r2. Ellipsoidal 

coordinates are defined as reduced distances,  
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hence dimensionless, with equatorial angle φ as in spherical polar and paraboloidal coordinates; 

their domains are 1 < ξ < ∞, −1 < η < 1 and 0 < φ < 2 π rad.  A surface of constant ξ is a 

confocal circular ellipsoid of revolution about axis z; a surface of constant η is a corresponding 

circular hyperboloid about axis z, and a surface of constant φ is a half plane containing axis z.  

The distinguishing feature of these coordinates is that ellipsoid that possesses two centres or foci 

, which makes a description of these coordinates as ellipsoidal preferable to prolate spheroidal, 

even though these ellipsoids represent special cases of spheroids with two equal semi-axes.  The 

relations between these coordinates ξ, η,φ and cartesian coordinates x, y, z or radial coordinate r 

are hence 

 

 

The jacobian for volume integrals is (ξ2 
− η2

)d
3
/8. According to those definitions, Schroedinger's 

temporally independent equation becomes 

 

 

The variables become partially separated to form three ordinary-differential equations: 
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The solution of the first equation, for the angular variable, is the same as that displayed above, 

which enables a value for separation constant_c3 introduced automatically in Maple, 

 

which we substitute into the other two equations involving variables ξ and η.  As the other two 

differential equations, that for Ξ(ξ) being of second order and that for Η(η) being of third order, 

are coupled, we solve them simultaneously as a system to yield, after elimination of physically 

unacceptable solutions, 

 

 

and 

 

 

 

In these two solutions of which the simple form is similar to that of R(r) in spherical polar 

coordinates despite their evolution from coupled differential equations of second and third order, 

Nξ and Nη are normalizing factors to be evaluated; _C1 is a parameter that must satisfy an 

appropriate condition. These two solutions have parallel forms, both containing confluent Heun 

special functions [11], HeunC, with the same arguments, although the domains of the variables 
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differ, as specified above. The complete solution of Schroedinger's partial-differential equation 

for the amplitude function as a product of solutions of the three ordinary-differential equations 

follows. 

 

 

Because the solutions of Heun's confluent differential equation [11] are more complicated, in 

that they admit no direct general expression in polynomial form, than those of Laguerre's or 

Legendre's equation that possesses fewer singularities, symbolic calculations involving the 
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and n is an energy quantum number from experiment, as in preceding solutions.  In this manner 
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function in an equivalent manner, becomes related to a third quantum parameter, λ. The eventual 

form of the amplitude function has this form.  

 

 

When made discrete, parameter λ, which might have a symbolic expression in terms of distance 

d, is unlikely to assume integer values; the first argument of the HeunC functions must take 

positive values, but clearly cannot be integer, unlike the second and third arguments.  The fourth 

argument also adopts a general value, positive or negative. The amplitude function in this form is 

the most concrete or explicit that is envisaged at present, pending further development of 

confluent Heun functions. 

 

5   H atom in spheroconical coordinates 

In this system of coordinates of which the variables have surfaces comprising a sphere and two 

double cones of necessarily elliptical cross section and along axes x and z, a positively charged 

atomic nucleus lies near the origin, as in preceding cases, with distance r to the reduced mass. 

The relations of spheroconical coordinates ξ, r, η (ξ and η are distinct from those variables 

denoted with the same letters in ellipsoidal coordinates) with cartesian coordinates have this 

general form, 
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separable into these three ordinary-differential equations, 

, 

 

 

and 

 

The normalized solution of this ordinary-differential equation for R(r), 

, 

is identical to the corresponding solution in spherical polar coordinates. The other two physically 

acceptable solutions, which contain general Heun functions [11] present as HeunG, 

 

 

and 

, 

 

have identical forms except that the signs before parameter κ, in the second argument of each 

Heun function, differ; of the two independent solutions, both containing these Heun functions,  

of each ordinary-differential equation for Ξ(ξ) and Η(η), the solutions other than those above are 

physically unacceptable.  The total amplitude function is hence  

2 





∂

∂

r
( )ψ , ,ξ r η ξ2

r ( ) + η2 ξ2

2 





∂

∂

η
( )ψ , ,ξ r η η3

r2 ( ) + η2 ξ2

∂

∂2

ξ2
( )ψ , ,ξ r η

4 r2 ( ) + ξ2 η2

∂

∂2

η2
( )ψ , ,ξ r η

4 r2 ( ) + ξ2 η2
 +  −  +  + 







8 π2 µ( )
Z e2 ( )ψ , ,ξ r η

4 π ε
0

r
 − E ( )ψ , ,ξ r η = 

 = 
d

d2

ξ2
( )Ξ ξ  −  − 

4 ( )Ξ ξ ξ2 c
2

h2 ε
0

( ) − 4 ξ4 1

( )Ξ ξ c
3

h2 ε
0

( ) − 4 ξ4 1

8 





d

d

ξ
( )Ξ ξ ξ3

 − 4 ξ4 1

 = 
d

d2

r2
( )R r  − 

( )R r c
2

r2 h2 ε
0

2 





 +  + h2 






d

d

r
( )R r ε

0
Z e2 ( )R r π µ 4 E ( )R r π2 µ r ε

0

h2 r ε
0

 = 
d

d2

η2
( )Η η  +  − 

4 ( )Η η η2 c
2

h2 ε
0

( ) − 4 η4 1

( )Η η c
3

h2 ε
0

( ) − 4 η4 1

8 





d

d

η
( )Η η η3

 − 4 η4 1

( )R r
Z π µ e2 !k

ε
0

h2 !( ) +  + 1 2 l k
eeee













−
π µ Z e

2
r

h
2

ε
0

( ) +  + k l 1 









2 π µ Z e2

h2 ε
0

( ) +  + k l 1

( ) + l 1

rl = 











LaguerreL , ,k  + 2 l 1
2 π µ Z e2 r

h2 ε
0

( ) +  + k l 1
 +  + k l 1/( )

 = ( )Ξ ξ N
ξ

 − 1 2 ξ2 





HeunG , , , , , ,−1  + κ

1

4
 + 1

l

2
−  + 

l

2

1

2

1

2

1

2
−2 ξ2

 = ( )Η η N
η

 − 1 2 η2 





HeunG , , , , , ,−1 −  + κ

1

4
 + 1

l

2
−  + 

l

2

1

2

1

2

1

2
−2 η2



19 

 

 

 

in which separate normalizing factors Nξ and Nη  become merged into a single factor, denoted N; 

to simplify the form, we replace various fundamental constants with Bohr radius a0. 

 

 

A notable property of this solution is that, with coefficient c arbitrarily set equal to +1, it is 

entirely real, i.e. has no imaginary parts, which in the three preceding systems of coordinates 

resulted from at least the presence of an exponential term involving angular coordinate φ.  For 

the same reason, this solution lacks equatorial quantum number m, with which is associated the 

loss of degeneracy of states with common energy quantum number n on application of an 

external magnetic field to a H atom. This absence of m in no way implies the retention of 

degeneracy in the presence of a magnetic field; an explicit calculation including the effect of an 

homogeneous magnetic field is just as applicable in spheroconical coordinates as in spherical 

polar coordinates. According to the coefficient of t in the temporal exponent (not shown), or the 

coefficient of r in the included exponential term, the energy of a discrete state associated with an 

amplitude function characterized with quantum numbers k, l, κ depends on only quantum 

numbers k and l in combination, so is independent of κ, as is confirmed with direct calculations 

of E = ʃ ψ H ψ dv with hamiltonian H, normalised amplitude function ψ and many and varied 

values of k, l, κ; we hence relate the experimental quantum number n for energy according to the 

same theoretical relation as for spherical polar coordinates, so n = k + l + 1. 

 

6  Applications of amplitude functions 

According to wave mechanics, any observable property of a H atom is calculable with amplitude 

functions expressed in the appropriate coordinates when the respective operator is included in a 

suitable form. Two important properties of a state of an H atom are the square of the total 

electronic angular momentum, L
2
, excluding the intrinsic angular momentum (spin) of electron 

or proton, and the component of total angular momentum, Lz, parallel to a particular coordinate 

polar axis, chosen to be cartesian axis z. ψk,l,m(r,θ,φ), ψn1,n2,m(u,v,φ) and ψn,m,λ(ξ,η,φ) are all 

eigenfunctions of operator Lz for that component; the common eigenvalue is 
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in terms of equatorial quantum number m, but only spherical polar ψk,l,m(r,θ,φ), and 

spheroconical ψk,l,κ(ξ,r,η) are eigenfunctions of operator L
2
, as  

L
2 ψk,l,m(r,θ,φ) = l (l+1) h

2 ψk,l,m(r,θ,φ) /4π2
, 

L
2 ψk,l,κ(ξ,r,η) = l (l+1) h

2 ψk,l,κ(ξ,r,η) /4π2
, 

with the eigenvalue as an expression containing azimuthal quantum number l. For paraboloidal 

coordinates, we derive instead an expectation value of L
2 

for any amplitude function defined with 

quantum numbers n1, n2, m as  

 

which accordingly depends on all those three quantum numbers in combination, like the energy 

of that state. Although from that formula one might derive an expression for l,  

  =   

which clearly assumes no integer or half-integer value except when n1 = n2 = 0 giving l = |m|; 

taking |m| as being a lower limit of l is clearly a preferable interpretation. 

 A quantity related to operators for angular momentum is Runge-Lenz-Pauli operator A, 

which one might consider to resemble a fourth component of angular momentum arising from a 

symmetry that the hydrogen atom shares with rotation group O(4) in four dimensions [7]. For a 

stationary state associated with an amplitude function defined with three pertinent quantum 

numbers, , and , as all these quantities are conserved. In spherical polar 

coordinates, amplitude functions ψ(r,θ,φ) are not eigenfunctions of operator A; its component Az 

generates two functions corresponding to the same energy but with distinct values of quantum 

numbers k and l,  

Azψk,l,m= 

 

in which k and l alter in opposite senses but n = k + l + 1 remains constant.  Like operator L for 

angular momentum, for which amplitude function ψk,l,m is not an eigenfunction whereas this 

property holds for operator L
2
, the eigenvalues of A

2
 conform to this formula. 
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=  

 

In contrast, in paraboloidal coordinates, is an eigenfunction of Az, according to this 

formula,  

 =   

in which difference n2  ˗ n1, or its reverse, might be called an electric quantum number, because 

the energy shift of the linear Stark effect, whereby an H atom interacts with an external electric 

field, depends on that difference [14].  For spherical polar coordinates, the three quantities that 

yield eigenvalues are thus the energy, through the hamiltonian operator, the square of the total 

angular momentum, L
2
, and its component Lz, for which the eigenvalues are specified above.  For 

paraboloidal coordinates, the three respective quantities are energy and components Lz and Az, 

the latter hence replacing L
2
.  For ellipsoidal coordinates, the three quantities are the energy, Lz 

and another parameter arising from the separation of variables, whereas for spheroconical 

coordinates the three quantities are energy, the square of total angular momentum L
2
 and another 

parameter also arising from the separation of variables [15]. 

 An observable property of a H atom is its absorption spectrum, in terms of both the 

frequencies and the intensities of the discrete spectral lines associated with transitions between 

states for which the discrete energies have E < 0.  Expressed as an oscillator strength or f value, 

as defined above, the intensity of a spectral line is proportional to the square of an electric 

dipolar moment for the transition, calculated in paraboloidal coordinates as a matrix element of 

½e (u
2 

− v
2
) between amplitude functions associated with two combining states.  For this purpose 

we make an association, in Dirac's bracket notation, between amplitude functions defined with 

spherical polar and paraboloidal quantum numbers, 

=  ( | > | > ) 

with analogous appropriate combinations as sums for amplitude functions with k > 0.  For the 

particular involving |0,0,0> and the right side above, the result of an integration involving the 

amplitude functions in paraboloidal coordinates depending on spatial coordinates is 

 

 

This formula is necessarily exactly the same as that in spherical polar coordinates, apart from the 

temporal factor in the latter, derived above. Despite the disparity between the effective size of 

the H atom, ~ 0.1 nm, and wave length 121.6 nm of light for this transition, we interpret, 

classically, the electric vector of the electromagnetic wave to induce an electric-dipolar moment 
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for the transition in the atom that oscillates at the same frequency, such that in absorption radiant 

energy is transferred to become internal electronic energy of that atom. 

 With this scheme and the formula for f in terms of the matrix element for dipolar moment 

involving amplitude functions with quantum numbers n1, n2 in appropriate combinations, 

f  =  

containing frequency ν as the coefficient of it in the temporal factor (not shown),we calculate the 

frequencies and intensities of the first ten lines in the Lyman series in absorption in the vacuum-

ultraviolet region. Derived directly from these paraboloidal amplitude functions, the resulting 

spectrum appears in figure 1; this spectrum is identical with that calculated with amplitude 

functions in spherical polar coordinates [10], which proves the equivalence of the calculations 

with coordinates in disparate sets and with respective quantum numbers in disparate sets. The 

continuous spectrum for energies greater than the threshold for ionization is generated 

analogously with amplitude functions in paraboloidal coordinates just as for spherical polar 

coordinates [10], and is calculated likewise in ellipsoidal and spheroconical coordinates, apart 

from increased complication because of the Heun functions in the pertinent amplitude functions. 
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Figure 1   Absorption spectrum for discrete transitions of the H atom in the vacuum-ultraviolet 

 region quantitatively calculated with amplitude functions in paraboloidal coordinates; the 

 intensity is plotted as log10(1000 f) against frequency/10
15

 Hz of the transitions.  The first

 four lines of the Lyman series are identified with greek letters. 

7  Discussion 

For a free particle and a canonical linear harmonic oscillator in multiple dimensions and for a 

hydrogen atom, Schroedinger's partial-differential equation independent of time, like Laplace's 

equation of which the laplacian operator is included in the former, is super-integrable -- it admits 

separable and integrable solutions in multiple coordinate systems.  For the hydrogen atom, the 

systems of coordinates were delineated to number precisely four [7]; a subsequent derivation of 

these systems proved their correctness [15].  A claim of a fifth system of coordinates [16] is 

misleading because the alleged rectangular coordinates still contain radial distance r in set 

(x,y,z,r); the spherical harmonics in the general spherical polar coordinates become replaced 

therein with functions involving ratios of x, y, z [16]. Advanced mathematical software, here 

Maple, facilitates quantitative and exact symbolic calculations in molecular and chemical 
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physics; the particular capability to solve directly a partial-differential equation enables a user to 

avoid the mathematical contortions of a traditional manual derivation [17] of amplitude functions 

of an atom with one electron treated according to Schroedinger's formulation of wave mechanics 

involving partial-differential equations of second order, instead to focus on the properties of the 

solutions. A user can still test the solutions to prove their correctness, and transform them as 

desired; for instance, the direct solution of the ordinary-differential radial equation as part of 

Schroedinger's equation in either spherical polar or paraboloidal coordinates appears in terms of 

Whittaker functions, but a transformation, either directly or indirectly through other functions, 

into further functions in the same coordinate system, such as Laguerre functions that appear in 

traditional derivations, is an option readily implemented. Here we apply this capability to solve 

Schroedinger's equation, temporally dependent or independent, in four systems of coordinates -- 

spherical polar, paraboloidal, ellipsoidal and spheroconical, simply on generating an appropriate 

laplacian operator and specifying correctly the electrostatic potential energy within the 

hamiltonian operator according to the particular coordinates, then commanding the solution of 

the resulting partial-differential equation.  Our argument in deriving a solution in paraboloidal 

coordinates naturally yields the same result as that which appears in some physics textbooks; one 

source [14] includes a normalizing factor of these functions that is incorrect, and in other books 

this factor is not specified explicitly. The application of boundary conditions to evaluate the 

separation parameters invokes a further algebraic capability that is formally directly available; 

the somewhat intractable confluent Heun functions [11] hinder at present this application for 

ellipsoidal parameter λ. Calculations with general Heun functions [11] are easier than with 

confluent Heun functions; we calculated numerical normalizing factors and energies of ψ(ξ,r,η) 

for many and diverse values of quantum numbers k, l and κ. The graphical capability of the same 

software is then brought to bear to generate accurate plots of pertinent properties, such as the 

absorption spectrum of H presented quantitatively in figure 1 in two dimensions and the surfaces 

depicting amplitude functions at particular values of ψ in other papers in this series. 

 A choice of amplitude functions in the four systems of coordinates must depend on the 

purpose of a calculation on the hydrogen atom, or other atom with only one electron, in which 

the amplitude functions serve as working formulae according to wave mechanics. The 

overwhelmingly best known system has, of course, spherical polar coordinates; as the properties 

of the Laguerre and Legendre polynomials [11] involved therein are highly developed, 

calculations are generally rapid.  This system is applicable to a hydrogen atom, or to any other 

atom with only one electron, that is in isolation -- no other matter in the vicinity, no applied 

electric field apart from an electromagnetic wave in the form of light that might interact 

classically with the atom in absorption, emission or scattering. A uniform external magnetic field 

causes a loss of the degeneracy associated with equatorial quantum number m. The authors of 

textbooks on quantum mechanics in physics typically content themselves with the mathematical 

details of this solution of the temporally independent Schroedinger equation and present some 

exemplary formulae for a few selected functions.  Practically all textbooks of chemistry allude to 

these functions in spherical polar coordinates, generally in mistaken contexts; some such 
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textbooks, particularly in physical and inorganic chemistry, describe their properties with 

accurate formulae but more or less inaccurate figures depicting poorly defined surfaces and 

shapes. Following Schroedinger's own solution of his equation in paraboloidal coordinates [6], 

some textbooks of quantum mechanics in physics treat this system, but no known textbook of 

chemistry even mentions that this system exists for the hydrogen atom. Common to spherical 

polar and paraboloidal amplitude functions, Laguerre polynomials [11], for two spatial variables 

in the latter system, are readily manipulated, and calculations are generally rapid. Schroedinger 

applied this system to treat, with perturbation theory that he concurrently developed, the 

hydrogen atom in an homogeneous electric field; the purpose was to calculate the Stark effect, 

explicitly the shifting, splitting and intensities of spectral lines as a result of hydrogen atoms 

being subjected to a uniform electric field. Other contexts in which these paraboloidal 

coordinates are directly useful include the photoelectric effect, the Compton effect and a 

collision of an electron with a H atom [14]; in each case a particular direction in space is 

distinguished according to some external force.  In ellipsoidal coordinates, one focus of an 

ellipsoid is located at or near the atomic nucleus, and another focus, at distance d, is merely a 

dummy location; as the latter can become the location of a second atomic nucleus, the associated 

amplitude functions become formally applicable to a diatomic molecule, which has been the 

reason for the modest attention devoted to these coordinates. These amplitude functions as 

directly derived here, for the first time, contain confluent Heun functions, which pose difficulties 

of calculation because they lack a simple polynomial expression [11]. Some indirect derivations 

of amplitude functions in the literature, through solutions of the differential equations in series, 

have been implemented for that reason [8]; the shapes of surfaces of these functions at a 

particular value of ψ depend strongly on that distance d.  For all three preceding coordinate 

systems, equatorial angle φ is one variable; its presence in a resulting derived amplitude function 

has invariably the form stated above, in which the presence of i = as factor of equatorial 

quantum number m in the exponent dictates mostly complex total amplitude functions, even with 

coefficient c = 1; their intrinsic real and imaginary parts hence preclude depiction of most 

surfaces directly in real space, even with a favoured value of external coefficient c. As a further 

complication, confluent Heun functions in ellipsoidal coordinate ξ have generally a complex 

nature. In contrast, with c = +1 or −1, each and every amplitude function in spheroconical 

coordinates is entirely real -- thus has no imaginary part, enabling a direct plot of each such 

surface. Calculations with the general Heun functions in two spheroconical coordinates ξ and 

η are easier than with confluent Heun functions in their two coordinates; the third spheroconical 

coordinate is just the separation r between the reduced mass and the origin, essentially between 

the electron and nucleus, the same as in spherical polar coordinates.  These coordinates have thus 

much to recommend them for a general discussion of the wave-mechanical properties of the 

hydrogen atom.  For realistic and practical purposes, the solutions in paraboloidal and ellipsoidal 

coordinates have, in contrast, significant applications, as mentioned above, whereas the solutions 

in either spherical polar or spheroconical coordinates serve merely as exercises in the solutions 

of partial-differential equations. 

−1
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8  Conclusion 

Applying powerful mathematical software, we undertook direct calculations in wave mechanics, 

according to Schroedinger's formulation, for the hydrogen atom in coordinates in four systems, 

two more than by Schroedinger himself. The results indicate that the observable properties of H, 

such as the angular momenta of particular states and the absorption spectrum associated with 

transitions between discrete states, are directly calculable in any of these four coordinate 

systems. For a particular purpose, one system of coordinates might prove more convenient than 

another; for instance, for the calculation of the effect of an externally applied uniform electric 

field on the H atom, known as the Stark effect, paraboloidal coordinates are preferable to 

spherical polar coordinates, as originally applied by Schroedinger [6], but that calculation is 

equally practicable in other coordinates. The advantage of ellipsoidal coordinates arises in 

calculations on diatomic-molecular species, in which a separate atomic nucleus might be located 

at the second focus of the ellipsoids. Two advantages of amplitude functions in spheroconical 

coordinates are that they can be directly taken to be entirely real, hence having no imaginary 

parts, and that with each amplitude function are associated two quantum numbers k and l that 

define in combination the energy and l separately the angular momentum, but these solutions are 

applicable purely to an isolated hydrogen atom that again makes them of negligible chemical and 

physical interest. The disadvantage, at present, of both ellipsoidal and spheroconical coordinates 

is that they each involve Heun functions [11], of which applications are less well developed than 

for Laguerre functions that arise in both spherical polar and paraboloidal coordinates. Distinct 

from the amplitude functions, the electronic states of a H atom are specified rigorously within the 

Schroedinger formalism in terms of energy quantum number n and azimuthal quantum number l; 

the latter quantum number arises naturally in solutions in both spherical polar and spheroconical 

coordinates, and indirectly in paraboloidal and ellipsoidal coordinates as |m| < l. The shape of an 

amplitude function, and even the quantum numbers in a particular set to specify such an 

individual function, depend on the coordinates in a particular chosen system, and are therefore 

artefacts of a particular coordinate representation within wave mechanics, which includes both 

coordinate and momentum representations and which is just one method among many in 

quantum mechanics [3,4].   

 An amplitude function of any kind discussed here conforms to a definition of orbital as 

one-electron wave function such as the hydrogen-like wave functions [19]; such an orbital has no 

tangible existence [20], and with its particular quantum numbers is an artefact not only of a 

particular quantum-mechanical method of calculation, namely wave mechanics, but also of a 

particular representation – either coordinate or momentum, and, furthermore, a particular 

variable set therein. Each coordinate system, or a momentum representation in its respective 

guises, would have equally parochial orbitals and attributes, but the energy and angular momenta 

of an atom in a particular state are immutable; specific values of angular momenta might be 

associated with amplitude functions in various combinations with common n. A transformation 

of coordinates enables one to express an amplitude function derived directly in any system of 
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coordinates in terms of amplitude functions in linear combinations belonging to the same value 

of energy, hence n, in any other system. For instance, the graphical displays of surfaces of 

spheroconical ψ1,0,0(ξ,r,η) and spherical polar ψ1,0,0(r,θ,φ) at appropriate values of ψ demonstrate 

directly the correlation between these two amplitude functions. The surface of ψ1,0,0(u,v,φ) in 

paraboloidal coordinates is identical with that of a sp hybrid orbital in spherical polar 

coordinates, which is simply a linear combination of ψ0,1,0(r,θ,φ) and ψ1,0,0(r,θ,φ).  A 

transformation involving ellipsoidal coordinates must take into account distance d between the 

foci of the ellipsoid.   The definition of an orbital [19] as a mathematical formula, specifically 

that of a one-electron function as a solution of Schroedinger's temporally independent equation, 

is applicable to algebraic formulae having as variables not only spatial coordinates but also 

components of momenta, because one can choose between a coordinate representation and a 

momentum representation as a basis of solution of that equation.  For each solution in 

coordinates of a particular system, there is a corresponding solution in momentum components.  

The simplistic conversion from spherical polar coordinates to the polar momenta by Podolski 

and Pauling [23] was erroneous because those momenta components were not orthogonal, as 

Lombardi [24] noted with a correct transformation. Klein [25] undertook a transformation of 

amplitude functions from paraboloidal coordinates to toroidal variables for components of 

momenta, but the orthogonality of those variables was not tested.  Other specifications of the 

amplitude functions in the coordinate  representations exist [for instance 7, 26] but these are 

merely formal solutions not directly amenable to practical calculations such as the plots of 

surfaces and derivation of other properties. There hence exist at least six sets of formulae for 

orbitals, each with its set of quantum numbers and distinct shapes of the respective surfaces. 

 A failure to distinguish between a state of an atom and a postulated amplitude function, in 

whatever coordinates, constitutes a category fallacy. A state of an atom is defined by its energy 

and its angular momentum; an amplitude function is defined by not only its quantum parameters 

but also its coordinate system. Quantum mechanics in its pioneer forms -- matrix mechanics and 

Schroedinger's wave mechanics, both non-relativistic -- must yield the same values of observable 

quantities for a particular state or transition in whatever system of coordinates. In matrix 

mechanics [21] there is no amplitude function; instead of applying H ψ = E ψ, or its integral 

form, in wave mechanics with H as an hamiltonian operator pertaining to a particular coordinate 

or momentum representation and involving differential quantities appropriate to that 

representation, one forms an appropriate hamiltonian matrix H that is made diagonal to produce 

energy matrix E. Matrix mechanics, unlike wave mechanics, is thus applicable to calculations 

involving intrinsic angular momenta pertinent to experiments in magnetic resonance, for instance 

the calculation of the spectrum of a 'spin' system given the values of chemical shifts and coupling 

parameters. Another approach [22] that has its basis in the symbolic calculations of Pauli on the 

hydrogen atom [5], undertaken before Schroedinger's publications [6], that is entirely symbolic 

might also be applicable to an extensive treatment of a hydrogen atom without such artefactual 

properties as amplitude functions parochial to a particular system of coordinates.  As a state of 

atomic H is defined uniquely according to its energy and its angular momenta, any other attribute 
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of that state that is an artefact of one or other representation must be recognized as such.  For 

only an atom with one electron does an energy of a discrete state, relative to a reference state 

such as a threshold of ionization, identify uniquely with a specific value of a particular quantum 

number or quantum parameter. 
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