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Among imaginary quadratic number fields Ω = Q(
√
d) with prime dis-

criminant d = −p (≡ 1 mod 4) and odd class number h, the first cases with
h > 1 are well known:

d = −23 h = 3,

d = −31 h = 3,

d = −47 h = 5.

In general the class fieldN of Ω is normal over the rational number field Q,
with dihedral Galois group of order 2h. The cyclic normal subgroup of order
h corresponds to the quadratic subfield Ω. For the h conjugate subgroups
of order 2, the corresponding subfields K are extensions of degree h over Q,
and one of these is characterized as the maximal real subfield of N .

Whereas it is easy in the cases d = −23 and d = −31 to give an explicit
arithmetic-canonical representation of the so defined number fieldK of degree
h = 3, the same problem in the case d = −47, where K has degree 5, has
until now been solved only through equations flowing from the transformation
theory of modular functions (i.e. so-called modular equations), so that the
arithmetical nature of the roots in the class field N remains in the dark. 1

Some time ago H. Koch (Berlin) asked me whether one could not handle
the case of d = −47 just as simply as the cases d = −23 and d = −31,

1See H. Weber, Algebra III, 2nd ed., Braunschweig 1908, §131, as well as R. Fricke,
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and at first I thought that indeed one easily could. On closer inspection it
became apparent however, that for d = −47 a considerably greater effort
would be necessary. I communicate hereafter the result of my efforts, in
whose final stage I was aided by Klaus Alber (Hamburg). 2 In this I rely on
the arithmetic theory of cyclic biquadratic number fields, as I have developed
it in an earlier work, 3 as well as certain results from my monograph on the
class number of Abelian number fields. 4 I begin by clarifying, by means
of the examples d = −23 and d = −31, what kind of arithmetic-canonical
representation I have in mind.

1 The Cases d = −23 and d = −31
The two cases allow for a common treatment; they differ only by the sign in

d = −27± 4 = −33 ± 22.

In the following, the upper and lower signs always correspond, respectively,
to the cases d = −23 and d = −31.

1.1 Ascent to Generation of N 3/Ω3

The cyclic extension of 3rd degree N/Ω can be generated by a radical, after
the adjunction of a third root of unity (indicated by superscript 3):

N3 = Ω3
(

3
√
ω
)
.

Algebra III, Braunschweig 1928, §4 (p. 492). There the equations

x5 − x3 − 2x2 − 2x− 1 = 0

resp.
x5 − x4 + x3 + x2 − 2x+1 = 0

are given as resolvents of the class equation for the discriminant d = −47.
2Hasse’s student, PhD Hamburg 1959, dissertation: Einige Sätze aus der komplexen

Multiplikation.
3H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen

kubischen und biquadratischen Zahlkörpern, Abh. Deutsche Akad. Wiss. Berlin 1948, Nr. 2
(1950). Cited in the following by GK.

4H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akad. Verlag, Berlin 1952. Cited
in the following by KAZ.
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To be precise, the radicand ω is a singular 3-primary number of Ω3, that is,
a third divisor power number 5 which is 3-primary (i.e. a third power residue
mod 3

√
−3). In short, 6

ω ∼=
3

1, ω ≡
3

1 mod 3
√
−3.

In the sense of =
3

, it is uniquely determined, up to choice of ω±1 (i.e. up

to third number power factors 7).
In order to investigate ω, we will first determine the fundamental unit ε

and class number h of the bicyclic biquadratic number field

Ω3 = Q(
√
−3,
√
d).

That can be done, following KAZ §26, in the following way.
The real quadratic subfield

Ω3
0 = Q(

√
−3d)

has the fundamental unit

ε0 =
(27∓ 2) + 3

√
−3d

2

with the norm
N(ε0) = 1

and the class number
h0 = 1.

The two imaginary quadratic subfields

Ω = Q(
√
d), Q3 = Q(

√
−3)

have the class numbers
h1 = 3, h2 = 1.

5That is, a number whose divisor is a third power.
6Hasse’s notation in which a number n is set beneath an equivalence relation =, ∼=, or

≡ means that the relation holds up to an nth power factor. That is, there exists a number
or a divisor such that the relation will hold if one side is multiplied by its nth power. The
relation α ∼= β means that α and β have the same divisor, if α, β are numbers; if β is a
divisor then it means that β is the divisor of α.

7That is, up to a factor which is the third power of a number.
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Following KAZ, §26, (6) - (8), one has in general that

ε =

{
ε0 if Q = 1√
−ε0 if Q = 2

and

h1 =
1

2
Qh0h1h2, h∗ =

1

2
Qh1h2,

where Q is the unit index 8 and h∗ is the relative class number of Ω3/Ω3
0.

The unit index is by definition

Q =

{
1 if− ε0 6=

2
1

2 if− ε0 =
2

1

}
in Ω3.

Already, since the relative class number is integral (KAZ §§19, 27), we
must have Q = 2 in the present case, where h∗ = 1

2
Q · 3. One can see

this in the following way, without having to appeal to the rather deep-lying
integrality of h, and thereby at the same time determine ε.

The criterion (11I) for Q = 2 from KAZ, §26, (12I) is satisfied:

∓
√
−3

2
= ±3 = aa′

with

a =
9 +
√
−3d

2

from Ω3
0. Since the prime 3 is ramified in Ω3

0, one therefore has

a ∼= a′, so that a ∼=
√
−3.

Therefore

ε =
a√
−3

=
−3
√
−3 +

√
d

2

is a unit in Ω3, with

ε2 =
a2

−3
=

(−27 + d)/2− 3
√
−3d

2
=
−(27∓ 2)− 3

√
−3d

2
= −ε0.

8The terms unit index, and relative class number are defined in Hasse’s monograph
(Hasse 1952).
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But this says that Q = 2 and ε is the fundamental unit of Ω3. Therewith we
get that

h = h∗ = 3.

From class field theory it follows that in Ω3 there is essentially only one
singular 3-primary number ω. The two postulates on ω are now satisfied for
the fundamental unit ε, the first trivially, since actually ε ∼= 1; the second
considering that

ε−1 =
3
ε2 = −ε0 ≡

d∓ 2

2
≡ ±1 ≡

3
1 mod 3

√
−3.

Then one can normalize by setting

ω = ε

so that we get for N3/Ω3 the representation

N3 = Ω3
(

3
√
ε
)
.

Remark: One notes that in the present cases d = −23 and d = −31,
the singular 3-primary number ω is not, as one would have assumed at the
outset, formed by normalization of the third divisor power number already
existing in Ω,

w =
(2± 1) +

√
d

2
∼=
3

1 with N(w) = 23

by means of a unit of Ω3. In the following treatment, the case d = −47 will
turn out accordingly.

1.2 Descent to Generation of K/Q
For the present purpose it is crucial that the singular 3-primary number ω in
Ω3 can be normalized as a number already in the maximal real subfield Ω3

0

of Ω3. That is achieved either by the normalization

ω−1 =
3
ε2 =

3
ε0 =

(27∓ 2) + 3
√
−3d

2
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just now given, or better, since – as will be seen – it leads to a lower funda-
mental equation, 9 the normalization

ω =
3

ε
√
−3

3 =
α

9
=

1

9
· 9 +

√
−3d

2
.

Since the (real) radical 3
√
α/9 already lies in the maximal real subfield N3

0 of
N3, one therefore has for N3

0/Ω
3
0 the representation

N3
0 = Ω3

0

(
3

√
α

9

)
.

The generating automorphism of N3
0/K sends the radical 3

√
α/9 to 3

√
α′/9

(again meaning the real root). Therefore the trace of N3
0/K in K is the

radical sum

A = 3

√
α

9
+

3

√
α′

9

and this generates K over Q, since it is different from both its complex
conjugates. For the generator A one has

A3 =

(
α

9
+
α′

9

)
+ 3 3

√
α

9
3

√
α′

9

(
3

√
α

9
+

3

√
α′

9

)
.

Considering that α + α′ = 9 and αα′ = ±3, this becomes

A3 = 1± A.

Therewith the stated goal is reached:
Result. The maximal real subfield K of the class field N of an imagi-

nary quadratic number field Ω = Q(
√
d) with d = −27± 4 has the represen-

tation
K = Q(A)

with the minimal equation

A3 ∓ A− 1 = 0.

9By a fundamental equation for a field, Hasse means the equation f(x) = 0 in which
f(x) is the minimal polynomial of a primitive or generating element of the field. By lower
he means lower height, i.e. smaller coefficients.
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The generator A is arithmetically characterized as the radical sum

A = 3

√
α

9
+

3

√
α′

9
,

whose radicand
α

9
=

1

9
· 9 +

√
−3d

2
is related to the fundamental unit

ε0 =
(27∓ 2) + 3

√
−3d

2

of the maximal real subfield Ω3
0 = Q(

√
−3d) of Ω3 = Q(

√
−3,
√
d), and to

the prime number 3 by

α

α′
= ±ε0, αα′ = ±3.

Remark. Using the aforementioned, more obvious normalization ω−1 =
3
ε0

of the radicands we get for the generator

B = 3
√
ε0 + 3

√
ε′0

the higher fundamental equation

B3 − 3B − (27∓ 2) = 0.

2 The Case d = −47
For the sake of uniformity with the afore-handled cases, although here d has
only the one value −47, the notation

√
d will be retained (and we will not

write
√
−47).

2.1 Ascent to Generation of N 5/Ω5

The cyclic extension of 5th degree N/Ω can be generated by a radical, after
the adjunction of a fifth root of unity (indicated by superscript 5):

N5 = Ω5
(

5
√
ω
)
,
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where the radicand ω is a singular 5-primary number of Ω5, that is, 10 a 5th
divisor power number, which is 5-primary (i.e. a fifth power residue mod

5
√
−e
√

5). In short,

ω ∼=
5

1, ω ≡
5

1 mod 5

√
−e
√

5.

Up to choice of ω±1, ω±2, it is uniquely determined in the sense of =
5

(i.e. up

to 5th number power factors).
In order to investigate ω, we will first, by the method laid out in full

in GK, determine the relative fundamental unit ε0, unit index Q0 and class
number h0 of the cyclic biquadratic maximal real subfield

Ω5
0 = Q

(√
−e
√

5 · d
)

of Ω5 and thence the unit index Q, and furthermore the fundamental unit ε
and class number h of the imaginary Abelian number field

Ω5 = Q
(√
−e
√

5,
√
d

)
of Type (4, 2).

2.1.1 Relative fundamental unit ε0, unit index Q0 and class num-
ber h0 of Ω5

0

The determination is based on the representation of the integers of Ω5
0 in the

canonical form

1

2

(
x0 + x1τ(ψ)

2
+ y0

τ(χ) + τ(χ)

2
+ y1

iτ(χ)− iτ(χ)

2

)
with congruence conditions mod 4 for the rational integer coordinates x0, x1, y0, y1
(GK, §8, (2), (3) and Theorem 14). Here χ, χ are the two conjugate bi-
quadratic characters mod 5 · 47, ψ = χ2 the quadratic character mod 5, and

10We note that in a diagram that we have not reproduced in this translation, Hasse
defines e = (1 +

√
5)/2, noting that it is the fundamental unit of Q5

0.
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τ(χ), τ(χ), τ(ψ) the corresponding Gauss sums. The forms appearing in this
representation are given, following GK, §8, (21), by

τ(ψ) =
√

5,
τ(χ) + τ(χ)

2
= e′

√
−e
√

5 · d, iτ(χ)− iτ(χ)

2
=

√
−e
√

5 · d.

The relative units of Ω5
0/Q5

0 (units with relative norm ±1) are character-
ized in this canonical representation, following GK, §12, (2), by the coordi-
nate equations

(x20 ∓ 16)/5 + x21
2 · 47

= y20 + y21, x0x1 = −(y20 − y21)− 4y0y1,

and the relative unit ε0 corresponds to the essentially uniquely determined
solution with minimal y20 + y21. As minimal solution one quickly finds here,
using the systematic testing procedure in GK, §12, A1,

x0 = 47, x1 = −5, y0 = −1, y1 = −2,

with positive sign in the first equation on the left, which means relative norm
−1; y0, y1 are thereby negatively normalized, for entirely irrelevant reasons,
not to be discussed here. Therefore Ω5

0/Q5
0 has the relative fundamental unit

ε0 =
1

2

(
47− 5

√
5

2
− e′

√
−e
√

5 · d− 2

√
−e
√

5 · d

)
or

ε0 =
1

2

(
47− 5

√
5

2
− −5 +

√
5

2

√
−e
√

5 · d

)
with the relative norm

n(ε0) = ε0ε
′′
0 = −1.

Since x1 = −5 thus proves not to be divisible by 47, we finally get, using
GK, §12, A2, the unit index of Ω5

0/Q5
0 as

Q0 = 1.

Accordingly, the unit group of Ω5
0 will be generated by the units

e, ε0, ε
′
0 with N(e) = −1, n(ε0) = −1.
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In order to at last determine the class number h0 of Ω5
0, one has to compute

the reduced relative cyclotomic unit 11

η0 = θθ′

(GK, §19, (11)). That can be done using the Bergström product formula for
the 23-factor product

θ =
∏
a

(
(−ζ)a − (−ζ)−a

)
(GK, §14), where ζ is a primitive 5 · 47-th root of unity, and a runs over
an odd normalized subsystem of the rational congruence group mod 5 · 47
assigned to Ω5

0 (KAZ, §10), say, the smallest positive

1, 19, 21, 29, 39, 51, 61, 69, 71, 81, 99, 101, 109,

111, 121, 129, 131, 139, 179, 191, 199, 219, 229.

For this calculation one has to turn to the Schema in GK, §19, B 3, a 2, Type
3 (p. 86). Without mechanical or electronic computational means this could
not have been carried out successfully. By means of the Hamburg electronic
computer TR 4 we obtained the agreement

η0 =
1

2

(
47− 5

√
5

2
− −5 +

√
5

2

√
−e
√

5 · d

)
= ε0

with the afore-determined relative fundamental unit ε0. Following GK, §19,
Theorem 37 implies, in light of Q0 = 1, that Ω5

0/Q5
0 has the relative class

number
h∗0 = 1.

Since Q5
0 = Q(

√
5) has the class number 1, therefore Ω5

0 also has the class
number

h0 = 1.

11On cyclotomic units, see e.g. (Hilbert 1897, §98).
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2.1.2 Unit index Q, another fundamental unit ε, and class number
h of Ω5

By KAZ, §33, (p. 98) Ω5/Ω5
0 has the unit index

Q = 2.

A unit ε therefore existing in Ω5 by KAZ, §20, Theorem 14 and (4a0),
with the property

ε = −ε,

will arise by the generating automorphism of Ω5/Ω5
0 (complex conjugation),

from the number θ underlying the reduced relative cyclotomic unit η0 = θθ′

– and generally all cyclotomic units – which indeed in the present case (a
composite conductor f = 5 · 47) is a unit in Ω5, and as product of an odd
number of pure-imaginary factors with the property

θ = −θ

satisfies:
ε = θ.

For this number θ we found during the aforementioned electronic compu-
tation of η0 the value

θ =
1

2

(
(2−

√
5)
√
d+

25− 11
√

5

2

√
−e
√

5

)
.

As one also easily computes, the relative norm of this unit of Q(
√

5,
√
d) is

n(θ) = θθ′ = e′ = −e−1

and therefore its complete norm is

N(θ) = θθ′θ′′θ′′′ = N(e) = −1.

By the salient points demonstrated thus far, the unit group of Ω5 must
be generated by a primitive 5 · 47th root of unity ζ, the real units e, ε0, ε

′
0,

and the imaginary unit θ. According to the norm relations just given and
the earlier relation

ε0 = η0 = θθ′
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one can instead simply take

ζ and the conjugates θ, θ′, θ′′

as generators.
By KAZ, §33, Theorem 34, we compute finally, in light of Q = 2, the

relative class number of Ω5/Ω5
0 as

h∗ = 2 · 10 ·Nχ(θ(χ))Nψ(θ(ψ))Nψ̂(θ(ψ̂)),

where, as earlier, χ denotes a biquadratic character mod 5 · 47, ψ = χ2

the quadratic character mod 5, and ψ̂ the quadratic character mod 47, and
θ(χ), θ(ψ), θ(ψ̂) are the character sums formed according to KAZ, §27, (2),
of which the norms Nχ, Nψ, Nψ̂ are taken in the field of the respective
characters. The calculation of these character sums and their norms can
without great effort be carried out by hand. They give as relative class
number

h∗ = 2 · 5.
In view of h0 = 1, Ω5 therefore also has the class number

h = 2 · 5.

Therefore by class field theory there is in Ω5 essentially only one singular
5-primary number ω.

2.1.3 Determination of the singular 5-primary number ω

The singular 5-primary number ω we seek must comprise units of Ω5, and
the essentially unique 5th divisor power number already existing in Ω,

w =
9 +
√
d

2
∼=
5

1 with N(w) = 25

In order to reach it by a suitable product of powers of w and the fundamental
units ζ, θ, θ′, θ′′ of Ω5, one determines the exponents mod 5 in the represen-
tation of these numbers by a basis of the π-adic principal unit group 12 of
Ω5, only considered mod π5, where for short we write

π =

√
−e
√

5 with π4 ∼= 5, π5 ∼= 5π

12See (Hensel 1908, Ch. 4 § 7).
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for the prime divisor of 5 in Ω5. This analysis can be made without great
difficulty, by an incremental procedure, through rising powers π, π2, π3, π4, π5

as modulus. The result is assembled in the following table, in whose heading
the chosen basis is given; blank spaces indicate exponents 0 mod 5:

1 + π 1 + π
√
d 1 +

√
5 1 +

√
5
√
d 1 + π

√
5 1 + π

√
5
√
d 1 + 5 1 + 5

√
d

w 3
ζ 3 3 4 4
θ 2 2 1 2
θ′ 3 1 4 3
θ′′ 2 3 1 1

Between the five exponent lines there is clearly, as there must be, a linear
dependence mod 5, namely with the coefficients given in the column on the
far right. Therefore the unit

ω = θ2θ′3θ′′ ≡
5

1 mod 5π,

is 5-primary. By carrying out the formation of conjugates and the multipli-
cation, which is easiest in the association

ω = (θθ′)2(θ′θ′′) = η20η
′
0 = ε20ε

′
0,

one obtains for ω the value

ω =
1

2

(
9353 + 4225

√
5

2
− 715 + 325

√
5

2

√
−e
√

5 · d

)
.

For use later let us also note the value

ε0ε
′
0 =

1

2

(
521 + 235

√
5

2
− (20 + 9

√
5)

√
−e
√

5 · d

)
.

With the radicands ω so determined, one then has for N5/Ω5 the represen-
tation

N5 = Ω5
(

5
√
ω
)

= Ω5

(
5

√
ε20ε
′
0

)
.

Remark. One notes that also in the present case d = −47 by construction
the 5th divisor power number w in Ω does not divide the singular 5-power
number, entirely analogously to the afore-handled cases d = −23 and d =
−31.
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2.2 Descent to Generation of K/Q
The afore-determined singular 5-primary number ω = ε20ε

′
o of Ω5 is here

already so normalized that it lies in the maximal real subfield Ω5
0 of Ω5.

Since the (real) radical 5
√
ω = 5

√
ε20ε
′
0 lies in the maximal real subfield N5

0 of
N5, one thus has for N5

0/Ω
5
0 the representation

N5
0 = Ω5

0(
5
√
ω) = Ω5

0(
5

√
ε20ε
′
0).

2.2.1 Descent from N5
0/Ω

5
0 to K5

0/Q5
0.

The generating automorphism of N5
0/K

5
0 sends the radical 5

√
ω to 5

√
ω′′ (again,

the real radical understood). In view of

ωω′′ = n(ε0)
3 = −1

one also has
5
√
ω

5
√
ω′′ = −1.

We have then the radical sum

B = 5
√
ω +

5
√
ω′′ = 5

√
ω − 1

5
√
ω

as the trace for N5
0/K

5
0 in the subfield K5

0 , and this generates this subfield
over Q5

0, since it is different from its four complex conjugates:

K5
0 = Q5

0(B).

In order to find the equation that the B in this representation satisfies,
one goes to the identities(

x− 1

x

)5

=

(
x5 − 1

x5

)
−
(
x3 − 1

x3

)
+ 10

(
x− 1

x

)
,(

x− 1

x

)3

=

(
x3 − 1

x3

)
− 3

(
x− 1

x

)
,

thus (
x− 1

x

)5

+ 5

(
x− 1

x

)3

+ 5

(
x− 1

x

)
= x5 − 1

x5
,

and puts x = 5
√
ω therein. This gives:

B5 + 5B3 + 5B = ω − 1

ω
= ω + ω′′ =

9353 + 4225
√

5

2
.

The norm of the absolute term of this equation is the prime number 443629.
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2.2.2 Descent from K5
0/Q5

0 to K/Q.

The generating automorphism of K5
0/K sends the radical 5

√
ω to 5

√
ω′′ (again,

the real radical understood). In view of

ω′ = ε′20 ε
′′
0 =

ε50ε
′2
0 ε
′′
0

ε50
= −ε

4
0ε
′2
0

ε50
= −ω

2

ε50

one also has
5
√
ω′ = −

5
√
ω
2

ε0
.

We have then the radical sum

A = B +B′ = 5
√
ω +

5
√
ω′ +

5
√
ω′′ +

5
√
ω′′′ =

(
5
√
ω − 1

5
√
ω

)
−

(
5
√
ω
2

ε0
− ε0

5
√
ω
2

)

as the trace for K5
0/K in the subfield K, and this generates this subfield over

Q, since it is different from its four complex conjugates:

K = Q(A).

In order to finally find the equation which the A in this representation
satisfies, one may regard the last given representation of A as a representation
by the basis 5

√
ω
−2
, 5
√
ω
−1
, 1, 5
√
ω, 5
√
ω
2

of N5
0/Ω

5, and compute from that the
corresponding basis representations of A2, A3, A4, and A5. For carrying
out this computation, which was indeed somewhat troublesome, yet to be
dealt with entirely by hand, I thank Klaus Alber (Hamburg). The equation
obtained was

A5 + 10A3 − 5T (ε0)A
2 + 5

(
1 + T

(
ω

ε0

))
A− T (ω) = 0.

One computes the traces appearing therein from the afore-given numerical
values of ε0, ω/ε0 = ε0ε

′
0, ω = ε20ε

′
0 to be

T (ε0) = 47, T

(
ω

ε0

)
= 521, T (ω) = 9353.

Therewith is the stated goal reached:
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Result. The maximal real subfield K of the class field N of the imagi-
nary quadratic number field Ω = Q(

√
−47) has the representation

K = Q(A)

with the fundamental equation

A5 + 10A3 − 235A2 + 2610A− 9353 = 0.

The generator A is arithmetically characterized as the radical sum

A = 5
√
ω +

5
√
ω′ +

5
√
ω′′ +

5
√
ω′′′,

whose radicand is formed by
ω = ε20ε

′
0

out of the relative fundamental unit ε0 of the cyclic biquadratic maximal

real subfield Ω5
0 = Q

(√
−e
√

5 · d
)

of Ω5 = Q
(√
−e
√

5,
√
d
)

, where e =

(1 +
√

5)/2 is the fundamental unit of Q5
0 = Q(

√
5).

Closing remark. Whether in the present case d = −47 the disproportion-
ately high fundamental equation can be reduced to a lower one by dividing
out of the radicand ω = ε20ε

′
0 an appropriate 5th power, as was possible in

the cases d = −23 and d = −31 by dividing the radicand ε by
√
−3

3
, and

whether one can perhaps reduce the equation found here to those coming out
of the transformation theory of modular functions (see footnote 1), remains
to be seen in a further investigation.
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